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Abstract In many cases, applications are not optimized for the hardware on
which they run. Several reasons contribute to this unsatisfying situation, such
as legacy code, commercial code distributed in binary form, or deployment
on compute farms. In fact, backward compatibility of ISA guarantees only
the functionality, not the best exploitation of the hardware. In this work, we
focus on maximizing the CPU efficiency for the SIMD extensions. The first
contribution was originally published in the International Conference on Em-
bedded Computer Systems: Architectures, Modeling and Simulation, SAMOS
XV, Jul 2015, Agios Konstantinos, Greece. It is a binary-to-binary optimiza-
tion framework where loops vectorized for an older version of the processor
SIMD extension are automatically converted to a newer one. It is a lightweight
mechanism that does not include a vectorizer, but instead leverages what a
static vectorizer previously did. We show that many loops compiled for x86
SSE can be dynamically converted to the more recent and more powerful AVX;
as well as, how correctness is maintained with regards to challenges such as
data dependencies and reductions. We obtain speedups in line with those of a
native compiler targeting AVX. The second contribution is the runtime vec-
torization of loops in binary codes that were not originally vectorized. For this
purpose, we use open source frameworks that we have tuned and integrated to
(1) dynamically lift the x86 binary into the Intermediate Representation form
of the LLVM compiler, (2) abstract hot loops in the polyhedral model, (3) use
the power of this mathematical framework to vectorize them, and (4) finally
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compile them back into executable form using the LLVM Just-In-Time com-
piler. In most cases, the obtained speedups are close to the number of elements
that can be simultaneously processed by the SIMD unit. The re-vectorizer and
auto-vectorizer are implemented inside a dynamic optimization platform; it is
completely transparent to the user, does not require any rewriting of the bi-
naries, and operates during program execution.

Keywords Performance · Runtime optimization · Binary code · Dynamic
binary optimization · Vectorization · Polyhedral model

1 Introduction/Motivation

Automatic code optimizations have traditionally focused on source-to-source
and compiler Intermediate Representation (IR) transformation tools. Sophisti-
cated techniques have been developed for some classes of programs, and rapid
progress is made in the field. However, there is a persistent hiatus between
software vendors having to distribute generic programs, and end-users running
them on a variety of hardware platforms, with varying levels of optimization
opportunities. The next decade may well see an increasing variety of hardware,
as it has already started to appear particularly in the embedded systems mar-
ket. At the same time, one can expect more and more architecture-specific
automatic optimization techniques.

Unfortunately, many “old” executables are still being used although they
have been originally compiled for now outdated processor chips. Several rea-
sons contribute to this situation:

– commercial software is typically sold without source code (hence no possi-
bility to recompile) and targets slightly old hardware to guarantee a large
enough base of compatible machines;

– though not commercial, the same applies to most Linux distributions1 –
for example Fedora 16 (released Nov 2011) is supported by Pentium III
(May 1999)2;

– with the widespread cloud computing and compute servers, users have no
guarantee as to where their code runs, forcing them to target the oldest
compatible hardware in the pool of available machines.

– some compilers are capable of performing some kind of optimizations that
others cannot.

All this argues in favor of binary-to-binary optimizing transformations.
Such transformations can be applied either statically, i.e., before executing
the target code, or dynamically, i.e., while the target code is running.

Dynamic optimization is mostly addressing adaptability to various ar-
chitectures and execution environments. If practical, dynamic optimization

1 with the exception of Gentoo that recompiles every installed package
2 http://docs.fedoraproject.org/en-US/Fedora/16/html/Release_Notes/

sect-Release_Notes-Welcome_to_Fedora_16.html
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should be preferred because it eliminates several difficulties associated with
static optimization. For instance, when deploying an application in the cloud,
the executable file may be handled by various processor architectures provid-
ing varying levels of optimization opportunities. Providing numerous different
adapted binary versions cannot be a general solution. Another point is related
to interactions between applications running simultaneously on shared hard-
ware, where adaptation may be required to adjust to the varying availability
of the resources. Finally, most code optimizations have a basic cost that has to
be recouped by the gain they provide. Depending on the input data processed
by the target code, an optimizing transformation may be or not profitable.

In this paper, we target SIMD ISA extensions and in particular the x86
SSE and AVX capabilities. On the one hand, AVX provides wider registers
compared to SSE, new instructions, and new addressing formats. AVX has
been first supported in 2011 by the Intel Sandy Bridge and AMD Bulldozer
architectures. However, most existing applications take advantage only of SSE
and miss significant opportunities of performance improvement. On the other
hand, even if in theory it could take advantage of vectorization, a loop may
be left unvectorized by the compiler. This might happen when using an out-
dated version of a compiler which does not support vectorization, or when the
compiler is unable to analyze the data dependencies or transform the code for
ensuring correct vectorization. This paper shows that it is possible, at runtime,
to (1) automatically convert SSE-optimized binary code to AVX, as well as
(2) auto-vectorize binary code whenever profitable. The key characteristics of
our approach are:

– we apply the transformation at runtime, i.e. when the hardware is known;
– we only transform hot loops (detected through very lightweight profiling),

thus avoiding useless work and minimizing the overhead;
– for SSE loops, we do not implement a vectorization algorithm in a dynamic

optimizer. Instead, we recognize already statically vectorized loops, and
convert them to a more powerful ISA at low cost;

– for scalar (unvectorized) loops, we integrated some open source frameworks
to lift the binary code into the IR form of the LLVM compiler, auto-
vectorize them on the fly, and compile them back using the LLVM Just-
In-Time (JIT) compiler.

Note that the two presented techniques are not meant to be integrated.
The first technique is the closest to a production solution: it is self-contained
and relies on a single technology. The second technique is more exploratory.
It relies on various existing tools that we adapted to fit our needs. Our goal is
to demonstrate its feasibility, and to assess its potential performance.

Section 2 reviews the necessary background on the two key technologies
at play: vectorization and dynamic binary optimization. Section 3 presents
our first contribution of translating on-the-fly SSE-optimized binary code into
AVX. Section 4 addresses our second contribution of runtime auto-vectorizing
of originally unvectorized loops. Our experiments are presented in Section 5.
Section 6 discusses related work. Section 7 concludes and draws perspectives.
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Scalar version Vectorized version

int A[ ] , B [ ] , C [ ] ;
. . .
for ( i =0; i<n ; i++) {

a = A[ i ] ;
b = B[ i ] ;
c = a+b ;
C[ i ] = c ;

}

int A[ ] , B [ ] , C [ ] ;
. . .
/∗ v e c t o r i z e d loop ∗/
for ( i =0; i<n ; i+=vf ) {

va = A[ i . . i+vf [ ;
vb = B[ i . . i+vf [ ;
vc = padd ( va , vb ) ;
C[ i . . i+vf [ = vc ;

}
/∗ ep i l o gue ∗/
for ( ; i<n ; i++) {

/∗ remaining i t e r a t i o n s
i f n not mu l t i p l e o f v f ∗/

}

Fig. 1 Vector addition (pseudo code)

2 Background

2.1 Vectorization at a glance

The incorporation of vector units into modern CPUs extended the instruction
set with SIMD instructions. These instructions operate on vector operands
containing a set of independent data elements. They include wide memory
accesses as well as so-called packed arithmetic. In brief, the same operation
is applied in parallel to multiple elements of an array. Figure 1 depicts the
pseudo code of sequential and vectorized versions of an addition of arrays
C=A+B. Variables va, vb, and vc denote vectors, padd stands for packed add,
a simultaneous addition of several elements. The number of elements processed
in parallel is the vectorization factor (vf ). In the example of Figure 1, elements
are of type int, i.e. 32-bit wide, SSE vectors are 128 bits, the vectorization
factor is vf = 128/32 = 4.

The vectorized loop is faster because it executes fewer iterations (the scalar
loop iterates n times; meanwhile, the vectorized one iterates b nvf c times), fewer

instructions, and fewer memory accesses (accesses are wider but still fit the
memory bus width: this is advantageous).

Over time, silicon vendors have often developed several versions of SIMD
extensions of their ISAs. The Power ISA provides AltiVec, and the more recent
VSX. Sparc defined the four versions VIS 1, VIS 2, VIS 2+, and VIS 3. x86
comes in many flavors: starting with MMX, ranging to different levels of SSE,
and now AVX, AVX2, and AVX-512.

Compared to SSE, AVX increases the width of the SIMD register file from
128 bits to 256 bits. This translates into a double vectorization factor, hence,
in ideal cases, double asymptotic performance.
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2.2 Dynamic Binary Optimization

Dynamic binary optimization aims at applying optimizing transformations
either at program load time or during program execution, with no access to
source code or any form of intermediate representation. In this study, we use
the Padrone platform [22], which integrates several generic and architecture-
specific binary analysis and manipulation techniques. Padrone services can be
roughly divided into three major categories: 1) profiling, 2) analysis, and 3)
optimization, which are briefly described here.

The profiling component leverages the Linux performance events subsystem
to access hardware performance counters, using the perf event system calls.
The included low-cost sampling technique provides a distribution of program
counter values, which can then be used to locate hot spots.

The analysis component accesses the program’s code sections, parses bi-
nary code to build a control-flow graph (CFG), and locates loops inside func-
tions whenever possible. The analysis is completely static in our case (i.e., does
not use dynamic control flow). Re-vectorization happens on this reconstructed
CFG. This latter is further lifted into the IR form for auto-vectorization.

Padrone has the same limitations as other binary re-writers working on
x86 instruction sets. In particular, disassembling binary code may not always
be possible. Reasons include indirect jumps, presence of foreign bytes, i.e. data
in the middle of code sections, self rewriting code, or exotic code generation
schemes, such as those used in obfuscated code. Errors are of two kinds: parsing
errors and erroneous disassembly. We easily handle the former by aborting the
transformation. The latter is beyond the scope of this paper. Quite a few
techniques have been proposed in the literature, interested readers can refer
to a survey in [24]. The nature of our target program structures (vectorized
loops) are almost never subject to these corner cases.

The optimization component provides basic binary code manipulation util-
ities, as well as a code-cache injection mechanism. In this study, this compo-
nent was used mainly to regenerate code from the internal representation of
a vectorized loop after transformation. This component takes care of subtle
x86 idiosyncrasies, such as the size of the offsets and the reachability of jump
instructions, the updating of IP-relative addresses, or the addition of VEX
prefixes on remaining SSE instructions after upgrading to AVX (to avoid the
SSE/AVX transition penalty – see §11.3 of Intel Optimization Manual [1]), to
mention a few.

Padrone runs as a separate process, that interacts with its target thanks to
ptrace system call and other Linux features such as the /proc filesystem. The
target does not need any change, in particular it may be an unmodified com-
mercial workload. The optimizer also operates on running applications, which
do not need to be restarted. It monitors the program’s execution, detecting
hot spots, selecting SSE-vectorized loop, and providing a corresponding CFG.
After re-vectorization, or auto-vectorization, have been performed, Padrone is
responsible for installing an updated version and redirecting the execution.
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1 .L2 :
2 movaps A( rax ) ,xmm0
3 addps B( rax ) ,xmm0
4 movaps xmm0,C( rax )
5 addq $16 , rax
6 cmpq $4096 , rax
7 jne .L2

.L2 :
vmovaps A( rax ) ,xmm0
vinsertf128 1 ,A( rax , 1 6 ) ,ymm0
vaddps B( rax ) ,ymm0
vmovaps ymm0,C( rax )
addq $32 , rax
cmpq $4096 , rax
jne .L2

(a) Original SSE (b) Resulting AVX

Fig. 2 Body of vectorized loop for vector addition

3 Re-Vectorization of Binary Code

3.1 Principle of the SSE into AVX translation

Our goal is to transform loops that use the SSE instruction set to benefit from
a CPU that supports AVX technology. Since the binary is already vectorized,
we are concerned only with the conversion of instructions from SSE into AVX,
and some bookkeeping to guarantee the legality of the transformation.

At this time, our focus is on inner loops, with contiguous memory accesses.
Future work will consider outer-loop vectorization and strided accesses.

The main advantage of using AVX over SSE instruction set is that the
size of the vector operand doubles from 128 bits into 256 bits. Therefore, the
number of data elements that fits into the SSE vector operand doubles in the
AVX one. Hence, in the perfect scenario, an AVX loop runs half the number
of iterations of a SSE loop.

As we operate in a dynamic environment, we are constrained to lightweight
manipulations. The key idea is to leverage the work already done by the static
compiler, and to tweak the generated SSE code and adjust it to AVX, while we
must guarantee that the generated code is correct and semantically equivalent
to the original code.

Figure 2 illustrates the loop body of the vector addition (from Figure 1)
once translated into SSE assembly, and how we convert it to AVX. Register
rax serves as a primary induction variable. In SSE, the first instruction (line
2) reads 4 elements of array A into xmm0. The second instruction (line 3) adds
in parallel 4 elements of B, and the third instruction (line 4) stores the results
into 4 elements of C. The induction variable is then incremented by 16 bytes:
the width of SSE vectors (line 5).

Converting the body of the loop is relatively straightforward. But to guar-
antee the legality of the transformation, some bookkeeping is necessary. It
is detailed in the enumeration below, items 2 to 6, and further developed in
Sections 3.3 to 3.7. The key parts of our techniques are the following:

1. convert SSE instructions into AVX equivalents (cf. Section 3.2);
2. restore the state of ymm registers in the (unlikely) case they are alive (cf.

Section 3.3);
3. adjust the stride of induction variables (cf. Section 3.4);
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4. handle loop trip counts when not a multiple of the new vectorization factor
(cf. Section 3.5);

5. enforce data dependencies (cf. Section 3.6);
6. handle alignment constraints (cf. Section 3.7);
7. handle reduction (cf. Section 3.8).

3.2 Converting instructions from SSE into AVX

The optimization consists of translating a packed SSE SIMD instruction into
an AVX equivalent, i.e. an instruction (or sequence of instructions) that has
the same effect, but applied to a wider vector. When it is impossible to decide
whether the conversion maintains the semantics, the translation aborts.

In most practical cases, there is a one-to-one mapping: a given SSE in-
struction has a direct AVX equivalent. These equivalents operate on the entire
256 bits vector operand. However, in some cases, an SSE instruction needs a
tuple of instructions to achieve the same semantics. These equivalents operate
on halves of the 256-bit vector operand.

Furthermore, an SSE instruction might have several alternatives of equiv-
alent instructions because of alignment constraints, notably the SSE aligned
data movement instruction movaps. It moves a 16-byte operand from or into
memory that is 16-byte aligned. The conversion of this proposes two alterna-
tives: on one hand, when data to be moved is 16-byte aligned, it is replaced by
two instructions. Primary vmovaps requires data to be aligned on 16 bytes and
moves only the lower half of the vector operand. Secondary, a vinsertf128

that moves the upper half. Figure 2 shows that the instruction in line 2 in the
original SSE is translated into instructions in lines 2 and 3 in the resulting
AVX. We assume that array A is 16-byte aligned. On the other hand, when
the data to be moved happens to be 32-byte aligned, an aligned instruction
vmovaps that moves the whole vector operand at once is selected. Assuming
that array C, in Figure 2, is 32-byte aligned, the 16-byte memory access (in line
4) is converted into a 32-byte vmovaps. Accordingly, the registers are converted
from xmm to ymm. Finally, the translator encodes the translated instructions.
Table 1 summarizes our instruction conversion map from SSE to AVX.

Finally, there are also opportunities to map several SSE instructions to
a single AVX instruction. For example, AVX provides a fused multiply-add
instruction that provides additional benefits (and also semantics issues due to
floating point rounding). The new three-operand format also opens the door to
better code generation. These elaborated translations are left for future work.

3.3 Register liveness

A register is said to be alive at a given program point if the value it holds is
read in the future. Its live range begins when the register is first set with a
specific value and ends when the value is last used. Registers can be alive for
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Table 1 SSE-to-AVX Instruction Conversion Map

SSE AVX
movlps vmovaps (only when combined with movhps, and data are aligned on 16 bytes)
movlps vmovups (when data are not aligned)
movhps vinsertf128 (only when combined with movlps, from memory to register)
movhps vextractf (movement from register to memory)
movaps vmovaps (when data are aligned on 32 bytes)
movaps vmovaps (aligned on 16 bytes) + vinsertf128
shufps vshufps + vinsertf128
xorps vxorps
addps vaddps
subps vsubps
mulps vmulps

long sequences of instructions, spanning the whole loop nests we are interested
in. Liveness analysis requires a global data flow analysis.

Our optimizer only impacts the liveness of ymm registers. For all other
registers, we simply update an operand of instructions, such as the stride of
induction variables, which has no impact on live ranges. Registers ymm must
be handled in a different way. They are not used in the loops we consider, and
SSE code is unlikely to make any use of them. Still, there might be situations
where SSE and AVX code coexist (such as hand written assembly, use of third
party libraries, or ongoing code re-factoring – see §11.3 in [1]). Our optimizer
cannot run any interprocedural liveness analysis and has only a local view
of the program. We cannot make any assumption on the liveness of these
registers. Our straightforward solution is to spill the registers we use in the
preheader of the loop (created as needed), and restore them after the loop.

The situation is actually slightly more complicated because ymm is an ex-
tension of xmm, where xmm denotes the 128 least significant bits of ymm. We
only restore the 128 most significant bits to guarantee a consistent state.

3.4 Induction variables

In the scenario where arrays are manipulated, a register is typically used as
an index to keep track of the memory access of the iteration. For instance,
the vector addition example in Figure 2 (a) makes use of register rax for two
purposes: first, as a counter of iterations and second as an array index. In lines
2, 3, and 4 it is used as an index with respect to the base addresses of arrays
A, B, and C from and to which the reads, and writes should be performed.
Since the SSE data movement instructions operate on 16 bytes operands, the
register is incremented by 16 bytes in line 5.

When the code is translated into AVX, the operand’s size changes. Hence,
the instruction responsible for incrementing the index should be adapted to
the AVX version. In other words, the pace of change becomes 32 bytes instead
of 16 bytes. Line 5 in Figure 2 (b) illustrates the modification performed by
the translator for adapting indices to the optimized version.
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3.5 Loop bounds

Replacing vector instructions by their wider instructions requires an adjust-
ment of the total number of loop iterations. In the case of translating SSE into
AVX SIMD instructions, the size of the vector operands is doubled. Hence, a
single AVX iteration is equivalent to two consecutive SSE iterations.

The translator handles loop bounds by classifying vectorized loops into
two categories: loops with a number of iterations known at compile-time; and
loops where the bounds are only known at run-time.

3.5.1 Loop bound known at compile-time

When the total number of iterations is known at compile-time, the translator
has two alternatives: either replace the total number of iterations by its half
value or double the increment of the loop counter. It opts for the second choice,
since the loop counter may serve as an array index at the same time, whose
pace of change is doubled as discussed in the previous subsection. Line 5 in
Figure 2 (b) illustrates the transformation.

The number of iterations of the loop with SSE SIMD instructions can be
either even or odd. When it is even, n = 2×m, the optimizer simply translates
SSE into AVX instructions and doubles the pace of change of the counter so
that the transformed loop iterates m times. However, when the number of
iterations is odd, n = 2 × m + 1, the transformed code is composed of two
basic blocks: primary, the loop that runs AVX instructions m times. Secondary,
the SSE instructions that run the last SSE iteration. The latter instructions
are vex.1283 encoded to avoid SSE/AVX transition penalty.

3.5.2 Loop bound known only at run-time

This happens, for instance, when n is a function parameter, or when an outer
loop modifies the bound value of the inner one. Suppose that a sequential
loop executes a set of instruction n times, and its vectorized version executes
equivalent instructions in m iterations such that: n = m× vf + r, where r is
the number of remaining sequential iterations (r < vf) that obviously cannot
be performed at once.

Under such circumstances, the compiler generates a vectorized loop that
iterates m times, and a sequential one that iterates r times. The values of
m and r are calculated earlier, before control is given to one of the loops or
both of them depending on the values of n discovered at runtime. It is also
possible that the static compiler unrolls the sequential loop. Currently, this
latter situation is not handled.

For a correct translation into AVX, an adjustment of the values of m and r
is required. Let us consider the vectorized loop L2 (see Figure 3). The loop has

3 vex.128 instructions are enhanced versions of legacy SSE instructions that operate on
lower half of ymm registers and which zero the upper half.
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1 
2 
3 
4 
5 
6 

.L1 
    mov     %ecx,%r10d  /*ecx contains the number of elements to be processed*/ 

    shr       $0x2,%r10d  /*divides by vf to obtain number of iterations in the vectorized loop .L2*/ 

    lea       0x0(,%r10,4),%r9d /*contains the adjacent of the last processed element in .L2*/ 

    test      %r9d,%r9d /*tests whether there are sufficient elements to execute .L2*/ 

    je          .L4 

7 
 
 
8 
9 
10 

.L2 
/*Vectorized loop */ 

: 
    add     $0x1,%r8d     
    cmp    %r8d,%r10d 
    ja        .L2 

16 
 
 
17 
18 
19 

.L5:                   
/*Sequential loop */ 

:  
    add     $0x1,%r8d 
    cmp    %r8d,%ecx 
    jg         .L3 

14 
15 

.L4 
    mov     %r9d,%r8d 

11 
12 
13 

.L3 
    cmp    %r9d,%ecx 
    je         .L6 

20 .L6  

Fig. 3 Pattern of code when the number of iterations is known only at runtime

for ( i =0; i < n−4; i++)
A[ i +4] = A[ i ] + 1 ;

Fig. 4 Example of loop-carried dependence

a bound register that is compared to the counter in line 9. The bound register
holds the value m, that is computed earlier in line 3. This instruction initializes
the bound register to a value equal to bn/vfc. The translator modifies this
instruction to initialize it to bn/(2× vf)c.

Regarding the sequential loop L5, it iterates r times. The compiler initial-
izes the counter by a value equal to n−r which is also equal to vf ×m (in line
15). Therefore, the loop iterates from n− r to n for a total of r iterations. The
translator traces the counter register r8d (in line 18). It finds that it received
the contents of r9d (in line 15). It continues tracing r9d until line 4 where
this latter is initialized by the value m× vf . The translator then changes the
initialization into 2×m× vf .



Runtime Vectorization Transformations of Binary Code 11

3.6 Aliasing and Data Dependencies

3.6.1 Overview of aliasing

Aliasing is the situation where multiple instructions access the same memory
location. Dependence happens when at least one of the instructions is a write,
as in the following code:

A[ 0 ] = B [ 0 ] ; // w r i t e s i n to l o c a t i o n A[ 0 ]
B [ 1 ] = A[ 0 ] ; // reads from A[ 0 ]

There are three kinds of dependence: read-after-write, write-after-read, and
write-after-write. The first one, also known as true dependence, forces the code
to execute sequentially and the others allow code to be parallelized, subject
to some slight code transformations. Sticking to the same example, it is not
possible to execute both instructions at once; since, the second instruction
that reads A[0] should wait until the first instruction writes into A[0].

A loop-carried dependence describes the situation where the dependence
occurs between iterations of a loop. For instance, in Figure 4, a write into A[4]
occurs at the first iteration, and a read from the same location occurs four
iterations later. Considering the true dependence, the distance vector is the
number of iterations between successive accesses to the same location. In this
example, the distance is d = (i + 4) − i = 4. Therefore, executing up to four
iterations in parallel is allowed; as well as, vectorizing up to four elements.
However, vectorizing more than four elements violates the data dependence.

3.6.2 Issue of translating a loop with data dependencies

A blind widening of vectors from SSE’s 128 bits to AVX’s 256 bits might
violate data dependencies. It may happen because this doubles the vectorizing
factor, hence runs the risk to exceed the dependence distance.

3.6.3 Static interval-overlapping test

Static interval-overlapping test refers to a lightweight verification done by the
translator at compile time (no code is generated) to ensure that the translation
will not cause a dependence violation. The test consists of comparing the set
of addresses touched by the new AVX SIMD instructions against all addresses
of the remaining new AVX SIMD data movement instructions of the loop.
A non-empty intersection signals an attempt to translate more elements than
the dependence distance. Consequently, the translation process is aborted. The
static test occurs in the following scenarios: when the addresses of the arrays
are known at compile time, and the distance vector is constant during the
execution of the loop.

For illustration, let us consider the original SSE code in Figure 2. The
translator gathers SIMD instructions that involve an access to memory in
lines 2, 3, and 4. The one in line 4 is a write; therefore, it is compared to the
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for ( i =0; i < n ; i++) {
for ( j =4; i+j < n ; j++) {

A[ i+j ] = A[ i ] + 1 ;
}

}

Fig. 5 Example of aliasing with changing dependence distance

others. The set of addresses referenced by instruction in line 4, in the case it is
translated into AVX, ranges between C and C+32. Similarly, for instruction in
line 2 the range is between A and A+32. A non-empty intersection of intervals
would stop the translation process. In this example, the optimizer proceeds.
Likewise, the intersection test is done for instructions in line 3 and 4.

3.6.4 Dynamic interval-overlapping test

The dynamic interval-overlapping test refers to verification performed at run-
time. This happens when the addresses of arrays manipulated are not known
statically, or when the dependence distance in the inner loop is modified by
the outer loop, as depicted in the example of Figure 5.

In these scenarios, the compiler generates the test as shown in basic block
L1 in Figure 6. In case of empty intersection, the control flow is directed to
the vectorized loop L2; otherwise, the sequential loop L3 is invoked. The basic
block L1 contains the intersection test between the read and write of lines 13
and 16.

The test works as follow: an offset of 16 bytes is added to both rdi and rdx

in lines 2 and 3, to verify whether the read interval [rdi, rdi+16] intersects
with the write interval [rdx, rdx+16]. In order to adjust this code to work for
the AVX version, our translator performs a pattern matching to identify the
instructions in line 2 and 3, then it changes the offset from 16 (0x10) to 32
bytes (0x20).

3.7 Alignment constraints

Alignment is another issue faced during the translation of SIMD instructions.
In a nutshell, the majority of x86 instructions are flexible with alignment;
however, some of them demand data on which they operate to be aligned.
From now on, we refer to these two categories respectively as unaligned and
aligned instructions. Actually, the aligned SSE instructions require data to be
aligned on 16 bytes. And, the aligned AVX instructions require data to be
aligned on either 16 or 32 bytes [2].

When the optimizer encounters an unaligned SSE instruction, it translates
it to its equivalent unaligned AVX instruction. However, when it encounters
an aligned SSE instruction, it must apply one of these three options:

– translate it into its equivalent 32-byte aligned AVX instruction;
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1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  

.L1	  
	  	  	  	  lea	  	  	  	  	  	  0x10(%rdx),%r8	  
	  	  	  	  lea	  	  	  	  	  	  0x10(%rdi),%r11	  
	  	  	  	  cmp	  	  	  	  %r8,%rdi	  
	  	  	  	  setae	  	  %al	  
	  	  	  	  cmp	  	  	  	  %r11,%rdx	  
	  	  	  	  setae	  	  %r11b	  
	  	  	  	  or	  	  	  	  	  	  	  	  %r11d,%eax	  
	  	  	  	  test	  	  	  	  	  %al,%al	  
	  	  	  	  je	  	  	  	  	  	  	  	  	  .L3	  	  

11	  
12	  
13	  
14	  
15	  
16	  

.L2	  
/*Vectorized	  loop	  instrucEons*/	  
	  	  	  	  movups	  (%rdi,%rax,1),%xmm0	  
	  	  	  	  movups	  (%rsi,%rax,1),%xmm1	  
	  	  	  	  addps	  	  %xmm1,%xmm0	  
	  	  	  	  movups	  %xmm0,(%rdx,%rax,1)	  

:	  

17	  
	  
	  
	  

.L3:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
:	  	  	  	  

/*SequenEal	  loop	  instrucEons*/	  
: 	  	  

	  	  

Fig. 6 Pattern of code when array addresses are known only at runtime

– translate it into its multiple equivalent 16-byte aligned AVX instructions
that operates on half of the vector operand;

– translate it into its equivalent unaligned AVX instruction.

When the address of data on which the aligned SSE instruction operates is
explicitly or implicitly provided in the code section as a static value, the opti-
mizer tests whether it is also aligned on 32 bytes. When the test succeeds, the
equivalent 32 bytes aligned AVX instruction is eligible for use. Otherwise, since
the SSE aligned instruction is by definition aligned on 16 bytes; the optimizer
blindly translates it into the equivalent 16 bytes aligned AVX instructions.

The reason why we do not use the unaligned AVX instructions in the map-
ping of aligned SSE instructions, although they can be used instead of multiple
aligned AVX instructions on 16 bytes, is: multiple aligned instructions, when
they are independent, execute in parallel in an out-order-processor. When they
are aligned on 16 bytes, they run faster than a single unaligned instruction
that performs extra work of testing the cross-cache line access. The draw-
back of this solution is that multiple instructions occupy more issue slots, in
comparison with the single unaligned AVX instruction.

There is another approach that we intend to use in the future to cope with
alignment problem. In fact, some compilers extensively use it and it consists
of looping over data elements sequentially until most of the manipulated data
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f loat m = MIN;
for ( i = 0 ; i < n ; i++) {

i f (m < array [ i ] ) /∗ max(m, array [ i ] ) ∗/
m = array [ i ] ;

}

Fig. 7 Search for the maximum element in an array of floats

1 .L2 :
2 maxps A( rax ) ,xmm0
3 add 0x10 , rax
4 cmp rax ,ARRAY LIMIT
5 j l e .L2
6 movaps xmm0,xmm1
7 psrld 8 , xmm1 ; s h i f t r i g h t l o g i c a l
8 maxps xmm1,xmm0
9 movaps xmm0,xmm1

10 psrld 4 ,xmm1
11 maxps xmm1,xmm0
12 movaps xmm0,xmm1

Fig. 8 Search for the largest element in an array, vectorized for SSE

are aligned. At that moment the vectorized loop, which contains aligned in-
structions, is qualified for its use. While this implies more work at runtime, it
also delivers additional performance.

To sum up, dynamic optimization allows us in some cases to check for data
elements addresses to cope with alignment problem.

3.8 Reductions

Reduction is the process of reducing a set of values into a single one, for
instance, summing the elements of a set.

Figure 7 depicts a reduction algorithm that searches for the largest floating
point number in an array. The algorithm suffers from a loop-carried depen-
dence whose distance is equal to 1 (read-after-write on m). In spite of the
data dependence, the problem is prone to vectorization thanks to the asso-
ciativity and commutativity of the max operation. Suppose we want to find
the maximum value in the following set 5, 9, 3, 7. It is possible to execute si-
multaneously both operations max(5, 9) = 9 and max(3, 7) = 7, then execute
max(9, 7) = 9.

3.8.1 Issue of translating a reduction

The code in Figure 8 depicts the assembly of Figure 7. The code has two
sections. First, the loop in lines 2—5 searches simultaneously for four largest
numbers in four different sections of the array. Precisely, the sections have
indices that fall in i mod 4, i mod 4+1, i mod 4+2, and i mod 4+3. This yields
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(a) Original SSE (b) Resulting AVX

Fig. 9 Body of vectorized loop for vector max

the xmm0 register with four greatest elements seized during the simultaneous
traversal of these regions.

Figure 9 (a) delineates the execution of these lines on an array of sixteen
elements. At each iteration, a pack of four elements is read from memory
and compared to values stored in xmm0, which is initially loaded with minimal
values. The register is updated based on the result of the comparisons. Second,
since xmm0 contains a tuple of elements, lines 6—12 resolve the largest one from
the others by shifting it into the lowest part of the register. Figure 10 portrays
the execution of this latter.

Translation of reductions requires special care. Suppose we translate the
loop body of Figure 8 into AVX. Its execution yields register ymm0 with eight
sub-results as depicted in Figure 9 (b), as opposed to four in the case of SSE.
The loop epilogue (lines 6—12 of Figure 8) “reduces” them to the final result.
It must be updated accordingly to take into account the wider set of sub-
results, i.e. the new elements in the upper part of xmm0. This is achieved by
introducing a single step, between lines 5 and 6, to reduce the 256-bit ymm

register into its 128-bit xmm counterpart, as produced by the original code. In
our running example, we need an additional shift-and-mask pair, as shown in
Figure 10 (b). Whenever the translator is not able to find a combination of
instructions to restore the state of the register xmm, it simply aborts optimizing
this loop.

3.8.2 Subclass of reduction supported by the translator

This subsection shows a subclass of reduction for which it is possible to recover
the same state of xmm as if the non-translated loop is executed. This subclass
has a particular characteristic described in the following recursive sequence
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(a) Original SSE (b) Resulting AVX

Fig. 10 Extracting the largest element from the SIMD register

form:

xmmn = xmmn−1 � inputn (1)

Where the operator � is either an arithmetic or logical instruction that is
both associative and commutative; and, the subscript n indicates the iteration
number. Besides, the input is nothing but the memory read access of the same
size as the xmm register.

Demonstration: Let us solve the recursive sequence in (1) that describes an
SSE loop. In the last line of (2), the odd and even terms are separated since
the operator is both associative and commutative (assuming n is even for the
sake of simplicity):

xmmn = xmmn−1 � inputn
= xmmn−2 � inputn−1 � inputn
= xmmn−3 � inputn−2 � inputn−1 � inputn
= input0 � input1 � ...� inputn−1 � inputn
= [input0 � input2 � ...� inputn]� [input1 � input3 � ...� inputn−1]

(2)

Since an AVX iteration is equivalent to two successive SSE iterations, there
are two consequences. First, the number of iterations decreases by half. Second,
a packed memory read in an AVX iteration is equivalent to the concatenation
of memory reads of two consecutive iterations in SSE loop. In our notation,
input represents a memory read for an SSE iteration and the same word in
capital letters for an AVX iteration. Plus, INPUTL and INPUTH indicate
the lower and higher halves of INPUT :
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input2n = INPUTLn

input2n+1 = INPUTHn
(3)

Applying (3) in (2):

xmmn = [INPUTL0
� INPUTL1

� ...� INPUTLn/2
]�

[INPUTH0
� INPUTH1

� ...� INPUTHn/2
]

xmmn = [ymm lowerhalfn/2−1 � INPUTLn/2
]�

[ymm higherhalfn/2−1 � INPUTHn/2
]

= ymm lowerhalfn/2 � ymm higherhalfn/2 (4)

Therefore, we conclude that applying the operator between the higher and
lower halves yields the state of xmm as if it had executed the non-translated
code.

4 Vectorization of Binary Code

4.1 Principle of scalar into vector optimization

It may happen that some applications contain scalar codes that were not vec-
torized by the compiler, even when they contain loops that have the properties
required for correct and beneficial SIMD processing. One reason may be that
the source code has been compiled for an architecture that does not support
SIMD instructions. Another reason is that some compilers are not able to
vectorize some class of codes [15], because they do not embed advanced data
dependence analysis and loop transformation capabilities, as provided by the
polyhedral model [12]. In this section, we widen the optimization scope by
auto-vectorizing long running inner loops which contain scalar instructions.
We rely on an open source framework, McSema [16], that lifts binary code
into the LLVM-IR so that higher level loop optimizations can be performed.
From the IR, it is then possible to delegate the vectorization burden to an-
other framework, Polly [13], implementing techniques of the polyhedral model
to vectorize candidate loops. Finally, we compile back the vectorized IR into
binary using the LLVM JIT compiler. Figure 11 shows the auto-vectorization
process.

This approach constitutes a proof-of-concept for dynamic full vectoriza-
tion using an ambitious mechanism. Note that it is not meant to be integrated
with the re-vectorization presented in the previous section, but rather to as-
sess feasibility and performance of such a technique. Indeed, additionally to
vectorization, the presented mechanism may support general high-level loop
optimizing transformations such as loop interchange, loop tiling, loop skewing
and loop parallelization. The feasibility of such transformations at runtime on
binary code, thanks to this technique, will be showed in future works.
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Fig. 11 Auto-vectorization process

4.2 Binary into intermediate representation using McSema

McSema is a decompilation framework whose functionality is to lift code from
binary into LLVM-IR. First, the tool disassembles the x86 executable and cre-
ates an according control flow graph (CFG). Second, it translates the assembly
instructions into LLVM-IR.

4.2.1 Integration of Padrone with McSema

Basically, McSema operates on x86-64 executable files. The bin descend tool
takes as arguments the binary file and the name of the function to disassemble,
creates a CFG of assembly and marshals this data structure. The cfg to bc

tool demarshals the file, and translates assembly instructions into equivalent
LLVM-IR form that is written to a bit-code file.

We tuned McSema to take as input the address of the frequently executed
function provided by Padrone and the processed image. Moreover, we avoid the
overhead of writing into data storage by skipping the marshaling/demarshaling
process so as the data structure produced by bin descend is passed directly
to cfg to bc. Figure 12 shows the integration of Padrone with McSema.

4.2.2 Adjusting McSema to produce a suitable LLVM-IR

The code lifting from binary to IR obviously requires to preserve the semantics
of the binary instructions. FPU and arithmetic instructions usually alter the
FPU and arithmetic status registers. Hence, McSema lifts the status registers
as well to maintain the state of the processor. It is important to keep track
of these bits since subsequent instructions like conditional jumps, bitwise or
shift-rotate operations, etc. not only depend on their operands, but also on
these flags.
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Fig. 12 Integration of Padrone with Mcsema

The consequent issue is that the translation of these instructions ends up
in generating a large amount of corresponding LLVM-IR instructions. These
instructions confuse the loop analyzer of Polly and thus prevent it from opti-
mizing the bit-code.

For instance, Table 2 depicts the translation of an assembly loop into
LLVM-IR. The comparison instruction is a signed subtraction of its operands
which alters the AF, SF, OF, PF, CF, ZF flags as well. As a consequence, Mc-
Sema translates the comparison in line 3 of the first column into lines 6—17 in
the second column, where the subtraction is performed (line 9) and the states
of the flags are set accordingly. Furthermore, the conditional jump do depend
on the flags to direct the flow of execution. The Jump if Not Equal (JNE)
tests whether the ZF flag is equal to zero. Correspondingly, line 4 of the first
column is translated into lines 19—21. To determine the number of the loop
iteration, Polly requires a single comparison instruction whose arguments are
the induction variable and the loop trip count. However, McSema produces
several comparison instructions free from the loop trip count operand. Thus,
we prevent McSema from generating the instructions that alter the state of
the flags, and we keep track of the subtraction’s arguments. Depending on
the conditional jump, an appropriate predicate is fed into the comparison in-
struction. In this example, the comparison takes three arguments, a predicate
Signed Less or Equal (SLE), the induction variable and the loop bound. Lines
6—8 in the third column is the produced semantically equivalent code.

4.3 Vectorization of loops in LLVM-IR using Polly

Polly [13] is a static loop optimization infrastructure for the LLVM compiler,
capable of optimizing data locality and exposing parallelism opportunities
for loop nests that are compliant with the polyhedral model. When the loop
bounds and memory accesses are detected as affine, it creates their represen-
tation in the polyhedral model, and reschedules the accesses while respecting
the data dependencies.

The main objective in the current step is to vectorize sequential code. We
make use of the compiler passes provided by Polly. First, the canonicalization
passes are run, which transform the IR into a suitable form for Polly. Second,
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Table 2 Adjusting McSema to produce a suitable LLVM-IR

x86 assembly LLVM-IR produced by McSema Adjusted LLVM-IR

1. L1: 1. %RAX val = alloca i64 1. %RAX val = alloca i64
2. . . . 2. %ZF val = alloca i1 2. %ZF val = alloca i1
3. cmp $1024, %rax 3. 3.
4. jne L1 4. %block L1 4. %block L1

5. . . . 5. . . .
6. /* instructions modify the 6. %156 = load i64* %RAX val
7. state of ZF */ 7. %157 = icmp sle i64 %156,
8. %117 = load i64* %RAX val 4096
9. %118 = sub i64 %117, 1024 8. br i1 %157, label %block L1,
10. %127 = icmp eq i64 %118, 0 label %block L2
11. store i1 %127, i1* %ZF val 9. %block L2
12.
13. /* instructions modify the
14. states of the remaning flags
15. AF, SF, OF, PF, CF depending
16. on the subtract instruction */
17. . . .
18.
19. %136 = load i1* %ZF val
20. %137 = icmp eq i1 %136, false
21. br i1 %137, label %block L1,
label %block L2
22.
23. %block L2

the Static Control Parts (SCoPs), which are subgraphs of the CFG defining
loops with statically known control flow, are detected. Basically, Polly is able
to optimize regions of the CFG, namely loops, with fixed number of iterations
and conditionals defined by linear functions of the loop iterators (i.e., induction
variables). Third, the SCoPs are abstracted into the polyhedral model. Finally,
the data dependencies are computed in order to expose the parallelism in the
SCoPs. At the time being, our work is confined only to inner loops. We use a
method provided by the dependence analysis pass to check whether the loop is
parallel. An algorithm that checks whether the data accesses are consecutive
along iterations has been developed. We cast the LLVM-IR loads and stores
into vector loads and stores, so that the JIT generates SIMD instructions. The
induction variable is modified depending on the vector factor as well.

4.4 JITting the IR into binary

4.4.1 Handling global variables

The lifting of binary into LLVM-IR consists of both lifting the instructions
and the memory addresses on which they operate. Hence, McSema declares
arrays on which the IR instructions perform their operations. However, compil-
ing the IR yields instructions and array allocations in the optimizer’s process
space. The generated instructions perform their operations on the initiated
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arrays. Therefore, injecting this code into the target process would result in
bad address references.

4.4.2 Marking the IR operands

As a solution, we mark the operands lifted by McSema with the physical
addresses in the original binary; so as, while JITting, the recovered addresses
are encoded in the generated instructions. The compilation of LLVM-IR into
binary goes through multiple stages. At the beginning, the IR instructions
form an Abstract Syntax Tree (AST) that is partially target independent. At
each stage, the instruction in the AST is reincarnated into a different data
type which is decorated with more target dependent information. At each of
these phases, the addresses recovered, while McSema lifts the original binary,
are transferred until the generated instructions are encoded.

5 Experimental Results

In this section, we present our experimental apparatuses and the results ob-
tained for both dynamic vectorization transformations adopted in our work.
We show for each of the approaches the hardware and software environments,
the benchmarks, as well as the metric and experimental results.

5.1 Re-Vectorization experimental results

5.1.1 Hardware/Software

Our experiments were conducted with a 64-bit Linux Fedora 19 workstation
featuring an Intel i7-4770 Haswell processor clocked at 3.4 GHz. Turbo Boost
and SpeedStep were disabled in order to avoid performance measure artifacts
associated with these features.

We observed that different versions of GCC produce different results. We
made our experiments with two relatively recent version of GCC: GCC-4.7.2
(Sep. 2012) and GCC-4.8.2 (Oct. 2013) available on our workstation. ICC-
14.0.0 was used whenever GCC was not able to vectorize our benchmarks.

5.1.2 Benchmarks

We handled two kinds of benchmarks. The first kind consists in a few hand-
crafted loops that illustrate basic vectorizable idioms. The second kind is a
subset of the TSVC suite [15]. Table 3 summarizes the main features for each
benchmark. All TSVC kernels manipulate arrays of type float. We also man-
ually converted them to double to enlarge the spectrum of possible targets
and assess the impact of data types.
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Table 3 Experimental Kernels

Name Short description
vecadd addition of two arrays
saxpy multiply an array by a constant and add a second
dscal multiply an array by a constant
s000 addition and multiplication of arrays
s115 triangular saxpy
s125 product and addition of two-dimensional arrays
s174 addition of an array with a part of the second array storing in an other part

of the latter
s176 convolution
s251 scalar and array expansion
s311 sum of elements of a single array (reduction)
s314 search for maximum element in an array (reduction)
s319 sum of elements of multiple arrays
s1351 addition of two arrays using restrict pointers

We compiled most of our benchmarks with GCC using flags -O3 -msse4.2

(-O3 activates the GCC vectorizer). Only s311 and s314 were compiled with
ICC because both versions of GCC were unable to vectorize them.

We decouple the analysis of the optimizer overhead, and the performance
of the re-vectorized loops.

Each benchmark (both hand-crafted and TSVC) essentially consists in a
single intensive loop that accounts for nearly 100 % of the run time. This is
classical for vectorization studies as it shows the potential of the technique (its
asymptotic performance). As per Amdahl’s law [3], the speedup on a given
application can easily be derived from the weight of the loop in the entire
application: let α be the weight of the loop, and s the speedup of this loop,
the overall speedup is given by:

s′ =
1

1− α+ α
s

As expected, limα→1 s
′ = s. This is the value we observe experimentally.

5.1.3 Performance Results

We assess the performance of our technique by means of two comparisons.
First we measure the raw speedup, i.e. we compare the transformed AVX-
based loop against the original SSE-based loop. Then, we also compare it
against the native AVX code generated by GCC with flags gcc -mavx -O3

(except s311 and s314 whose native AVX codes are generated by ICC with
flags icc -mavx -O3). Table 4 reports the speedups of both native compiler
for AVX and our re-vectorizer compared to SSE code. In the case of our re-
vectorizer, we also report how it compares to the native compiler targeting
AVX. These numbers are shown graphically in Figures 13 and 14 for data
type float and double respectively. As an example, the first row (dscal)
shows that the AVX code produced by GCC runs 1.4× faster than the SSE



Runtime Vectorization Transformations of Binary Code 23

Table 4 Performance Improvement over SSE

GCC 4.8.2 GCC 4.7.2
Kernel native our % vs. native our % vs.

AVX revect. native AVX revect. native

fl
o
a
t

dscal 1.40× 1.66× +19% 1.60× 1.37× -14%
saxpy 1.10× 1.67× +52% 1.88× 1.35× -28%
vecadd 1.00× 1.66× +66% 1.74× 1.26× -28%
s000 0.99× 1.19× +20% 1.07× 0.69× -36%
s125 1.02× 1.25× +23% 1.49× 1.25× -16%
s174 0.86× 1.34× +56% 1.50× 1.09× -27%
s176 1.48× 1.52× +3% 1.54× 1.22× -21%
s251 1.17× 1.35× +15% 1.57× 0.92× -41%
s319 1.42× 1.61× +13% 1.80× 1.05× -42%
s1351 0.90× 0.91× +1% 0.92× 0.87× -5%
s115 translator aborts

d
o
u

b
le

dscal 1.17× 1.11× -5% 1.60× 1.31× -18%
saxpy 1.01× 1.18× +18% 1.57× 1.10× -30%
vecadd 0.82× 1.34× +63% 1.47× 0.97× -34%
s000 0.95× 0.99× +5% 0.98× 0.67× -32%
s125 0.90× 0.91× +0% 0.91× 0.91× 0%
s174 0.89× 1.33× +51% 1.49× 0.98× -34%
s251 0.94× 0.96× +2% 0.97× 0.96× -1%
s319 1.25× 1.33× +6% 1.33× 0.90× -33%
s1351 0.88× 0.91× +3% 0.91× 0.90× -1%
s115 translator aborts
s176 translator aborts

Reduction with icc
Kernel native our revect. % vs. native

fl
o
a
t s311 1.80× 1.79× -0.55%

s314 1.79× 1.79× 0%

d
o
u

b
le s311 1.79× 1.79× 0%

s314 translator aborts

+ native AVX: the execution time of the native SSE divided by native AVX.
+ our revect.: the execution time of native SSE divided by AVX generated by our revectorizer.
+ % vs. native: the percentage of improvement of “our revect” compared to ”native AVX”.

version. The code produced by our re-vectorizer runs 1.66× faster than the
SSE version, that is a 19 % improvement over the AVX version.

We confirmed that the difference in the code quality between the SSE
references produced by both compilers is small compared to the variations
observed between SSE and AVX.

GCC-4.8.2 As a general trend, our re-vectorizer is able to improve the perfor-
mance of eligible loops, up to 67 %. Surprisingly, we also constantly outperform
GCC for AVX, up to 66 % in the case of vecadd. The reasons are:

1. When targeting AVX, GCC-4.8.2 generates a prologue to the parallel loop
to guarantee alignment of one of the accessed arrays. Unfortunately, the
loop does not take advantage of the alignment and relies on unaligned mem-
ory accesses (vmovups followed by vinsertf128 when a single vmovaps

sufficed). When targeting SSE, there is no prologue, and the loop relies on
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Fig. 13 Speedups for type float

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

dscal
saxpy

vecadd
s000

s125
s174

s251
s319

s1351

Sp
ee

du
p 

ov
er

 S
SE

native GCC-4.8.2 AVX
Re-vectorizer (4.8.2)

native GCC-4.7.2 AVX
Re-vectorizer (4.7.2)

Fig. 14 Speedups for type double

16-byte aligned memory accesses. In fact, AVX code generated by GCC-
4.7.2 is more straightforward, without prologue, and similar to our own
code generation, and corresponding performance also correlates.

2. GCC-4.8.2 tries to align only one of the arrays. Testing for alignment con-
ditions of all arrays and generating specialized code for each case would
result in excessive code bloat. The static compiler hence relies on unaligned
memory accesses for all other arrays. Because we operate at runtime, we
have the capability to check actual values and generate faster aligned ac-
cesses when possible.

In the case of s115, we correctly identified the vectorized hot loop, but we
were not able to locate its sequential counterpart (the loop at label L5 in Figure
3) in the function body, needed to execute a few remaining iterations when
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the trip count is not a multiple of the new vectorization factor (as described
in Section 3.5.2). The reason is that the native compiler chooses to fully unroll
this epilogue. Our optimizer simply aborted the transformation.

The only negative effect occurs with s1351, with a 9% slowdown. Note that
the native AVX compiler also yields to a 10 % slowdown. In this example, the
compiler generates unaligned packed instructions. Precisely, a combination of
two instructions that move separately the low and high 128 bits of operands
between memory and registers. This degrades the performance of AVX. To ver-
ify that it is an alignment issue, we made a manual comparison between SSE
and AVX versions of s1351 and forced data to be 32-byte aligned. As conse-
quence, the compiler generates aligned instructions. Under this circumstance,
the AVX version outperforms SSE.

Performance of our re-vectorizer as well as native GCC AVX is generally
lower when applied to kernels operating on type double. The reason is that
arrays with the same number of elements are twice larger, hence increasing
the bandwidth-to-computation ratio, sometimes hitting the physical limits of
our machine, as well as increasing cache pressure. We confirmed that halving
the size of arrays produces results in line with the float benchmarks.

Three benchmarks failed with type double: s115, s176, and s314. This
is due to a current limitation in our analyzer: the instruction movsd may
be translated in two different ways, depending on the presence of another
instruction movhpd operating on the same registers. Our analyzer currently
considers instructions once at a time, and must abort. Future work will extend
the analysis to cover such cases.

GCC-4.7.2 With GCC-4.7.2, our re-vectorizer sometimes degrades the over-
all performance compared to SSE code. We observe that this happens when
the same register (ymm0) is used repeatedly in the loop body to manipulate
different arrays. This increases significantly the number of partial writes to
this register, a pattern known to cause performance penalties [1]. This is par-
ticularly true in the case of s125. Despite these results, since our optimizer
operates at runtime, we always have the option to revert to the original code,
limiting the penalty to a short (and tunable) amount of time.

As opposed to GCC-4.8.2, we systematically perform worse than native
AVX. This is expected because the native AVX compiler often has the capa-
bility to force alignment of arrays to 32 bytes when needed. Since we start from
SSE, we only have the guarantee of 16-byte alignment, and we must generate
unaligned memory accesses. The net result is the same number of memory
instructions as SSE code, while we save only on arithmetic instructions. Note,
though, that we do improve over SSE code in many cases, and we have the
capability to revert when we do not.

ICC-14.0.0 For both of s311 and s314, our re-vectorizer produces codes that
run almost 1.80× faster than native SSE, and they have almost the same
performance as the native AVX.
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name s000 s125 s174 s176 s319 s1351 vecadd saxpy dscal
average 1.4 1.0 1.0 1.4 1.5 1.1 0.8 1.3 1.2
stddev 0.4 0.3 0.2 0.2 0.05 0.03 0.1 0.03 0.05

Table 5 Re-vectorization overhead (ms). Average and standard deviation over 10 runs.

5.1.4 Overhead

The overhead includes profiling the application to identify hot spots, reading
the target process’ memory and disassembling its code section, building a
control flow graph and constructing natural loops, converting eligible loops
from SSE to AVX, and injecting the optimized code into the code cache.
Profiling has been previously reported [22] to have a negligible impact on the
target application. With the exception of code injection, all other steps are
performed in parallel with the execution of the application.

On a multicore processor, running the re-vectorizer on the same core as
the target improves communication between both processes (profiling, read-
ing original code, and storing to the code cache) at the expense of sharing
hardware resources when both processes execute simultaneously. The oppo-
site holds when running on different cores. Since our experimental machine
features simultaneous multi-threading (Intel Hyperthreading), we also consid-
ered running on the same physical core, but two different logical cores.

In our results for all configurations, the time overhead remains close to
the measurement error. Table 5 reports the overhead in milliseconds of re-
vectorizing loops, for each benchmark. We ran the experiment ten times and
we report the average and the standard deviation.

On the application side, storing and restoring the ymm registers represent a
negligible overhead, consisting in writing/reading a few dozen bytes to/from
memory.

5.2 Vectorization Experimental Results

5.2.1 Hardware/Software

The experiments were carried using a machine equipped with an Intel Core
i5-2410M processor based on the Sandy Bridge architecture. The clock rate
is 2.3 GHz. As before, the Turbo Boost and SpeedStep were disabled. The
hardware resources are managed by an Ubuntu 14.04.1 LTS operating system.
Furthermore, the benchmarks were compiled with GCC 4.8.4.

5.2.2 Benchmarks

The integration of the complex pieces of software which are Padrone, Mc-
Sema, and Polly, is not yet finalized at the time of writing, thus forcing us
to investigate only a subset of the benchmarks addressed previously with re-
vectorization. The kernels operate on arrays of double-precision floating point
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Fig. 15 SSE and AVX Autovectorization Speedups

elements which are 32-bit aligned. The benchmarks were compiled with flags
-O3 -fno-tree-vectorize which disable the vectorization and maintain the
rest of the optimizations. Besides, the methods are declared with attribute
noinline to disable function inlining.

5.2.3 Performance Results

We assess the performance of vectorization by measuring the speedup of the
optimized loops (vectorized for SSE or AVX) against the unvectorized loops.
Results are shown in Figure 15.

First, we observe that auto-vectorization improves the performance by fac-
tors on par with the vector width. The SSE version outperforms the scalar
version up to 1.95× in the case of s1351. As for dscal, the AVX version runs
3.70× faster.

Second for saxpy, we even obtain a superlinear speedup: it runs 2.10×
faster. We compare this value to the speedup obtained with GCC 4.8.4 which
is 2.04×. This small difference is due to the instructions generated by GCC
4.8.4 and the LLVM’s JIT which are not similar.

Finally, for s000, we notice that the AVX version’s performance is slightly
less than the one of SSE. The reason is that s000 is prone to a bottleneck
between the register-file and cache. In other words, the microbenchmark inten-
sively accesses memory, and the limitation of bandwidth results in introducing
stalls into the CPU pipeline. Hence, AVX data movement instructions commit
with extra cycles with regards to SSE.

5.2.4 Overhead

The overhead of fully vectorizing loops is reported in Table 6. As expected,
the values are much higher than in the case of re-vectorization, typically two
orders of magnitude. This is due to the complexity of vectorization, to the
approach based on lifting the code to LLVM-IR and applying the polyhedral
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name s000 s174 s251 s1351 vecadd dscal saxpy
average 205.4 112.0 162.5 113.8 106.9 104.6 123.3
stddev 7.5 5.7 4.5 4.5 3.0 3.4 3.3

Table 6 Vectorization overhead (ms). Average and standard deviation over 10 runs.

model, and partly the fact that we connect building blocks whose interfaces
have not been designed for efficiency at runtime.

6 Related Work

Vectorization has been initially proposed as a purely static code optimization
which equips all industrial-grade compilers. Retargetable compilers have in-
troduced the need to handle several targets, including various levels of SIMD
support within a family [19].

Liquid SIMD [9], from Clark et al., is conceptually similar to our approach.
A static compiler auto-vectorizes the code, but then scalarizes it to emit stan-
dard scalar instructions. The scalar patterns are later detected by the hard-
ware, if equipped with suitable SIMD capabilities, resurrecting vector instruc-
tions and executing them. The difference is that we require no additional
hardware.

Recent work integrates initial automatic vectorization capabilities in JIT
compilers for Java [17] [11]. Our focus is on increasing the performance of
native executables.

Attempting to apply binary translation technology to migrate assembly
code, including SIMD instructions, over to a markedly different architecture
at runtime suffers from several difficulties stemming from lack of type infor-
mation [14]. Instead, our proposal considers a single ISA, and migrates SIMD
instructions to a higher level of features, targeting wider registers, but retain-
ing the rest of the surrounding code.

Vapor SIMD [23] describes the use of a combined static-dynamic infras-
tructure for vectorization, focusing on the ability to revert efficiently and seam-
lessly to generate scalar instructions when the JIT compiler or target platform
do not support SIMD capabilities. It was further extended [18] into a scheme
that leverages the optimized intermediate results provided by the first stage
across disparate SIMD architectures from different vendors, having distinct
characteristics ranging from different vector sizes, memory alignment and ac-
cess constraints, to special computational idioms. In contrast, the present work
focuses on plain native executables, without any bytecode, JIT compiler, or
annotated (fat) binary. Vapor SIMD also automatically exploits the highest
level of SSE available on the target processor. This paper only considers SSE
as a whole vs. AVX, however it could easily be extended to support various
versions of SSE.

Riou et al. [22] dynamically modify a running executable by substituting
a SSE hot loop by a statically compiled version targeting AVX. In this paper,
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we dynamically generate code for the new loop, and do not rely on a statically
prepared patch.

Regarding automatic loop optimization and parallelization of binary code,
a close work is the one of Pradelle et al. [21], however the described approach
is purely static. Their automatic parallelizer first parses the binary code and
extracts high-level information. From this information, a C program is gener-
ated. This program captures only a subset of the program semantics, namely,
loops and memory accesses. This C program is then parallelized using the
polyhedral parallelizer Pluto [20]. The original program semantics is then re-
injected, and the transformed parallel loop nests are recompiled by a standard
C compiler.

As a binary optimizer, ADORE [7] uses hardware counters to identify
hotspots and phases and to apply memory prefetching optimizations. Similar
goals are addressed in [5] where a dynamic system inserts prefetch instruc-
tions on-the-fly where it has been evaluated as effective by measuring the load
latency. Both approaches focus on reducing the memory latency of memory
instructions.

Various tools have been developed with DynamoRIO [6]. The framework we
used keeps all the client and toolbox in a separate address space and modifies
as little as necessary of the original code, while DynamoRIO links with the
target application and execute code only from the code cache.

Dynamic binary translation also operates at run-time on the executable,
but translates it to a different ISA. It has been implemented several ways,
such as Qemu [4], FX!32 [8], or Transmeta’s Code Morphing System [10]. We
generate code for the same ISA (only targeting a different extension). This
gives us the ability to avoid much of the complexity of such translators, and
to execute mostly unmodified application code, focusing only on hotspots.

7 Conclusion and Perspective

In this paper, we have focused on maximizing the utilization of SIMD exten-
sions on-the-fly. For this purpose, we use a lightweight profiling to detect fre-
quently executed sections of code. We adopt two techniques based on dynamic
binary rewriting and which optimize loops belonging to the hot-code. On the
one hand, eligible loops that were compiled for the SSE SIMD extension are
converted to AVX at runtime. We leverage the effort of the static vectorizer,
and only extend the vectorization factor, while guaranteeing that the transfor-
mation is legal. We show that the overhead is minimal, and the speedup very
significant. Moreover, runtime information such as actual alignment of mem-
ory accesses, can also result in substantial performance improvements. On the
other hand, the scalar loops are lifted to the LLVM intermediate representa-
tion. At this level, which hides the target machine details, we have showed that
it is possible to handle the loops using the polyhedral model. They are then
vectorized when possible. Finally, they are compiled into executable form using
the LLVM JIT compiler. The results show the effectiveness of the approach.
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In the near future, we plan to extend the range of applied loop optimiza-
tions by taking advantage of the whole polyhedral model framework at run-
time, thus handling on-the-fly automatic loop tiling and automatic loop par-
allelization, for instance.
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