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Abstract. In this paper we introduce an approach to objectively validate visual 

performance of a cognitive pilot model using benchmarks of human 

performance. A study with 16 human airline pilots and two competing models 

has been conducted in order to validate visual performance of the models 

applying these benchmarks. The study shows that human performance 

benchmarks can support analysts with a powerful and easy to use method for 

validation of human performance models. The benchmark is part of a larger-

scale method, which will be developed in order to evaluate human factors 

issues of future HCI-concepts in early stages of system design. 
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1   Introduction 

The European project HUMAN1 aims at developing virtual pilots, in order to improve 

the human error analysis of new cockpit systems. The virtual pilots should allow 

simulation-based testing of new cockpit system designs in early design phases. This 

enables simulating a huge number of scenarios in accelerated time in order to identify 

potential problems in the operation of new systems (e.g. human errors due to  clumsy 

automation [9]) and to derive necessary improvements. The virtual pilots in HUMAN 

are based on a cognitive architecture named CASCaS (Cognitive Architecture for 

Safety Critical Task Simulation) [6] which is an implementation of the information 

processing paradigm of human cognition (similar to ACT-R [1] and MIDAS [5]). 

Pilots flying modern aircrafts are confronted with many information (e.g. weather 

conditions, flight plans, air traffic and automation modes) that are mainly presented 

on visual displays. Consequently, pilots' vision is the main cognitive resource (apart 

from  auditive and haptic resources) for gathering information about the aircraft and 

the outside world. Thus, a sophisticated and thoroughly validated visual perception 

model is a pre-condition for simulating pilot-like interaction with visual interfaces. 

                                                           
1 7th Framework Programme, see http://www.human.aero for further information about the 

project 



 

 

Evaluating the predictive power of visual performance models is very complex and 

time consuming because human visual performance (1) is very variable between 

different pilots as well as within a single pilot and (2) is a combination of different 

aspects, such as glance duration, glance frequency and scanpaths. Methods, 

techniques and tools are needed that can easily be applied by analysts to evaluate 

model performance. 

In HUMAN we validated the performance of CASCaS by comparing data 

produced by the model with data produced by human pilots in experimental simulator 

studies, both flying the same scenarios. We developed a benchmark approach that is 

used in combination with traditional validation techniques. Benchmarks are 

commonly understood as an analysis method to objectively compare characteristics of 

subjects with characteristics of a reference subject. The measures considered for the 

analysis usually characterize the overall power of the system with regard to a target 

question [10]. Our benchmark approach provides a catalogue of objective 

measurement criteria allowing (1) to compare the fitness of competing models, (2) to 

find the best fitting model and (3) to decide objectively if the predictive power of a 

model is sufficient for the desired application.  

In this paper we will briefly introduce our benchmark approach, which we call 

Human Performance Benchmarking and present results of two CASCaS versions that 

have been compared in order to find the best fitting model.  The paper is organized as 

follows: In Section 2 we present related work in the area of human model validation. 

Next, in Section 3 our approach will be introduced. In Section 4 we present 

exemplary results of a first application of the Human Performance Benchmarking. 

Finally, in Section 5, we will summarize the paper and point out potential 

improvements of our approach, identified based on the study results.  The Human 

Performance Benchmarks are part of a larger-scale method, on which we are currently 

working in order to evaluate human factors issues of future HCI-concepts in early 

stages of system design. 

2   Related Work 

Different measures, mainly of descriptive statistics, have been used in order to 

demonstrate the fit of model performance to human performance based on 

quantitative data (see e.g. [3], [7] and [2]). These measures can be categorized in three 

types: 

 

1. Measures of central tendency 

2. Measures of dispersion 

3. Measures of association 

 

The most common type of measure used in the area of model validation are measures 

of central tendency, e.g. mean, median and mode. Measures of central tendency 

describe the center or middle of a given data distribution by mapping multiple 

performance values on a single value. Thus, measures of central tendency are not 

sufficient to describe the variability in human performance.  



 

 

 
Fig. 1. Comparison of glance distribution of pilots in a flight simulator study conducted at 

German Aerospace Center (DLR). Chart A depitcts a common bar chart used to visualize local 

fitness including the mean and standard deviation for each area of interest. Chart B depicts the 

mean glance distribution as line chart (which is more intuitive for analysing trend consistency) 

including Pearson (r) as a quantification of trend fitness. 

 

However, variability of pilot behavior has to be considered during cockpit design, 

because the design has to be safe and usable for different types of pilots. Measures of 

dispersion are used to describe the between-subjects variability and the within-subject 

variability. Typical measures of dispersion are range, standard deviation and 

confidence intervals. Finally, measures of association are used (1) to describe the 

relation of data points of a sample to data points of another sample, or (2) to describe 

the relation between parameters within a sample. Typical measures of association are 

Pearson's correlation coefficient (in the following referred to as Pearson)  and 

Spearman's or Kendall's rank order correlation. All three types of measures are 

frequently used to validate models of human performance with different strength and 

weaknesses.  

Measures of central tendency in combination with measures of dispersion are used to 

describe the local fit between human and model performance data, see e.g. [7] and 

[3]. Combining mean (as measure of central tendency) and standard deviation (as 

measure of dispersion) allows to quantify the average case and variability of human 

and model behavior based on given data samples. Fig. 1A  shows an example for 

measuring distribution of gaze on areas of interest. The combination of mean and 

standard deviation provides a qualification of local fitness between datasets. 

Nevertheless, they do not quantifiy fitness. Quantification is especially needed if 

analysts have to validate different versions of a model in order to find the best fitting 

one. 

Measures of association are used to quantify the relation between model data and 

human data by calculating the trend fitness between the two datasets. Fig. 1B  shows 

an example for comparing the rank order of the pilots' gaze distribution. Here, 

Pearson is used to quantify the consistency of the rank order for the two data sets. 

Nevertheless, measures of association do not take into account the variability within 

human performance. Quantifications calculated based on measures of association 

provide only poor evaluation of the fitness between model and human data because 



 

 

they do not consider behavioural variability. It is not possible to draw any conclusion 

about the final predictive power of the model. Thus, a measure is needed which on the 

one hand considers variability in human performance and on the other hand quantifies 

model performance in comparison to human performance. 

First approaches to provide such a measure have been researched by Schunn and 

Wallach, and by Gluck. Schunn and Wallach provided a measure for quantification of 

local fitness in [8]. They recommend using the root mean square deviation (RMSD) 

as a measure of local fitness. RMSD calculates the difference between a set of related 

performance values and merges them on a single value of predictive power. Thus, 

RMSD allows comparing performance of different variants of a model on a 

quantitative basis. However, the problem analysts are faced with when using this 

approach for validation of local fitness is analog to the problem when using Pearson, 

that is the absence of taking into account human performance variability. 

This problem has been tackled by Gluck et al. in [4]. They proposed an approach to 

validate a pilot model, taking into account the between-subject differences of a set of 

human performance datasets instead of absolute performance values. The between-

subject differences served as a reference in order to actually evaluate the goodness-of-

fit of a pilot model m. For a group of human subjects S, they calculated the difference 

in performance of each individual subject sk to the average performance of S\sk using 

RMSD. The result was a set of difference values describing the natural variability of 

human performance which has been used to evaluate the difference between m and S. 

When analysing visual data, one of the characteristics most frequently described is the 

glance distribution on a set of pre-defined areas of interest. Here, RMSD for local 

fitness and Pearson for trend fitness can be used to calculate the difference between 

two subjects. Consequently, for a group of n human subjects, the result can be 

described as a bi-directional complete graph Kn (see Fig. 2) where K denotes the 

graph and n depicts the number of nodes. Edges i↔j are labeled with a value vij 

representing the difference (RMSD or Pearson) between si and sj. Thus, the graph 

completely describes the differences between human subjects (difference graph). The 

same approach can be used for measuring differences between human subjects and 

human performance models. 

Human Performance Benchmarks use difference graphs as the basis in order to 

validate visual performance of human models tackling quantification of visual 

performance and taking behavioural variability into account. 

3   Human Performance Benchmarking 

Benchmarks are commonly understood as an analysis method objectively comparing 

characteristics of subjects with characteristics of a reference subject. The measures 

considered for the analysis usually characterize the overall power of the system with 

regard to a target question [10]. A benchmark is a quantitative test evaluating the 

characteristics observed and matching results on a scale which is independent from 

the characteristics. Thus, results of different characteristics can be aggregated and 

evaluated on different levels of abstraction. This allows analysts to identify strengths 

and weaknesses of systems objectively based on data. 



 

 

 

Fig. 2. Difference graph describing the individual performance differences of human subjects 

(square) to each other as well as the differences between human subjects and a model (circle), 

or between competing model versions. 

The intention of our benchmark for visual performance is providing a goodness-of-fit 

evaluation for different characteristics C (such as glance distribution, glance 

frequency or scanpaths) for a set of competing models M with regard to a set of 

human subjects S. Our benchmark algorithm calculates an individual fitness value for 

each model m  M. Fitness values can be used (1) to compare the fitness of 

competing models, (2) to find the best fitting model and (3) to decide objectively if 

the predictive power of a certain model is sufficient for the desired application. In the 

following, the algorithm used to calculate a model's fitness value is presented: 

 

1. For all c  C, calculate difference graph for m and S 

2. For all c  C, calculate confidence interval CIS of individual difference 

values in S 

3. For all c  C, calculate the mean meanm of differences between m and S 

4. For all c  C, evaluate similarity between m and S 

5. Calculate overall fitness value fitm of m based on similarity evaluations of 

each c 

 

The similarity evaluation in step 4 can be defined as a function simc(m,S) evaluating 

for each c, if the performance of a given m is human-like, where human-like 

performance is determined by S. Our first version of this function is a naive boolean 

function returning true if meanm is covered by CIS and false if meanm is not covered 

by CIS: 
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In step 5, fitm is calculated. We define fitm as the sum of true similarity evaluations 

divided by the sum of all (true or false) similarity evaluations. Thus, the range of fitm 

is [0;1], where 0 means no fitness and 1 means total fitness. Based on fitm, analysts 



 

 

can decide if a model's performance is sufficient for the desired application or not. A 

model is sufficient, if fitm ≥ thres, where thres is a pre-defined threshold parameter.  

The application of this algorithm allows considering performance variability in terms 

of between-subject differences provided by difference graphs (step 1) which are used 

to calculate an interval CIS which represents the variability (step 2). In addition, the 

algorithm allows quantification of fitness by applying simc(m,S) (step 4) and 

calculating fitm (step 5) as a measure of model fitness. In the following Section, we 

will present exemplary validation results of an application of Human Performance 

Benchmarks in order to preliminary assess the approach. 

4   Results 

Experiments with 16 human airline pilots have been conducted in order to collect 

reference data for the validation of the visual performance data of our pilot model. 

 

Performance data of human pilots and two competing model versions (m1 and m2) 

have been validated based on data of glance distributions during three flight phases 

(cruise (1), approach (2) and final approach (3)), see Fig. 3A. 

Accordingly, the benchmark has been used to quantify performance and to objectively 

evaluate fitness of m1 and m2 for three performance characteristics c1 (glance 

distribution during cruise phase), c2 (glance distribution during approach phase) and 

c3 (glance distribution during final approach phase):  

 

Step 1: We computed the corresponding difference graph for c1, c2 and c3 taking into 

account the 16 subject pilots S and m1 and m2. Due to size limitations the graphs are 

not shown here. 

 

Step 2: We computed CIS for c1, c2 and c3. The results are shown in Fig. 3B. 

 

Step 3: We calculated meanm1 and meanm2. The results are shown in Fig. 3B. 

 

Step 4: We evaluated the similarity between m1 and S, and between m2 and S. The 

results are shown in Table 1. According to the similarity function defined in Section 

3, Fig. 3B shows that only m1 receives a true evaluation (simc2(m1,S) = true). 

 

Step 5: Results of step 4 have been used to calculate the overall fitness value of m1 

and m2. The results are shown in Table 1. For the datasets analysed in this study, the 

overall fitness value of model 1 is .33 and the evaluation of model 2 is 0. The fitness 

values can be used to evaluate if these models are sufficient for the desired 

application based on a comparison of each fitness value to thres. (e.g., if analysts 

define thres = .3, then m1 would be sufficient). 

 



 

 

 

Fig. 3. Chart A depicts the glance distributions (AOIs: Advanced Human Machine Interface 

(AHMI), Primary Flight Display (PFD), Navigation Display (ND), Engine Display (ED), 

Electronic Flight Control Unit (EFCU) and Window (WND)) of a human population (mean and 

standard deviation) and two concurring models for three flight phases (cruise (C), approach (A) 

and final approach (F). Chart B depicts the mean values and confidence intervals (95\%) of 

human pilots and the mean values of model 1 and model 2, which have been calculated based 

on the difference graphs for the flight phases. 

Table 1. Results of benchmarking reveal that m1 receives a higher overall fitness value than m2 

Model Cruise Approach Final Approach Overall Fitness Value 

m1 false true false .33 

m2 false false false .0 

5   Summary and Future Work 

In this paper, we presented an approach (called Human Performance Benchmarking) 

for quantitative evaluation of goodness-of-fit for human performance models based 

on quantitative performance data. The approach considers variability in human 

performance and uses these performance differences as a model evaluation reference. 

A first naive evaluation function has been presented, which evaluates the model 

fitness in context of these reference data. The benchmarking approach has been 

applied within a study with aircraft pilots focusing on gaze data. The results have 

been presented and issues requiring improvements have been identified. The first 

issue is that the evaluation function is very simple and results may be misleading for 

models that perform just within the human performance intervals. Evaluation of these 

models would be similar to those that perform much better and would considerably 

differ from models that perform slightly worse. We plan to improve the evaluation 

function by weighting the distance to the center of the distribution. The second issue 

is that the function works fine for deterministic models (same input - same output) but 

models like CASCaS produce performance variance as well. We have not yet taken 



 

 

variability in model performance into account. We plan solving this issue by 

considering CIm instead of meanm for a set of model runs and to compare CIm to CIS. 
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