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Abstract. This paper proposes a fully Bayesian approach for Least-
Squares Temporal Differences (LSTD), resulting in fully probabilistic
inference of value functions that avoids the overfitting commonly expe-
rienced with classical LSTD when the number of features is larger than
the number of samples. Sparse Bayesian learning provides an elegant
solution through the introduction of a prior over value function param-
eters. This gives us the advantages of probabilistic predictions, a sparse
model, and good generalisation capabilities, as irrelevant parameters are
marginalised out. The algorithm efficiently approximates the posterior
distribution through variational inference. We demonstrate the ability of
the algorithm in avoiding overfitting experimentally.

1 Introduction

Value function estimation is an integral part of many reinforcement learning (RL)
[29] algorithms (e.g., policy evaluation step of policy iteration) as it assesses the
quality of a fixed control policy. This is straightforward in domains with a finite
number of states. Large or infinite state spaces generally prohibit an explicit
value function representation, but we can always represent the value function
through a parameterized class of functions. In this paper we focus on the case of
linear architectures where the values are approximated by a linear combination
of a number of features. This approach is used by the Least-Squares Temporal
Difference (LSTD) [6] algorithm, a temporal-difference algorithm that finds a
linear approximation to the value function that minimizes the mean squared
projected bellman error (MSPBE) [30].

The selection of features is critical for LSTD, as it determines the expres-
siveness of the value function representation. The richer the feature space is, the
more likely that the value function space will contain a good approximation to
the value function, but more data are needed [21]. This problem, already present
in linear regression is only exacerbated in RL problems. Furthermore, using too
many features makes use of the computed policies rather slow.

In linear regression, regularization is commonly used to control over-fitting,
through a penalty term which discourages coefficients from reaching large values.
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In regression problems, two of the most effective regularization approaches are `1
and `2-regularization [15] which involve adding a penalty term (`1 and `2 norms
of the parameter vector, respectively) to the error function in order to discourage
model’s parameters from getting large values. In both schemes, a coefficient term
λ, which typically must be selected in advance, governs the relative importance
of the penalty term compared to the error function.

Bayesian reinforcement learning (BRL) (see [34] for an overview) is a frame-
work for designing RL algorithms that models the reinforcement learning prob-
lem in a Bayesian decision theoretic manner. In model-free BRL, a probability
distribution is maintained over the parameters of the value function, which quan-
tifies our uncertainty over its parameters. One of the first such algorithm was
Gaussian-process temporal-difference learning (GPTD) [9], which assumes that
the unknown true values over the observed states are random variables generated
by a Gaussian process. More specifically, GPTD incorporates a Gaussian prior
over value functions and assumes a Gaussian noise model. Thus, the solution
to the inference problem is given by the posterior distribution conditioned on
the observed sequence of rewards. A sparse Bayesian extension of GPTD was
proposed in [32,33], called RVMTD, where adopted a sparse kernelized Bayesian
learning approach [31]. However, RVMTD minimizes the mean Bellman error
instead of the MSPBE as in our case.

In this paper, we propose a Bayesian treatment of the LSTD algorithm, called
BLSTD, that instead of seeking only a point estimate over the unknown value
function parameters, actually considers the uncertainty on the value function.
We adopt a fully probabilistic framework by introducing a stochastic variant of
the standard Bellman operator as well as a prior distribution over the unknown
model’s parameters. To avoid overfitting, we further extend BLSTD algorithm
with a sparse Bayesian learning approach [3,31], which we call VBLSTD. By
using a tractable variational approach to automatically determine the model’s
complexity, we obviate the need to select a regularization parameter. We demon-
strate the performance of the proposed algorithms on a number of domains,
showing the ability of our model to avoid overfitting.

The remainder of the paper is organised as follows. Section 2 presents some
preliminaries, review the LSTD algorithm and gives an overview of related work.
Sections 3 introduce the Bayesian LSTD algorithm. In Section 4 we extend the
Bayesian LSTD algorithm, presenting the VBLSTD algorithm that constitutes
the main contribution of this paper. Our empirical analysis is presented in Sec-
tion 5. We conclude the paper in Section 6 by discussing future directions.

2 Preliminaries and related work

A Markov Decision Process (MDP) is a tuple {S,A, P, r, γ}, where S is a set of
states; A is a set of actions; P (·|s, a) is a transition probability kernel, defining
the probability of next states in S for any state action pair s ∈ S and a ∈ A;
r : S → R is a reward function and γ ∈ [0, 1] is a constant discount factor. The
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policy π : S → A to be evaluated is a deterministic mapping from states to
actions.

Value functions are of central interest in reinforcement learning. Briefly, value
function V π defines the expected discounted sum of rewards for the policy π,
given that we start at state s: V π(s) , Eπ [

∑∞
t=0 γ

tr(st)|s0 = s], with V ∗ ,
supπ V

π. It is known [28] that the value function is the unique fixed-point of the
Bellman operator Tπ, i.e., V π = TπV π, defined as:

(TπV )(s) = r(s) + γ

∫
S
V (s′)dP (s′|s, π(s)), (1)

or in a more compact form as TπV = r + γPπV , where V and r are vectors of
size |S| that contains the state values and rewards, respectively. When the re-
wards and transition probabilities are known, the value function can be obtained
analytically by solving the next linear system V π = (I − γPπ)−1r.

In practice, however, the MDP is unknown, and we only have access to a set of
n observations D = {(si, ri, s′i)}ni=1 generated by the policy we wish to evaluate,
i.e., s′i ∼ P (si, π(si))

4. An additional difficulty is that when the state space is
large (e.g., continuous) the value function cannot be represented exactly. It is
then common to use some form of parametric value function approximation.
In this paper we consider linear approximation architectures with parameters
θ ∈ Rk over k features φ : S → Rk, φ(·) = (φ1(·), . . . , φk(·))>:

V πθ (s) = φ(s)>θ =

k∑
i=1

φi(s)θi.

Throughout the paper we denote by F the linear function space spanned by
the features φi, i.e., F = {fθ|fθ(·) = φ(·)>θ}. Roughly speaking, F contains
all the value functions that can be represented by the features. Let us also
introduce the projection operator Π onto F , which takes any value function
u and projects it to the nearest value function, such that Πu = V πθ where
the corresponding parameters are the solution to the least-squares problem: θ =
arg minθ ‖V πθ −u‖2D5 [30]. As the parameterization is linear, it is straightforward
to show that the projection operator is linear and independent of the parameters
θ and given byΠ = ΦC−1Φ>D, where Φ ∈ R|S|×k is a matrix whose rows contain
the feature vector φ(s)>,∀s ∈ S and C = Φ>DΦ is the Gram matrix.

2.1 Least Squares Temporal Difference

The least-squares temporal difference (LSTD) algorithm was introduced by Bra-
dtke et al. [6] and computes the fixed-point of the composed projection and
Bellman operators: V πθ = ΠTπV πθ (see Fig. 1). It can be seen as minimizing the

4 With the starting state s0 ∼ d(·) sampled from some starting distribution d.
5 The squared norm ‖u‖2D = u>Du is weighted by the non-negative diagonal matrix
D ∈ R|S|×|S| with elements d(s) on its diagonal.
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Fig. 1. A graphical representation of the LSTD problem. Here we can see the geometric
relationship between the MSBE and the MSPBE. Figure adopted from [16].

mean-square projected Bellman error (MSPBE), i.e., the distance between Vθ
and its projected Bellman image onto F :

θ = arg min
θ∈Rk

‖V πθ −ΠTπV πθ ‖2D. (2)

As is shown in prior work [1], LSTD seen as solving the following nested opti-
mization problem:

u∗ = arg min
u∈Rk

‖Φu− TπΦθ‖2D, θ = arg min
θ∈Rk

‖Φθ − Φu∗‖2D, (3)

where the first (projection) step finds the back-projection of TπV πθ onto F , and
the second (fixed-point) step solves the fixed-point problem which minimizes the
distance between V πθ and its projection.

As we discussed, usually the MDP model is unknown, or the full Φ ma-
trices are too large to be formed, and so LSTD relies on sample-based es-
timates. Using a set D of samples from the MDP of interest, we can define
Φ̃ = [φ(s1)>; . . . ;φ(sn)>] and Φ̃′ = [φ(s′1)>; . . . ;φ(s′n)>] to be the sampled fea-
ture matrices of successive transition states, and as R̃ = [ri, . . . , rn]> the sampled
reward vector. Given these samples, the sample-based LSTD solution is given
by the empirical version of equation (3):

u∗ = C̃−1Φ̃(R̃+ γΦ̃′θ),

θ = (Φ̃>(Φ̃− γΦ̃′))−1Φ̃>R̃ = A−1b,

where we have defined

C̃ , Φ̃>Φ̃, A , Φ̃>(Φ̃− γΦ̃′), and b , Φ̃>R̃.

As the number of samples n increases, the LSTD solution Φ̃θ converges to the
fixed-point of Π̂Tπ [6,21,24]. We denote as Π̂ the sample based feature space
projector (empirical projection).

2.2 Review of Regularized LSTD Schemes

Despite the fact that LSTD offers an unbiased estimate of the value function
[16], high-dimensional feature space create additional challenges. The larger the
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number of features is, the more samples required to estimate θ. In some cases,
the number of features may even significantly outnumber the number of observed
samples n � k, leading to severe overfitting and poor prediction as the matrix
A will be ill-conditioned.

For this reason, some form of regularization or model selection should be
adopted, in order to prevent overfitting. Indeed, a plethora of methods have
been proposed in value function approximation in RL, using different regular-
ization and feature selection schemes (see [7] for an overview). A common form
of regularization is based on ridge regression: this simply adds a term λI to A,
which is essentially `2-regularization. This idea was introduced and analysed by
Farahmand et al. [10] for the `2,2-LSTD algorithm, which uses an `2-penalty for
both the projection and fixed-point steps. However, when the number of samples
is much smaller than the number of features, ridge regression may fail, as it does
not encourage sparsity.

On the other hand, as `1-penalties enforce sparsity, it is natural to consider
those instead. The LASSO-TD variant6 incorporates an `1-penalty in the pro-
jection step. LARS-TD [19] applies `1-regularization to the projection operator
in the feature space F , using a variant of LARS [8]. Finally, LC-TD [17] refor-
mulates Lasso-TD as a linear complementary (LC) problem, allowing the usage
of any efficient off-shelf solver. It should be emphasised that some of the solvers
allow warm-starts, offering a significant computational advantage in the policy
iteration context. In order for both LARS-TD and LC-TD to find a solution,
matrix A is required to be a P-matrix 7. The theoretical properties of the Lasso-
TD problem were examined in [14], demonstrating that LARS-TD and LC-TD
converge to the same solution. Particularly, it has been shown that Lasso-TD
is guaranteed to have a unique fixed point. Additionally, Pires [27] suggests to
solve the linear system of LSTD by including an `1-regularization term directly
to it. This is a typical convex optimization problem where any standard solver
can be used, being also applicable to off-policy learning.

Two closely related algorithms have been proposed in order to alleviate some
of the limitations of Lasso-TD (e.g., P-matrix constraint), the `1-PBR (Pro-
jected Bellman residual) [11] and the `2,1-LSTD [16]. Both of them place an
`1-penalty term in the fix-point step, which actually penalizes the projected
Bellman residual and yields a convex optimization problem. In contrast with
`1-PBR, `2,1-LSTD puts also an `2-penalty term on the operator problem. The
Dantzig-LSTD algorithm, proposed by Geist et al. [12], integrates LSTD with
the Dantzig selector, converting it into a standard linear program, that can be
solved efficiently. Actually, it minimizes the sum of all parameters under the con-
straint that the linear system of LSTD is smaller than a predefined parameter λ
in each dimension. An alternative Dantzig Selector temporal difference learning
algorithm has been introduced recently by Liu et al. [22], called ODDS-TD. It is
a two-stage algorithm that is also able to compute the optimal denoising matrix.

6 Based on LASSO regression, which uses `1-regularization.
7 P-matrix is a squared matrix with all of its principal minors positive (superset of

the class of positive definite matrices).
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3 Bayesian LSTD

In this section we present a Bayesian LSTD algorithm, called BLSTD. In our
analysis, we model the fact that the transition distribution P is not known
exactly by considering an empirical Bellman operator, given by the standard
Bellman operator (1) plus additive white noise, ε ∼ N (0, β−1). For simplicity,
we can assume that the noise term is state independent. Thus, the empirical
Bellman operator can be written concisely as

T̂πV πθ = r + γPπV πθ +N, N ∼ N (0, β−1I).

In other words, our model says that r + γP̂πV πθ is normally distributed with
mean r+γPπV πθ . We shall formulate a Bayesian regression model, that is based
on a sample from this empirical Bellman operator.

As aforementioned, given the set of observations D, LSTD seeks the value
function parameters θ which are invariant with respect to the composed operator
Π̂T̂π:

V πθ = Π̂T̂πV πθ ⇔
Φ̃>R̃ = Φ̃>(Φ̃− γΦ̃′)θ + Φ̃>N,

where we have rewritten the projection operators and approximate value function
in terms of the feature matrix and parameter vectors. We can now reformulate
this as the following linear regression model:

b = Aθ + Φ̃>N.

The likelihood function for this model is given by:

p(b|θ, β) = N (b|Aθ, β−1C̃).

Taking the logarithm of the likelihood, we have

ln p(b|θ, β) =
k

2
ln(β)− 1

2
ln(|C̃|)− k

2
ln(2π)− β

2
ED(θ), (4)

where ED corresponds to the MSPBE:

ED(θ) = (b−Aθ)>C̃−1(b−Aθ).

To complete our Bayesian model, we now introduce a prior distribution over
the model parameters θ. Specifically, we consider a zero-mean isotropic Gaussian
conjugate prior governed by a single precision parameter α,

p(θ|α) = N (θ|0, α−1I).

Thus, we model the parametric uncertainty [23], which arises if the true transi-
tion probabilities and expected rewards are not known and must be estimated.
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Writing only the terms from the likelihood and prior depend on the model pa-
rameters, the log of the posterior distribution is given by

ln p(θ|D) ∝ −β
2
ED(θ)− α

2
θ>θ. (5)

Taking the maximization of the posterior distribution with respect to θ is
equivalent to the minimization of the MSPBE with the addition of an `2-penalty
(λ = α/β). Thus, if hyperparameter α takes a large value, the total squared
length of the parameter vector θ is encouraged to be small. Completing the
squares of equation (5),

ln p(θ|D) ∝ −β
2

(b−Aθ)>C̃−1(b−Aθ)− α

2
θ>θ

∝ −1

2
θ>(aI + βA>C̃−1A)θ + θ>βA>C̃−1b+ const

we get that the posterior distribution is also Gaussian,

p(θ|D) = N (θ|m, S),

with the covariance and mean to be given as

S = (αI + β A>C̃−1A︸ ︷︷ ︸
Σ

)−1 and m = βSA>C̃−1b,

respectively, where matrix Σ , A>C̃−1A is always positive definite. Hence, the
predictive distribution of the value function over a new state s∗ is estimated by
averaging the output of all possible linear models w.r.t. the posterior distribution

p(V πθ (s∗)|s∗,D) =

∫
θ

p(V πθ (s∗)|θ, s∗)dp(θ|b, α, β)

= N (V πθ (s∗)|φ(s∗)>m,φ(s∗)>Sφ(s∗)).

An online version of our model can also be derived easily, with the posterior
distribution at any phase acting as the prior distribution for the subsequent
transition [2] and by using the matrix inversion lemma for the covariance matrix.

Maximum likelihood. For illustrative purposes, consider also a maximum like-
lihood approach. Restricting respect to θ, we getting the gradient of the log
likelihood (4):

−1

2
∇θED(θ) = −βA>C̃−1(Aθ − b).

By setting the gradient equal to zero, we get the batch LSTD solution.
In conclusion, under our model, maximum a posteriori inference corresponds

to `2-regularization, while maximum likelihood inference to standard LSTD. In
the next section, we propose an extension of our model that also induces sparsity.
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4 Variational Bayesian LSTD (VBLSTD)

We now extend our model through a hierarchical sparse Bayesian prior, and in-
troduce a variational approach for inference. The hope is the resulting VBLSTD
algorithm will be able to avoid the over-fitting problem through regularization.
For the prior distribution over parameter vector θ, we use an approach similar
to [31] where a sparse zero-mean Gaussian prior was considered. Specifically, our
prior over the model’s parameters θ is given by:

p(θ|α) =

k∏
i=1

N (θi|0, α−1i ),

where α = (α1, . . . , αk)> are the parameters specifying our prior. Instead of
selecting an arbitrary value for α, we select a hyperprior over α of the form:

p(α) =

k∏
i=1

Gamma(αi|ha, hb),

where ha, hb are fixed parameters. The choice of the Gamma distribution for
α results in a marginal distribution p(θ) that is Student-t, which is known to
enforce sparse representations. To complete the specification of our model, we
define a Gamma hyperprior over the noise precision β:

p(β) = Gamma(β|hc, hd).

To get broad hyperpriors, we can set those parameters to some small value, e.g.,
ha = ha = hc = hd = 10−6.

Bayesian inference requires the computation of the posterior distribution
over all latent parameters Z = {θ,α, β} given the observations:

p(θ,α, β|b) =
p(b|θ, β)p(β)p(θ|α)p(α)

p(b)
.

As the direct computation of the marginal likelihood is analytically intractable,
we resort to variational inference [3,18]. This introduces a variational approxi-
mation Q(Z) to the true distribution p(Z|b) over the latent variables, and the
problem is defined as finding the approximation closest to the true posterior
distribution in terms of KL divergence. The main insight in variational methods
is the following identity,

ln p(b) = L(Q) + KL(Q‖p)

where we have defined,

L(Q) =

∫
Q(Z) ln

{
p(Z, b)
Q(Z)

}
, (6)

KL(Q‖p) = −
∫
Q(Z) ln

{
p(Z|b)
Q(Z)

}
. (7)
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The KL(Q‖p) (7) represents the Kullback-Leibler divergence between the vari-
ational posterior distribution Q(Z) and the true posterior distribution p(Z|b)
over the latent variables. As KL(Q‖p) ≥ 0, it follows that L(Q) ≤ ln p(b), which
means that L(Q) is a lower bound on ln p(b). Therefore, maximizing the ev-
idence lower bound (ELBO, see [4] for an overview) L(Q) with respect to Q
is equivalent to minimizing the KL(Q‖p), as the largest value of L(Q) will be
achieved when the KL(Q‖p) becomes zero.

In our problem, we consider a variational distribution with a factorized
Gaussian form over the latent variables (c.f. mean field theory [26]), such that
Q(Z) = Qθ(θ)Qα(α)Qβ(β). Then the optimal distribution for each one of the
factors can be written as:

Qθ(θ) = N (θ|m, S) (8)

Qβ(β) = Gamma(β|c̃, d̃) (9)

Qα(α) =

k∏
i=1

Gamma(αi|ãi, b̃i) (10)

where,

S = (diag E[α] + E[β]Σ)
−1
, m = E[β]SA>C̃−1b,

ãi = ha +
1

2
, b̃i = hb +

1

2
E[θ2i ],

c̃ = hc +
k

2
, d̃ = hd +

1

2
‖b−Am‖2

C̃
+

1

2
tr(ΣS).

The required moments can be expressed as follows:

E[αi] = ãi/b̃i, E[β] = c̃/d̃, and E[θ2i ] = m2
i + Sii.

The variational posterior distributions given in equations (8), (9) and (10) are
then iteratively updated until convergence. As the evidence lower bound is con-
vex with respect to each one of the factors, convergence is guaranteed.

Similarly to BLSTD, the value function distribution over a new state s∗

can be approximated by averaging the output of all possible linear models w.r.t
the variational posterior distribution Qθ(θ)

p(V πθ (s∗)|s∗,D) =

∫
θ

p(V πθ (s∗)|θ, s∗)dQθ(θ)

= N
(
V πθ (s∗)

∣∣ φ(s∗)>m,φ(s∗)>Sφ(s∗)
)
.

This gives us not only a specific mean value function, but also effectively ex-
presses our uncertainty about what the value function is through the covariance
terms.

The lower bound is interesting to look at more closely, as it is the quantity
that we maximizing. Furthermore, it can be used as a convergence criterion for
the variational inference. If the difference between the lower bound on two suc-
cessive iterations is lower than a threshold, we assume that our model converges.
Algorithm 1 provides the pseudocode of the sparse Bayesian LSTD algorithm.



10 N. Tziortziotis, and C. Dimitrakakis

Remark 1. The lower bound can be written as

L(Q) =
1

2
ln |S| − 1

2
|C̃|+

k∑
i=1

{lnΓ (ãi)− ãi ln b̃i}+ lnΓ (c̃)− c̃ ln d̃

+
k

2
(1− ln 2π)− k lnΓ (ha) + kha lnhb − lnΓ (hc) + hc lnhd. (11)

Proof. Decomposing equation (6) we obtain:

L(Q) = Eθ,β [ln p(b|θ, β)] + Eβ [ln p(β)] + Eθ,α[ln p(θ|α)] + Eα[ln p(α)]

− Eθ[lnQθ(θ)]− Eα[lnQα(α)]− Eβ [lnQβ(β)].

We now evaluate each term in turn.

Eθ,β [ln p(b|θ, β)] =
k

2
(ψ(c̃)− ln d̃)− k

2
ln 2π − 1

2
|C̃| − 1

2
E[β]{‖b−Am‖2C̃ + tr(ΣS)}

Eθ,α[ln p(θ|α)] = −k
2

ln 2π − 1

2

k∑
i=1

(ψ(ãi)− ln b̃i)−
1

2

k∑
i=1

E[αi](m
2
i + Sii)

Eα[ln p(α)] = −k lnΓ (ha) + kha lnhb + (ha − 1)

k∑
i=1

(ψ(ãi)− ln b̃i)− hb
k∑
i=1

E[αi]

Eβ [ln p(β)] = − lnΓ (hc) + hc lnhd + (hc − 1)(ψ(c̃)− ln d̃)− hd E[β]

Eθ[lnQθ(θ)] = −1

2
ln |S| − k

2
(1 + ln 2π)

Eα[lnQα(α)] =

k∑
i=1

{− lnΓ (ãi) + ãi ln b̃i + (ãi − 1)(ψ(ãi)− ln b̃i)− b̃i E[αi]}

Eβ [lnQβ(β)] = − lnΓ (c̃) + c̃ ln d̃+ (c̃− 1)(ψ(c̃)− ln d̃)− d̃E[β].

Substituting back, we obtain the required result. ut

In the next section, we compare the Bayesian LSTD methods we derived with
other state-of-the-art LSTD approaches for value function estimation.

5 Experiments

To analyze the performance of the proposed VBLSTD algorithm, we consid-
ered two discrete chain problems. Through our empirical analysis we examine
both the convergence capabilities of VBLSTD on the true solution, as well as
the ability of the VBLSTD algorithm in avoiding overfitting. In the first case,
comparisons have been made with the vanilla LSTD algorithm, considering three
different sizes of the Boyan’s chain [5]. In the second case, comparisons have been
conducted with the `2-LSTD (adding an `2-regularization factor to the projec-
tor operator), LarsTD [19] and OMPTD [25] algorithms. For that purpose, we
considered the corrupted chain problem similar to [19,16,12].

In contrast to the VBLSTD algorithm, the performance of the three afore-
mentioned algorithms are totally depended on the penalty parameter that should
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Algorithm 1: VBLSTD(D,φ, γ)

Initialization :
1 maxt = 1000, t = 0;
2 ha = ha = hc = hd = 10−6;
3 begin
4 b =

∑
(s,r,s′)∈D φ(s)r;

5 C̃ =
∑

(s,r,s′)∈D φ(s)φ(s)>;

6 A =
∑

(s,r,s′)∈D φ(s)(φ(s)− γφ(s′))>;

7 Σ = A>C̃−1A;
8 〈β〉 = std(b);
9 〈αi〉 = 0.01, ∀i = 1, . . . , k;

10 repeat

11 t← t+ 1;
12 1. Update Qθ;

13 S = (diag E[α] + E[β]Σ)−1;

14 m = E[β]SA>C̃−1b;
15 E[θ2i ] = m2

i + Sii;
16 2. Update Qβ;
17 c̃ = hc + k/2;

18 d̃ = hd + 1
2
‖b−Am‖2

C̃
+ 1

2
tr(ΣS);

19 E[β] = c̃/d̃;
20 3.Update Qα;
21 for i = 1 to k do
22 ãi = ha + 1/2;

23 b̃i = hb + E[θ2i ]/2;

24 E[αi] = ãi/b̃i;

25 end
26 4. Calculate bound Lt, based on Eq.(11);

27 until convergence or t > maxt;
28 return m, S;

29 end

be defined explicitly in advance. Therefore, we have to answer the next question:
which is the best value to set the regalurization factor? In the case of the `2-LSTD
algorithm we adopted the same strategy with the one followed by Hoffman et al.
[16]. Actually, we used a grid of 10 parameters logarithmically spaced between
10−6 and 10. In the case of the LarsTD and OMPTD algorithms, we computed
the whole regularization path similar to [12] by setting the regularization factor
equal to 10−7. In all cases, the best prediction error has been reported.

In our experimental results, we illustrate the average root mean squared error
with respect to the true value function, V ∗. The optimal value function was
computed explicitly since we examine discrete environments. It should be also
noticed that for each run the algorithms were provided with the same rollouts of
data. For each average, we also plot the 95% confidence interval for the accuracy
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Fig. 2. Performance of policy evaluation on the Boyan’s Chain for a fixed policy.

of the mean estimate with error bars. Additionally, we show the 90% percentile
region of the runs, in order to indicate inter-run variability in performance.

5.1 Boyan’s Chain

To demonstrate the ability of the VBLSTD algorithm to converge to the same
solution with that of standard LSTD, we examine the Boyan’s chain problem [5].
Actually, it is an N -state Markov chain with a single action. Each episode starts
in state N−1 and terminates when the (absorbing) state zero is reached. For each
state, s > 2, we transit with equal probability in states s−1 or s−2, with reward
−3. On the other hand, we deterministically transit from states 2 to 1 and state
1 to 0, where the received rewards are equal to −2 and 0, respectively. Similar to
[13], three different problems sizes have been considered: N = {14, 102, 402}. The
feature vectors that considered for the states’ representation are exactly the same
with those used by Geramifard et al. [13]. Figure 2 illustrates the performance
of the VBLSTD and LSTD algorithms on the three different Boyan’s chain
problems, averaged over 1000 runs. In all these three problems, it is clear that the
proposed VBLSTD algorithm converges to same solution with the one returned
by the LSTD algorithm. It means that the VBLSTD algorithm discovers the
global optimum solution (i.e., the solution that corresponds to the minimum
MSPBE).

5.2 Corrupted Chain

In order to examine the sparsification properties of the VBLSTD algorithm,
we consider the corrupted chain problem as in [12,16,19]. This is a 20-state, 2-
actions MDP proposed in [20]. In this problem, the states are connected in a chain
with the actions to indicate the direction (left or right), with the probability of
success to be equal to 0.9. For instance, executing left action at state s, the
system transitions to state s − 1 with probability 0.9 and to state s + 1 with
probability 0.1. A reward of one is given only at the ends of the chain. Similar to
[12,16,19], to represent the value function we will consider k = 6 + s, 6 ‘relevant’
features (i.e., including a bias term and five RBF basis functions spaced evenly
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Fig. 3. Performance of policy evaluation on the Corrupted chain for a fixed policy.
(Left) We consider s = 600 ‘irrelevant’ features while varying the number of samples.
The horizon of each episode is set equal to 20 steps. (Right) We use 400 transitions
(20 rollouts of horizon 20) varying the number of ‘irrelevant’ features.

over the state space) and s additional ‘irrelevant’ (noise) features (containing
random Gaussian noise, N (0, 1)). It should also be stressed that through our
analysis we didn’t perform any standarization over the feature matrices. Also,
in the case of the VBLSTD, we keep the noise precision unchanged.

The results of our experiments are presented in Fig. 3, averaged over 30
runs. We report the prediction error between the estimated and the true value
function on 1000 test points. The evaluated policy is the optimal one, which
selects left action on the first 10 states and right action on the rest 10. The
first (left) plot shows the results in the case where we have s = 600 ‘irrelevant’
features while varying the number of samples (the horizon of each episode is
equal to 20, started randomly on {1, . . . , 20}). On the other hand, the second
(right) plot depicts the results in the case where we sample 400 transitions (20
rollouts of horizon 20), varying the number of ‘irrelevant’ features. In both cases,
it seems that the VBLSTD algorithm performs much better compared with the
others three reguralization schemes. The difference between them becomes more
apparent as the number of irrelevant features increased. Additionally, it stems
that the performance of VBLSTD is quite stable even when we select a large
number of noise features. On the contrary, the OMPTD algorithm seems to
become unstable when the number of noise features becomes large. Furthermore,
we also note that the VBLSTD is not affected by overfitting when the number
of features becomes greater than the number of samples. As it is expected, the
performance of all algorithms is quite close even when large number of transitions
are used for training or the number of noise features is quite small.

Finally, Figure 4 illustrates the mean weights (solution), θ, for each one of the
examined algorithms considering 600 irrelevant features. The number of training
episodes that used for training on these two plots (Fig. 4) are 10 and 100, respec-
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Fig. 4. The 606 mean weight values. The first weight is the bias term, the next 5 corre-
spond to the relevant features (RBFs), the rest 600 correspond to the noise (irrelevant)
features. The dichotomy between the ‘relevant’ and ‘irrelevant’ weights is apparent.

tively. As we can easily verify, when the number of features exceeds the number
of the training samples, we encounter the overfitting problem that leads to poor
predictions. It is more apparent in the case of the LSTD algorithm. However,
the VBLSTD algorithm achieves to avoid the overfitting problem, succeeding to
identify the relevant features even in the case where the number of samples is
much lower than that of the features. Last but not least, it should be highlighted
that when the number of training samples is much higher than the number of
features, the solutions of the LSTD and VBLSTD algorithms are quite similar.

6 Conclusion

In this paper we introduced a fully Bayesian framework for least-squares tem-
poral difference learning algorithm, called BLSTD. This is achieved by adopting
an explicit probabilistic model for the empirical Bellman operator and introduc-
ing a prior distribution over the unknown model’s parameters. This gives us the
advantage of not only having a point estimate over the unknown value func-
tion parameters, but also quantifying our uncertainty about the value function.
We further extended this method to a sparse variational Bayes model, called
VBLSTD. The main advantage of VBLSTD compared to other regularization
schemes, is its ability to avoid over-fitting by determining the models complex-
ity in an automatic way. In practice, we verified that the VBLSTD algorithm
solutions are at least as good as any other state-of-the-art algorithm, while be-
ing able to automatically ignore noisy features. We believe that this principled
approach to policy evaluation can also lead to reinforcement learning algorithms
with good exploration performance, something that we leave for future work.
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