Multilevel Sequential Monte Carlo Samplers for Normalizing Constants

Abstract : This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard esti-mators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for the example of identifying a parametrized permeability in an elliptic equation given point-wise observations of the pressure.
Type de document :
[Research Report] Arxiv. 2016
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger
Contributeur : Pierre Del Moral <>
Soumis le : jeudi 28 septembre 2017 - 16:02:12
Dernière modification le : jeudi 11 janvier 2018 - 06:22:12

Lien texte intégral


  • HAL Id : hal-01593880, version 1
  • ARXIV : 1603.01136



Pierre Del Moral, Ajay Jasra, Kody Law, Yan Zhou. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants. [Research Report] Arxiv. 2016. 〈hal-01593880〉



Consultations de la notice