C. Andrieu, A. Doucet, and R. Holenstein, Particle Markov Chain Monte Carlo for Efficient Numerical Simulation, pp.45-60, 2008.
DOI : 10.1007/978-3-642-04107-5_3

C. Andrieu, A. Doucet, and R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), J. R. Statist. Soc. B, vol.72, issue.3, pp.1-269, 2010.
DOI : 10.1111/j.1467-9868.2009.00736.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2009.00736.x/pdf

C. Andrieu and M. Vihola, Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms, The Annals of Applied Probability, vol.25, issue.2, pp.1210-1484, 2012.
DOI : 10.1214/14-AAP1022

C. Andrieu, A. Lee, and M. Vihola, Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers. ArXiv:1312, p.6432, 2013.

R. Arratia and S. , DeSalvo Completely effective error bounds for Stirling Numbers of the first and second kinds via Poisson Approximation arXiv:1404, p.3007, 2014.

S. Barthelmé and N. Chopin, Expectation-propagation for likelihood-free inference. arXiv preprint, 2011.

J. Bérard, P. Del-moral, and A. Doucet, A lognormal central limit theorem for particle approximations of normalizing constants, Electronic Journal of Probability, vol.19, issue.0, 2014.
DOI : 10.1214/EJP.v19-3428

R. Assaraf and M. Caffarel, A pedagogical introduction to quantum Monte Carlo, Mathematical Models and Methods for Ab Initio Quantum Chemistry, 2000.

E. Cancès, B. Jourdain, and T. Lelì-evre, QUANTUM MONTE CARLO SIMULATIONS OF FERMIONS: A MATHEMATICAL ANALYSIS OF THE FIXED-NODE APPROXIMATION, Mathematical Models and Methods in Applied Sciences, vol.9, issue.09, pp.1403-1440, 2006.
DOI : 10.1103/PhysRevLett.87.246406

O. Cappé, E. Moulines, and T. Rydèn, Inference in Hidden Markov Models, 2005.

R. Carmona, P. Del-moral, P. Hu, and N. , Oudjane An introduction to particle methods in finance in Numerical Methods in Finance, Series: Proceeding in Mathematics, vol.12, 2012.

F. Cerou, P. Del-moral, and A. , A nonasymptotic theorem for unnormalized Feynman???Kac particle models, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.47, issue.3, pp.629-649, 2011.
DOI : 10.1214/10-AIHP358

URL : https://hal.archives-ouvertes.fr/hal-00688479

N. Chopin and S. S. Singh, On the particle Gibbs sampler. arXiv preprint, 2013.

N. Chopin, P. E. Jacob, and O. Papaspiliopoulos, : an efficient algorithm for sequential analysis of state space models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.50, issue.3, pp.397-426, 2013.
DOI : 10.1109/78.978383

C. Berge, Principles of combinatorics, 1971.

L. Comtet, Analyse Combinatoire. Tomes I, II. Collection SUP: Le Mathématicien 4-5, 1970.

P. and D. Moral, Nonlinear filtering: Interacting particle resolution, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.325, issue.6, pp.555-579, 1996.
DOI : 10.1016/S0764-4442(97)84778-7

P. and D. Moral, Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its Applications, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00533438

P. , D. Moral, M. Ledoux, and L. Miclo, On contraction properties of Markov kernels, Probab. Theory Relat. Fields, vol.126, pp.395-420, 2003.

P. , D. Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.68, issue.3, pp.411-436, 2006.

P. , D. Moral, and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, Séminaire de Probabilités, pp.1-145, 2000.

P. , D. Moral, and L. Miclo, Genealogies and increasing propagation of chaos for Feynman-Kac and genetic models, Ann. Appl. Probab, vol.11, issue.4, pp.1166-1198, 2001.

P. , D. E. Moral, and . Rio, Concentration Inequalities for Mean Field Particle Models. The Annals of Applied Probability, pp.1017-1052, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00375134

P. , D. Moral, F. Patras, and S. Rubenthaler, Coalescent tree based functional representations for some Feynman-Kac particle models, The Annals of Applied Probability, vol.19, issue.2, pp.1-50, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00090246

P. , D. Moral, L. Miclo, F. Patras, and S. Rubenthaler, The convergence to equilibrium of neutral genetic models. Stochastic Analysis and Applications, pp.123-143, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00239259

D. Moral, P. Garnier, and J. , Genealogical particle analysis of rare events, The Annals of Applied Probability, vol.15, issue.4, pp.2496-2534, 2005.
DOI : 10.1214/105051605000000566

URL : https://hal.archives-ouvertes.fr/hal-00017928

P. , D. Moral, P. Hu, and L. M. , Wu On the concentration properties of Interacting particle processes, Machine Learning, pp.225-389, 2012.

P. Del-moral, P. Jacob, A. Lee, L. Murray, and G. W. , Peters Feynman-Kac particle integration with geometric interacting jumps, arXiv preprint arXiv:1211, p.7191, 2012.

P. , D. Moral, and L. , Miclo On the Stability of Non Linear Semigroup of Feynman-Kac Type, Annales de la Faculté des Sciences de Toulouse, 2002.

P. , D. Moral, and L. Murray, Sequential Monte Carlo with Highly Informative Observations ArXiv:1405, p.4081, 2014.

D. N. Dejong, R. Liesenfeld, G. V. Moura, J. F. Richard, and H. Dharmarajan, Efficient Likelihood Evaluation of State-Space Representations, The Review of Economic Studies, vol.80, issue.2, pp.538-567, 2013.
DOI : 10.1093/restud/rds040

A. Doucet, J. F. De-freitas, and N. J. Gordon-eds, Sequential Monte Carlo Methods in Practice, 2001.
DOI : 10.1007/978-1-4757-3437-9

A. Doucet, M. K. Pitt, and R. Kohn, Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator, Biometrika, vol.102, issue.2, pp.1210-1871, 2012.
DOI : 10.1093/biomet/asu075

M. Dowd, Estimating parameters for a stochastic dynamic marine ecological system, Environmetrics, vol.84, issue.6, pp.501-515, 2011.
DOI : 10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2

M. Dowd and J. Ruth, Estimating behavioral parameters in animal movement models using a state-augmented particle filter, Ecology, vol.92, issue.3, pp.568-575, 2011.
DOI : 10.1073/pnas.0801744105

G. Durham and J. Geweke, Massively parallel Sequential Monte Carlo for Bayesian inference, Anne Opschoor, Herman K. van Dijk, p.29, 2011.

R. G. Everitt, Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks, Journal of Computational and Graphical Statistics, vol.61, issue.4, pp.940-960, 2012.
DOI : 10.1007/BF02294547

URL : http://arxiv.org/pdf/1203.3725

DOI : 10.1016/S0165-1889(03)00043-5

A. Golightly and D. J. Wilkinson, Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo, Interface Focus, vol.149, issue.3, pp.807-820, 2011.
DOI : 10.1007/s11222-007-9045-8

URL : http://rsfs.royalsocietypublishing.org/content/royfocus/1/6/807.full.pdf

S. Henriksen, A. Wills, T. B. Schön, and B. Ninness, Parallel Implementation of Particle MCMC Methods on a GPU*, Proceedings of the 16th IFAC Symposium on System Identification, pp.1143-1148, 2012.
DOI : 10.3182/20120711-3-BE-2027.00296

B. Jourdain, T. Lelì-evre, and M. Makrini, Diffusion Monte Carlo method: numerical analysis in a simple case, Math. Model. Num. Ana, vol.41, pp.189-213, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00136428

N. Kantas, A. Doucet, S. Singh, and J. M. Maciejowski, An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models, 15th IFAC Symposium on System Identification (SYSID), 2009.
DOI : 10.3182/20090706-3-FR-2004.00129

T. Lelì-evre, M. Rousset, and G. Stoltz, Free energy computations: A mathematical perspective, 2010.

T. Lelì-evre, M. Rousset, and G. Stoltz, Computation of free energy differences through nonequilibrium stochastic dynamics: The reaction coordinate case, Journal of Computational Physics, vol.222, issue.2, pp.624-643, 2007.
DOI : 10.1016/j.jcp.2006.08.003

F. Lindsten, R. Douc, and E. Moulines, Uniform ergodicity of the Particle Gibbs sampler. ArXiv:1401, p.683, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01257066

H. Moradkhani, C. M. Dechant, and S. Sorooshian, Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method, Water Resources Research, vol.134, issue.8, 2012.
DOI : 10.1175/MWR3153.1

Y. Mishchenko, J. T. Vogelstein, and L. Paninski, A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data, The Annals of Applied Statistics, vol.5, issue.2B, pp.1229-1261, 2011.
DOI : 10.1214/09-AOAS303

URL : http://doi.org/10.1214/09-aoas303

T. Launay, A. Philippe, and S. Lamarche, On particle filters applied to electricity load forecasting, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737555

F. Lindsten, T. Schön, and M. I. Jordan, Ancestor Sampling for Particle Gibbs, Conference in Advances in Neural Information Processing Systems, pp.2600-2608, 2012.

F. Lindsten and T. Schön, On the use of backward simulation in the particle Gibbs sampler, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.
DOI : 10.1109/ICASSP.2012.6288756

H. F. Lopes and R. S. Tsay, Particle filters and Bayesian inference in financial econometrics, Journal of Forecasting, vol.80, issue.1, pp.168-209, 2011.
DOI : 10.1007/b135794_2

J. Olsson and T. Ryden, Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling, IEEE Transactions on Signal Processing, vol.59, issue.10, pp.4606-4619, 2011.
DOI : 10.1109/TSP.2011.2161296

G. W. Peters, R. G. Hosack, and K. R. Hayes, Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC). arXiv preprint, 2010.

M. Pitt, R. , S. Silva, P. Giordani, and R. Kohn, On some properties of Markov chain Monte Carlo simulation methods based on the particle filter, Journal of Econometrics, vol.171, issue.2, pp.134-151, 2012.
DOI : 10.1016/j.jeconom.2012.06.004

A. D. Rasmussen, O. Ratmann, and K. Koelle, Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series, PLoS Computational Biology, vol.5, issue.8, p.1002136, 2011.
DOI : 10.1371/journal.pcbi.1002136.s002

URL : http://doi.org/10.1371/journal.pcbi.1002136

D. Revuz, Markov chains, 1975.

M. Rousset, On the Control of an Interacting Particle Estimation of Schr??dinger Ground States, SIAM Journal on Mathematical Analysis, vol.38, issue.3, pp.824-844, 2006.
DOI : 10.1137/050640667

C. Vergé, P. Del-moral, C. Dubarry, and E. Moulines, On parallel implementation of sequential Monte Carlo methods: the island particle model, Statistics and Computing, vol.90, issue.420, 2014.
DOI : 10.1080/01621459.1995.10476549

J. A. Vrugt, C. J. Ter-braak, C. G. Diks, and G. Schoups, Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications, Advances in Water Resources, vol.51, pp.457-478, 2013.
DOI : 10.1016/j.advwatres.2012.04.002

N. Whiteley, C. Andrieu, and A. Doucet, Efficient Bayesian inference for switching statespace models using discrete particle Markov chain Monte Carlo methods. arXiv preprint arXiv:1011, p.2437, 2010.