
HAL Id: hal-01593144
https://inria.hal.science/hal-01593144v2

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side-Channels Beyond the Cloud Edge : New Isolation
Threats and Solutions

Mohammad-Mahdi Bazm, Marc Lacoste, Mario Südholt, Jean-Marc Menaud

To cite this version:
Mohammad-Mahdi Bazm, Marc Lacoste, Mario Südholt, Jean-Marc Menaud. Side-Channels Be-
yond the Cloud Edge : New Isolation Threats and Solutions. CSNet 2017 : 1st Cyber Security in
Networking Conference, Oct 2017, Rio de Janeiro, Brazil. pp.1-8, �10.1109/CSNET.2017.8241986�.
�hal-01593144v2�

https://inria.hal.science/hal-01593144v2
https://hal.archives-ouvertes.fr


DRAFT

1

Side-Channels Beyond the Cloud Edge :

New Isolation Threats and Solutions

Mohammad-Mahdi Bazm∗, Marc Lacoste∗, Mario Südholt†, Jean-Marc Menaud†
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Abstract—Fog and edge computing leverage resources of

end users and edge devices rather than centralized clouds.

Isolation is a core security challenge for such paradigms:

just like traditional clouds, fog and edge infrastructures are

based on virtualization to share physical resources among

several self-contained execution environments like virtual

machines and containers. Yet, isolation may be threatened

due to side-channels, created by the virtualization layer or

due to the sharing of physical resources like the processor.

Side-channel attacks (SCAs) exploit and use such leaky

channels to obtain sensitive data. This paper aims to clarify

the nature of this threat for fog and edge infrastructures.

Current SCAs are local and exploit isolation challenges of

virtualized environments to retrieve sensitive information.

We introduce a new concept of distributed side-channel

attack (DSCA) that is based on coordinating local attack

techniques. We explore how such attacks can threaten

isolation of any virtualized environments such as fog

and edge computing. Finally, we study a set of different

applicable countermeasures for attack mitigation.

Index Terms—cloud security, isolation, side-channel at-

tacks, distributed side-channel attacks, moving target de-

fense, decentralized cloud infrastructures.

I. INTRODUCTION

Decentralized cloud paradigms have been getting a

lot of attention lately, notably because of the emergence

of applications involving the Internet of Things (IoT)

that generate high volumes of data whose processing

requires significant resources. The corresponding novel

architectures [1], [2] extend traditional cloud services

beyond data center, migrating virtualization resources

to the network edge into different types of micro

data centers. Benefits include improved response time

and cloud efficiency through geo-location-awareness,

e.g., load-balancing between core data centers and the

edge, thus enabling multi-level context-aware adap-

tations.

Both traditional and decentralized clouds make per-

vasive use of virtualization for dynamic resource al-

location, consolidation and service provisioning, reach-

ing an extensive level of physical resource sharing be-

tween different operating systems. Virtualization tech-

nology has also evolved from virtual machines towards

more lightweight solutions such as containers [3] or

unikernels [4], concepts that are better manageable for

users, and increase flexibility as well as reliability. Such

technologies may be deployed in all elements of the

infrastructure, especially on edge computing devices.

They are, however, highly heterogeneous between cloud-

facing and embedded-facing parts of the infrastructure.

Such features raise several security and privacy issues,

some of which are also well-known for traditional vir-
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tualized systems. The most important new challenge is

to guarantee strong isolation between virtualized execu-

tion environments. Resource isolation between processes

or virtual machines is traditionally implemented by

OS/hypervisor components using now well-established

software techniques, such as access control to limit shar-

ing of key resources. Unfortunately, in a virtualized envi-

ronment the impact of co-residency on isolation reaches

much deeper into the hardware: physical resources are

often shared between independent customers at a fine-

grained level including in terms of multi-tasking through

the virtualization layer. This means software security

mechanisms can be bypassed, threatening the overall

security of the virtualized infrastructure and software

systems using it.

Side-channels attacks (SCA) constitute a class of se-

curity threats to isolation that is particularly relevant for

the emerging “beyond the edge of the cloud” virtualized

systems, directly leveraging weaknesses of current vir-

tualization technology. An SCA uses a hidden channel

that leaks information on the execution time or on

cache access patterns of computations such as crypto-

graphic operations. Such channels can be established

based on techniques used in the virtualization layer, the

software implementation of cryptographic algorithms,

or on micro-architectural vulnerabilities in processors.

SCAs can be applied to a wide range of computing

devices and can target particularly cryptographic systems

such as AES without need for any special privileged

access. For mitigation, countermeasures can be applied

at the application, OS/hypervisor, and hardware levels.

Each level of mitigation comes with its own challenges

in terms of characteristics such as performance and

compatibility with legacy platforms.

Despite having been already well investigated sepa-

rately for cloud and for embedded systems, SCAs are

still far from understood overall for decentralized vir-

tualized systems. For instance, SCAs may be performed

in a distributed and coordinated manner to attack several

targets in a virtualized environment such as a fog infras-

tructure, giving rise to new forms of attacks: Distributed

SCAs (DSCAs). However, no definition and systematic

study of such DSCAs has been put forward yet.

This paper provides a first definition of DSCAs. It

also aims to clarify the nature of this threat in terms

of challenges and types of attacks, and presents pos-

sible counter-measures for mitigation. We provide the

following contributions: (1) we identify isolation chal-

lenges related to virtualization, and show how they

have been exploited in already known SCAs; (2) we

introduce the concept of distributed SCAs which may

exploit targets using several coordinated local SCAs; (3)

we present three possible levels for mitigation, giv-

ing a brief overview of different proposed approaches.

This paper is organized as follows. In Section II,

we give an overview of isolation challenges related to

virtualization. In Section III, we define SCAs, and survey

SCA types in virtualized environments, along with some

typical attack and mitigation techniques. Then, we intro-

duce DSCAs which are performed in a distributed man-

ner by coordinating the attack techniques. In Section IV,

we discuss possible approaches to mitigating attacks

at different levels of application. Then, in Section V,

we give an outlook of the approach Moving Target

Defense (MTD) in dencetralized clouds infrastructures.

Finally, we conclude in Section VI with some per-

spectives.

II. VIRTUALIZATION: BREAKING ISOLATION?

Virtualization is in some respects strongly at odds

with isolation, both at the hardware level and at the

software level. On the one hand, the virtualization layer
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enables several virtual machines to run concurrently

on a physical machine. VMs are distributed between

processor physical cores, where they are scheduled and

run. The low-level physical resources of the host are

broadly shared between VMs through the virtualization

layer, which has a strong security impact on running

VMs. On the other hand, a number of techniques in

the virtualization layer make the use of some physical

resources (the main memory and caches, in particular)

more efficient. Yet, they may also strongly threaten

isolation. These techniques may have an impact on

isolation directly or indirectly (Table. I).

A. Hardware Isolation Challenges

The processor is the primary resource shared among

VMs/containers in different ways. Several features of

current micro-architectures may cause isolation viola-

tions.

1) Cache Architecture and Multi-Cores: Because

of rising performance needs for processing resources,

multi-core processors are widely used in virtualized

environments. Cache memory is a fast and small amount

of memory speeding up access times between the pro-

cessor and, the main memory.

We may distinguish 3 levels of cache (see Fig. 1).

L1 and L2 levels are usually private to each processor

Layer Mechanism / Technique Direct Indirect

Cache architecture in multi-cores CPU 3

Exclusive/inclusive cache 3Hardware

Simultaneous Multi-Threading (SMT) 3

Memory deduplication 3

Large-Page memory managment 3Virtualization

Non-privileged access to hardware instructions 3

Table I: Impact of the mechanisms/techniques on the

isolation in virtualized environments. If a technique is

used as helper in attacks steps, it has an indirect impact

on the isolation.

core. L3 (Last-Level Cache, LLC) is shared among all

cores, having a much larger capacity (MBs) than L1

and L2 (KBs). A cache is organized into sets containing

several cache lines, or data blocks of fixed size which

are the units of data transfer between the CPU and the

RAM. When the processor needs to access a specific

location in the RAM, it checks whether a copy of

the data is already present in L1, L2 or LLC. If so

(cache hit), the CPU performs operations on the cache

in a few clock cycles. Otherwise (cache miss), the CPU

fetches data from the RAM into the cache taking more

clock cycles. Such timing differences (or more generally

access patterns) may be observed by an attacker. The

cache hierarchy, especially the shared LLC, can thus be

exploited as a channel leaking information on running

processes e.g., between different cores.

2) Exclusive/Inclusive Caches: Two types of cache

architecture can be distinguished in modern processors.

In exclusive caches, each cache line is not replicated in

the different cache levels, thus obtaining higher capacity.

In the case of inclusive cache architectures, all cache

lines at a given cache level (e.g., L1 and L2) are

also available at the lower-levels of cache (e.g., LLC).

Inclusive architectures provide less cache capacity but

offer higher performance. Unfortunately, they are widely

exploited in cache-based SCAs: when a cache line is

evicted from the LLC, it is also evicted from the L2

and L1 caches. An attacker can then simply evict cache

lines from the LLC, and measure fetching time of a

memory line from RAM to obtain the victim’s cache

access pattern to perform an SCA.

3) Simultaneous Multi-Threading (SMT): Simultane-

ous multi-threading such as Intel Hyper-Threading (HT),

enables multiple threads to be run in parallel on a

single core of a processor in order to improve execution

speed. SMT allows sharing of dedicated resources of a
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core, mainly its L1 cache, between multiple threads run-

ning on the same core. This sharing can leak information

between threads (of a core) and may be used by a spy

thread to gather information from other threads. SMT

can potentially ease cache-based SCAs [5], [6].

B. Virtualization Layer Isolation Challenges

The virtualization layer provides important isolation

services between VMs. Unfortunately, some mechanisms

in this layer can also be abused for isolation violations.

1) Memory Deduplication: This mechanism is widely

used in OSes and hypervisors to optimize memory

usage [7]. Duplicated physical pages are merged, and

mapped into virtual address spaces of the processes

using them. This technique breaks isolation between

two processes that may thus access the same physical

memory pages [8].

2) Large-Page Memory Management: Large pages

enable more efficient memory management in the hyper-

visor: access to large pages boosts Translation Lookaside

Buffer (TLB) page walks during address translation by

reducing the number of page table entries. Unfortunately,

this technique has a security impact as in large-page

memory management, more bits of a virtual address

remain unchanged during the page mapping to a physical

address than small-page memory management [9].

Figure 1: Common cache architecture in virtualized

systems.

3) Non-Privileged Access to Hardware Instructions:

Many hypervisors do not perform any access control

to execute instructions on the host. Almost all SCA

techniques exploit specific hardware instructions such as

rdtsc or clflush, respectively to measure time, and

to evict memory lines from the cache. Such instructions

may be used without any special privileges by an attacker

to manipulate the state of the cache.

III. DISTRIBUTED SIDE-CHANNEL ATTACKS IN

VIRTUALIZED PLATFORMS

Recently, the idea of a distributed timing attack

(DTA) was proposed in the context of network-on-chips

(NoC) [10]. This environment is not virtualized, but as

we will show, SCAs may be performed in a distributed

way on virtualized platforms. In what follows, we first

present SCAs and attack techniques through an example.

We then introduce a new concept of SCA, distributed

side-channel attacks, that combine such techniques.

A. Side-Channels

A side-channel is a hidden information channel that

differs from traditional “main” channels (e.g., files, net-

work) in that security violations may not be prevented

by placing protection mechanisms directly around data.

They usually come from indirect effects of computations

and are thus much more elusive. Such channels may

be created through hardware, e.g., in some components

of the micro-architecture, such as the processor cache

hierarchy. They may also be created through software,

e.g., by techniques in the virtualization layer to optimize

resource usage such as memory deduplication. Table. II

shows different leaky channels in the virtualiza-

tion technologies.
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B. Side-Channel Attacks

A side-channel attack (SCA) exploits a side-channel

to obtain important information. SCAs may be classi-

fied according to the type of exploited channel. Timing

attacks and cache-based attacks are two main classes

of SCAs, where the processor cache memory is often

exploited by adversaries to obtain sensitive information

such as cryptographic secret keys.

In timing attacks, time is the leaky channel used

to retrieve sensitive information such as secret keys.

The attacker attempts to analyze the time taken to

execute cryptographic algorithms. Cache-based timing

attacks [11], [12] leverage cache memory as a means

to attack a cryptosystem. As an example, consider an

attack implemented on DES encryption by inferring S-

box inputs [13]: the encryption time is measured for

different plaintexts. The execution time of an encryption

algorithm may also vary due to its memory activity.

Cache misses notably increase the execution time of an

application at run-time.

In cache-based side-channel attacks, the shared cache

itself leaks information. Two broad classes of attacks

should be distinguished. In access-driven attacks [14],

[15], the attacker tries to find any relation between an

encryption process and accessed cache lines to exploit

the pattern of cache accesses of the victim. To derive a

profile of cache activities, the attacker manipulates the

cache by evicting memory lines of the victim process.

Leaky ChannelInstance

Type Software Hardware

Exploited

Architecture

VM Page deduplication LLC Multi-cores

Linux Container Page sharing LLC, L1 Multi-cores, SMT

Table II: Side-channels in different virtualization tech-

nologies.

In trace-driven attacks [16], [17], the attacker observes

cache activities i.e., memory lines which are accessed

by an encryption process during its execution in order

to obtain a sequence of cache hits and cache misses.

For example, observing which memory accesses to a

lookup table lead to cache hits allows finding indices

of entries in the table.

Different techniques have been proposed to perform

a cache-based SCA. For instance: Prime+Probe [18],

Flush+Reload [15], Flush+Flush [14] and

Evict+Time [19]. Prime+Probe (see Fig. 2) is the

most common technique to obtain a profile of a victim

VM or process through a shared cache. The attacker

needs to monitor which cache lines are accessed by

the victim during the execution of sensitive operations

such as encryption using timing information (usually

provided by hardware instructions such as rdtsc).

The attack is performed in three main steps: (1) the

attacker fills one or several selected cache sets – he

selects more likely cache sets to be accessed by the

victim; (2) the attacker waits for a defined period while

the cache is used by the victim process; (3) the attacker

refills memory sets with the same data used in step (1)

to verify which cache lines are accessed by the victim.

Indeed, if a memory line was flushed by the victim

from the cache, it takes more CPU cycles to fetch

the line from main memory when it is re-accessed.

Otherwise, the line is already in the cache, thus requiring

fewer CPU cycles. This timing difference is ex-

ploited to profile cache access patterns of the victim.

To defend against such attacks, a distributed com-

puting technique such as Secure Multi-Party Computa-

tion [20] may be considered as a mitigation approach to

SCAs by dividing computations among a certain number

of computing resources, and securing them by e.g., a
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Figure 2: Prime+Probe side-channel attack: main three

steps of the technique.

shared-key cryptographic scheme. Here, a Distributed

Side-Channel Attack (DSCA) comes into play to re-

trieve sub-keys used in such distributed system.

C. Distributed Side-Channel Attacks (DSCA)

A DSCA aims to retrieve sensitive information, or a

subset of it, from a number of computing resources of

a distributed system, where each computing resource

performs processing of a part of the overall system

activity. The retrieved information may, for instance,

be a set of encryption keys that can be exploited to

compromise the functionality of the whole distributed

system (see Fig. 3). In the following, we provide the

(first) definition of distributed side-channel attacks

applicable to such a class of key recovery schemes.

Definition. A distributed side-channel attack

(DSCA) over a set MvicMvicMvic of VMs running in

a distributed system SSS is defined as the tuple

DSCA = (S,Mvic, D,K,Mmal, A,CP,EP )DSCA = (S,Mvic, D,K,Mmal, A,CP,EP )DSCA = (S,Mvic, D,K,Mmal, A,CP,EP ) where:

• SSS is a distributed system;

• MvicMvicMvic are the VMs/containers that are targeted by

the attack;

• DDD is the distributed dataset to be compromised

(partially or totally);

• KKK is the distributed cryptographic secret to retrieve;

• MmalMmalMmal are malicious VMs, co-located with the vic-

tim VMs;

• AAA is a set of local SCA techniques;

• CPCPCP is a protocol to coordinate the attacker VMs in

MmalMmalMmal;

• EPEPEP is a protocol to exfiltrate data.

We consider D = d1, ..., dnD = d1, ..., dnD = d1, ..., dn a dataset to be processed

by the distributed system S = s1, ..., snS = s1, ..., snS = s1, ..., sn implemented

on a set of virtual machines Mvic = mvic1 , ...,mvicnMvic = mvic1 , ...,mvicnMvic = mvic1 , ...,mvicn

on a virtualized platform. Each component sisisi of

SSS processes data dididi locally and runs in its own

virtual machine mvicimvicimvici . We assume data protection

is based on a shared cryptographic scheme with

secret-key K = k1, ..., knK = k1, ..., knK = k1, ..., kn: each sub-key kikiki is used by

component sisisi to encrypt/decrypt data dididi. To perform

the distributed attack, the adversary sets up a number

of malicious VMs (at least equal to the number of

Mvic) Mmal = mmal1 , ...,mmalnMmal = mmal1 , ...,mmalnMmal = mmal1 , ...,mmaln , co-located with

the victim VMs MvicMvicMvic. The adversary also masters a

set A = a1, ..., amA = a1, ..., amA = a1, ..., am of side-channel attack techniques

i.e., Flush+Reload, etc.

The objective of a DSCA is to first attack in a decen-

tralized manner each component of the system sisisi running

on mvicimvicimvici through mmalimmalimmali running local attack technique

aiaiai to retrieve the sub-keys kikiki. The adversary may then

coordinate attacking VMs to retrieve the overall secret KKK

of the distributed system. Such synchronization may be

performed using a coordination protocol CPCPCP . A protocol

EPEPEP may be used to control attacking VMs remotely, and
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to send collected information to a remote server to ex-

filtrate sensitive data.

1) Attack Platform: To perform a DSCA, an ad-

versary needs a set of virtual machines/containers dis-

tributed across a virtualized environment such as a cloud,

and co-located on the same physical machines as victim

VMs/containers (see Fig. 4). Each node of the set may

then apply on its co-located victim VM/container a side-

channel attack using one of the techniques described in

Section III. After a number of attacking nodes obtain

their target sub-keys, results may be sent using an

exfiltration protocol to a centralized attack server that

will rebuild the overall secret key from received results.

2) Attack Prerequisites: Performing any side-channel

attack requires a number of preparation steps which are

detailed in the following:

a) Finding Physical Hosts Running Victim In-

stances: To perform any co-resident attacks including

side-channel ones, the attacker needs several VM launch-

ing strategies to achieve co-residency with the victim

instance. A pre-condition for any side-channel attack is

that the malicious VMs/containers reside on the same

physical host as victim VMs/containers, as side-channel

attacks are performed locally. The first and main step is

thus to find the location of physical hosts running victim

VMs/containers. There are several placement variables

Figure 3: Overall view of the distributed system. Each

component of the system has a sub-key to protect data.

such as datacenter region, time interval, and instance

type which are important in achieving co-residency.

Although, these variables are different in a IaaS cloud

(VMs) than PaaS clouds (containers). For instance, the

application type can be considered as an effective factor

in the placement strategy in container-based clouds [21].

Given P (mmali)P (mmali)P (mmali) the chances of instance mmalimmalimmali to be

co-resident with instance victim mvicimvicimvici . The value of PPP

will be raised by increasing the number of launched

attack instances. To make sure that both attacker and

victim VMs achieve co-resident placement, the adversary

can perform co-residency detection techniques such as

network probing. The attacker can also use data mining

techniques to detect the type and characteristics of a

running application in the victim VM by analyzing

interferences introduced into different cache levels, to

increase the accuracy of co-residency detection [22].

Co-residency detection is easier in container-based en-

vironments than in VM-based ones because of more

existing logical side-channels in such environment

[23].

On the other hand, this preparation phase of attacks

i.e., achieving co-residency gets more importance in the

case of decentralized cloud infrastructures composed of

several self-managed data centers with different place-

ment and security policies [23]. More precisely, if victim

instances are spread in different sites, achieving co-

residency comes more complicated to handle because

the attacker needs to launch a large number of malicious

instances and plays several different scenarios to bypass

placement algorithms (i.e., different cloud providers re-

sult in playing different VM launching scenarios).

b) Synchronization of Attacker and Victim In-

stances: The spy application running one of the local

attack techniques must be well synchronized with the

victim application to trace its activities in the cache.
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Figure 4: Malicious VMs co-located with victim VMs.

The attack coordination is performed by a botnet under

adversary control.

Otherwise, the attacker will not be able to profile the

cache activity of the victim application. How to perform

effectively but stealthy synchronization is very impor-

tant in the implementation of side-channel attacks.

We consider tvictimtvictimtvictim: start time of a sensitive operation

e.g., cryptographic, tattacktattacktattack: start time of spy operation

(tracing cache activities of victim) , and twaittwaittwait: waiting

period in the phase 2 of any side-channel attack. In

order to detect the first access of sensitive operation

in sensitive application running in sisisi, tvictimtvictimtvictim must

be : tattack < tvictim < tattack + twaittattack < tvictim < tattack + twaittattack < tvictim < tattack + twait. The attacker

may probe cache periodically to detect any cache access

by the sensitive operation. However, getting synchro-

nized with the victim depends on the attacks techniques.

For instance, synchronization in Flush+Reload is less

difficult because of high resolution of technique that uses

page sharing. In a real attack scenario, the spy applica-

tion (running in malicious VM/container) must be able

to recognize the start of the victim application (running

in the victim VM/container). Achieving synchronization

between two containers running on the same CPU core,

in the case of Prime+Probe attack on L1 cache is simpler

because of the reduced level of noise in L1.

IV. COUNTERMEASURES

Although, DSCAs are performed across the

networking infrastructure, relevant countermeasures

may already be applied locally on physical machines.

However, the design and implementation of a federative

mitigation framework leveraging approaches such

as Moving Target Defense (MTD) [24] looks quite

promising in terms of avenue for research. In addition

to overcoming the underlying sources of heterogeneity,

this type of autonomic security framework may decide

that selected countermeasures i.e., dynamic ones may

be applied on different hosts, for instance, according

to available resources or performance, thus enabling

trade-offs between protection and other non-

functional properties.

Actually, existing mitigation approaches may be di-

vided into three main broad classes according to the

enforcement layer in the infrastructure: enforcement

on the application, system, and hardware levels. All

approaches impose significant performance overheads.

The best counter-measure is the one that offers robust

security with minimal performance degradation while

being scalable and applicable to existing infrastructures

with little modifications. Application-level solutions may

be applied to achieve secure-by-design protection of

applications running in a virtualized environment such as

cloud while they are purely static. Hardware approaches

are mainly static and focus on applying security in

the design of hardware such as processors. They can

influence the design of CPUs such as those from ARM

that are widespread in fog/edge computing devices.

Research on system (i.e., OS and hypervisor) approaches

are currently getting more attention because of their

benefits in terms of dynamicity and compatibility with
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legacy systems. Furthermore, they are applicable both

in classic clouds and decentralized ones such as fog

computing.

A. Application-Level Approaches

This class of approaches focuses on improving the

security of sensitive applications by secure design and

implementation. Design-oriented solutions aim to im-

prove side-channel attack resistance of applications.

Development-oriented and code optimization solutions

propose new programming methods for the secure im-

plementation of cryptographic algorithms.

For timing attacks, information leakage comes from

variations in execution time of applications, either due to

instructions or operations with variable execution time or

to data-dependent branches in the implementation. Using

instructions with a constant execution time [25] and

eliminating conditional branches and loops dependent on

secret input data [26], [27] can help to improve SCA

resistance of an application. Code transformation tech-

niques for software protection [28] is another approach

to mitigate timing SCAs, notably through compiler-

based techniques [29], [30]. Key-dependent control flow

and data flow are the main causes of timing varia-

tions and correlation between secret data and execu-

tion time. Therefore, the compiler may be modified to

eliminate branches to cut any such correlation using

an if-conversion transformation [30]. For cache attacks,

obfuscation of cache access patterns from secret data is a

possible mitigation technique [27], [31]. Unfortunately,

the overhead of such techniques remains high.

B. OS-Level Approaches

SCA mitigation is also possible at the OS-level

through different mechanisms. This level of mitigation

might be more interesting than application-layer solu-

tions, as fewer modifications are needed to the infrastruc-

ture – although the guest OS needs to be updated. Time

padding, cache cleansing, dynamic partitioning [32],

cache locking and multiplexing cache lines [33] are

a number of possible countermeasures. Time-padding

ensures that the execution time of a protected application

is independent of its input data. Thus, an attacker is

unable to observe any variation in the execution time of

a function. Cache cleansing flushes the cache to prevent

from obtaining cache state information after execution

of a function. Cache partitioning, cache locking, and

multiplexing of cache lines protect resources of a trusted

process from an untrusted process during its execution.

Safe scheduling is also an efficient technique against

timing side-channels [34].

C. Hypervisor-Level Approaches

This level of mitigation could be more effective

than the OS layer as cloud providers do not need

to modify the guest OS. All OS-level mechanisms

may also be implemented at the hypervisor level. Safe

scheduling-related approaches include configuring the

scheduler to prevent cross-VM SCAs [35]: malicious

VMs tracing victim VMs may be interrupted using

the ratelimit_us parameter in Xen and KVM that

determines the minimum run-time of a virtual CPU

(VCPU) allocated to a physical CPU. A related approach,

applicable in a cloud environment is based on VM

migration [24]: the scheduler prevents a malicious VM

from spying on a victim VM by moving it away to other

physical hosts in the cloud.

Page coloring is another technique that assigns a

specific color to the memory pages of each VM. It

then maps pages with the same color to a fixed set

of cache lines, which are only accessible to related

VMs. This technique is applicable both statically [36]

and dynamically [37]. Static page coloring degrades the
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(a) Centralized

(b) Fully-distributed

Figure 5: Fully-distributed scheduling vs centralized one.

performance of a virtualized environment as well as

the number of running VMs. In dynamic page coloring,

cache protection mechanisms are only active during the

execution of sensitive operations to improve the sys-

tem performance.

Hypervisor may also be used as interceptor between

VMs and hardware to control some hardware instructions

used in SCAs such as rdtsc. Vattikonda et al. [38]

proposed an approach called fuzzy time based on degrad-

ing the timing resolution of rdtsc: without fine-grained

timing information, it becomes hard for the attacker to

detect cache hits/misses.

D. Hardware-Level Approaches

Hardware-based mitigation for instance explores in-

tegrating cryptographic security in processor design.

Solutions also include enhancing cache architectures

with new security mechanisms such as locking of cache

lines [39], random permutation techniques [39], and

cache partitioning [40] to provide strong isolation be-

tween processing units i.e., threads and VMs. Recently,

Intel introduced a new technology called Cache Al-

location Technology (CAT) [41] in its processors to

improve performance of latency-sensitive applications

by guaranteeing cache capacity to priority applications.

This technology enables dynamic LLC partitioning be-

tween processor cores, from OS/hypervisor layer. Un-

fortunately, while very efficient and providing strong

isolation, hardware mitigation approaches suffer from

compatibility issues with mainstream platforms.

E. Moving Target Defense Approach Using Cloud

Scheduler

Moving Target Defense (MTD) [42] is based on

the changing of the system configurations using

techniques such as randomization, in order to make

attack surface dynamic and consequently harder to

exploit by attackers. This approach may be applied to

mitigate DDOS attacks [43] or co-residency attacks

such as side-channel ones [44]. To perform any side-

channel attacks, an attacker must co-localize a malicious

instance e.g., an attacker VM with the victim VM, by

reverse engineering of the VM placement algorithm in

IaaS cloud. The MTD approach aims to leverage the

cloud scheduler in order to migrate a malicious/victim

virtualized instance to another host in the cloud.

Generally, there are two classes of VM placement

algorithms: centralized and fully-distributed (see

Fig. 5). Centralized algorithms [45] may be leveraged to

mitigate side-channel attacks in a uniform cloud i.e., a

cloud operated by a service provider such as Amazon,

and fully-distributed algorithms [46] for multi-cloud

and decentralized cloud infrastructures such as Fog

computing. There are different types of placement

algorithm in cloud such as Round Robin, Greedy,

Genetic algorithms. Each algorithm tries to guarantee

some particular properties such as load balancing among
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servers, minimum number of active hosts, least response

time, to avoid SLA violation in the cloud platform.

Furthermore, a cloud scheduler takes two placement

decisions [47]: Instance initialization (when an instance

is created, the scheduler decides to allocate the instance

to a host in the infrastructure, according to the instance

placement policy), and Instance migration (when an

instance is migrated between hosts in infrastructure to

guarantee SLA). For instance, in side-channel attacks,

the instance initialization decision plays a preventive

role in co-residency attacks by avoiding a malicious

instance to be co-localized with a targeted victim

instance on the same physical machine. This phase of

VM placement algorithm is undocumented for security

reasons by cloud service providers. The migration

decision may be leveraged to mitigate co-residency

attacks such as side-channel ones when the attack is

detected. Thus, this part of the placement algorithm gets

attention in a moving target defense approach. Such

mitigation approach may be extended by a detection

module to increase efficiency. Thus, an MTD ap-

proach may be defined as following:

Definition. A MTD mitigation approach over a set NNN of

nodes that run a set of VMs/containers is defined as the

tuple MTD = (CI,N, PLC,Mvic,Mmal, DTC,A)MTD = (CI,N, PLC,Mvic,Mmal, DTC,A)MTD = (CI,N, PLC,Mvic,Mmal, DTC,A)

where:

• CICICI is the cloud infrastructure;

• NNN are nodes/hosts in the cloud infrastructure;

• PLCPLCPLC is a cloud placement algorithm;

• MvicMvicMvic are the VMs/containers that are targeted by

the attack;

• MmalMmalMmal are malicious VM(s)/container(s), co-located

with the victim VM(s)/container(s);

• DTCDTCDTC is a detection technique;

• AAA is a side-channel attack.

We consider a cloud infrastructure CICICI composed of

jjj nodes N = N1, N2, ..., NjN = N1, N2, ..., NjN = N1, N2, ..., Nj , which are distributed in

different sites i.e., large or small data centers. In such

infrastructure, as a preventive countermeasure, the goal

of the initial step of the placement algorithm is to prevent

mmalimmalimmali and mvicimvicimvici to be co-localized on node NiNiNi to

avoid meeting any co-residency conditions to perform

side-channel attack AAA between mmalimmalimmali and mvicimvicimvici . As

a reactive countermeasure, the MTD approach aims to

react to the detection of side-channel attack AAA between

mmalimmalimmali and mvicimvicimvici which are co-resident in the same

node NiNiNi, by migrating mmalimmalimmali to another node NkNkNk in

the infrastructure.

V. DISCUSSION

Either the attacks are done in a coordinated

way or in a centralized manner, in any cloud

architecture i.e., centralized or decentralized. Design

and implementation of a moving target defense

mitigation framework may be different according to

the cloud architecture. Handling a migration event

is completely dependent on the cloud scheduler

architecture i.e., distributed or centralized. Furthermore,

the efficiency of the MTD platform is strongly based on

the performance of the placement algorithm. This topic

gets more importance in large-scale infrastructures such

as Fog that are composed of several thousands of nodes

distributed in different locations. Thus, as much as the

placement algorithm is scalable to large infrastructures,

it should also be reactive in order to guarantee SLA

(e.g., VM resource requirements) rapidly, to reduce the

trade-off between security and performance in the cloud

infrastructure.

As a solution to improve the performance of the MTD
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framework in the case of co-residency attacks such as

side-channel ones, it may be extended to a local MTD

on a physical host with NUMA (see Fig. 6) architecture

with several processors, by leveraging hypervisor/OS

scheduler. For instance, if a host has two proces-

sors, once a side-channel attack is detected between

two instances on one of the processors, local MTD will

be applied to the malicious instance by moving it to the

second processor. In such scenario, the efficiency of the

overall system will be raised because of none migrating

the instance between physical machines in the virtual-

ized infrastructure.

Figure 6: A NUMA architecture with two CPUs in a

VM-based environment.

VI. CONCLUSION

In this paper, we surveyed a number of virtual-

ization issues, related to violating isolation in cloud

computing infrastructures. We identified distributed side-

channel attacks as an important challenge for cloud

infrastructures including novel multi-domain cloud ar-

chitectures. We presented the first definition of DSCAs

that can be used to exploit isolation violations: DSCAs

are coordinated attacks involving several local SCAs

that can be triggered to exfiltrate sensitive information

from different parts of a distributed system. Finally,

we sketched an approach for the mitigation of side-

channel attacks using an autonomic system, for instance

enforcing a moving target defense strategy. As future

work, we focus on the design and implementation of

an autonomic mitigation framework for multiple SCA

classes in decentralized cloud infrastructures.
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