
HAL Id: hal-01597015
https://hal.inria.fr/hal-01597015

Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Supporting Transformations across User Interface
Descriptions at Various Abstraction Levels
Mauro Lisai, Fabio Paternò, Carmen Santoro, Lucio Spano

To cite this version:
Mauro Lisai, Fabio Paternò, Carmen Santoro, Lucio Spano. Supporting Transformations across User
Interface Descriptions at Various Abstraction Levels. Pedro Campos; Nicholas Graham; Joaquim
Jorge; Nuno Nunes; Philippe Palanque; Marco Winckler. 13th International Conference on Human-
Computer Interaction (INTERACT), Sep 2011, Lisbon, Portugal. Springer, Lecture Notes in Com-
puter Science, LNCS-6949 (Part IV), pp.608-611, 2011, Human-Computer Interaction – INTERACT
2011. <10.1007/978-3-642-23768-3_94>. <hal-01597015>

https://hal.inria.fr/hal-01597015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Supporting Transformations Across User Interface
Descriptions at Various Abstraction Levels

Mauro Lisai , Fabio Paternò, Carmen Santoro, Lucio Davide Spano

CNR-ISTI, HIIS Laboratory,
Via Moruzzi 1, 56124 Pisa, Italy

{mauro.lisai, fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it

Abstract. Model-based approaches for user interfaces exploit various models in
order to represent interactive systems at different levels of abstraction. During
the design and development process, it is useful to have transformations to
derive higher or lower level models. Such transformations should be
customizable by designers to reach the desired results. In this paper we present
a tool that allows designers without deep knowledge of transformation
languages in creating and executing such transformations.

Keywords: Model-based Design, Model-to-model transformation

1 Introduction

Model-based approaches for User Interfaces (UI) have been applied in many
domains, for example to address the problem of creating multi-platform UIs, in which
abstract descriptions are transformed first into concrete descriptions and then into
various implementation languages. In such approaches, model-to-model (M2M) and
model-to-code (M2C) transformations play an important role, as their results should
be as close as possible to the designer’s expectations. Given that different
transformation outputs are desirable for different use cases, the possibility to create
and modify transformations is important. Different transformation languages have
been proposed in the literature. We focus on those that have been exploited in
particular for user interface descriptions. Since many UI specifications are XML-
based, it is possible to exploit XSLT (eXtensible Stylesheet Language
Transformations) for specifying the transformations. However, even if XSLTs are
powerful and supported by many tools, they have a complex syntax that is not really
suitable for many UI designer’s background. Transformation Templates [1] have been
proposed in order to parameterize the transformation logic, according to a set of
parameter types. They are relevant for our work and we would like to obtain easier to
manage UI transformations representations. In particular, we have considered
MARIA [2] (Model-based lAnguage foR Interactive Applications), an XML-based set
of model-based languages for which the proposed transformation tool can be applied
to define mappings between abstract and concrete levels, as well as the
transformations towards implementation languages based on XML.

2 Tool Support

In this section we describe the interactive environment supporting editing
transformations that we propose. Figure 1 shows the UI for the definition of a
transformation. Once this part has been activated, the designer can select the desired
source and the target meta-model from a drop down list. Each meta-model is
represented through a tree view, which allows the designer to easily recognize the
hierarchical structure of the composing elements. Figure 1 shows the representation of
MARIA desktop CUI (Concrete User Interface) as source and HTML5 as target
metamodel (a transformation between these two languages has been specified with
this tool). The tree nodes can be collapsed or expanded in order to hide unnecessary
nodes, allowing the designer to focus only on the meta-model elements that are
needed for defining the current transformation. When a tree node is selected, the
corresponding meta-model entity attributes are displayed on the right panel (in Figure
1 the HTML5 body element attributes are visualized on the right panel).

A transformation rule can be defined first selecting an element from the source
meta-model (that will be highlighted) and then selecting the destination element from
the target meta-model. This action creates a simple transformation rule that maps the
source to the target element without any particular condition. An arrow that connects
the source and the target nodes represents the existence of such rule.

When the rule has been created, it is possible to add attribute mappings through a
dedicated dialog. It shows the list of the currently defined mappings, allowing the
designer to create new associations by selecting the source and the target attributes or
to remove existing ones. This procedure is sufficient for defining single
transformations. Moreover, multiple transformations can also be defined, iterating the
process for creating a single one. Indeed, when more than one arrow starts from a
source element, the tool prompts the designer to select the multiple transformation
type (conditional, sequential or hierarchical). According to the selected type, the
designer can add conditions, ordering and hierarchy values.

A single transformation rule can be used for instance in order to define a one-to-
one mapping between a MARIA XML Image and a HTML img. The sourceImage
attribute can be mapped to the src attribute of the img element.

A conditional multiple transformation rule can be defined adding conditions for the
execution of each component. This can be done specifying, through a dedicated
dialog, the selection rule. The dialog allows the designer to enter a list of conditions
between two attributes, or between attributes and a static value. The condition
operators that can be selected are different according to the selected attributes data
type. An example of such transformation is the MARIA grouping mapping towards
different HTML5 elements. According to its role attribute, a grouping can indeed
represent one of the following HTML5 elements: header, nav, section, article, aside
and footer. The multiple conditional rule checks the attribute value and generates the
corresponding HTML element.

A sequential multiple transformation rule needs the specification of the ordering
attribute. By default, when the designer selects this type of transformation, the
ordering attribute is set according to the single component specification order (the
arrow). However, the ordering attribute value is shown on the editor right panel, and it

is possible to change it directly. Such rule can be used for instance in order to map a
MARIA spin box towards multiple HTML elements. Considering that this element is
not included in HTML, the transformation maps it towards a button (with a plus
label), a text field input element and another button (with a minus label).

Fig. 1. The Transformation Editor User Interface.

For a hierarchical multiple transformation, the designer has to specify both the

hierarchy and the ordering attribute. By default, the tool creates a new nesting for
each component, increasing the current maximum hierarchy value. Default values can
be changed through the editor right panel. Such transformation is useful especially in
case of model refinement, as it happens in MARIA, where the CUI languages are
obtained by adding refinements to the elements of the abstract language. For instance
it is possible to refine a MARIA AUI (Abstract User Interface) activator into a
desktop CUI button. In this case, multiple elements have to be generated, which
should also be nested (the specification of the label is inside the button element,
which is in turn contained into the activator element).

It is also possible to define transformations that map only attributes, without
generating target elements. The procedure is the same as before, the designer specifies
the different transformation type by pressing a button on the toolbar. Only attribute
mappings are displayed using a different colour for the corresponding arrows: blue is
used for mappings that generate target elements, red is used with only attribute
mappings.

A first user test has been carried out in order to evaluate the effectiveness of the
transformation meta-model and the usability of the tool. The test involved 11 users,
all male, 27 years old on average. The participants had experience with UI
development, and good knowledge of modelling techniques. However, all participants
had very little knowledge of transformation languages. Thus, they represent our target
users: UI designers without a deep knowledge of transformation techniques.

The participants were required to complete five tasks: loading the source and the
target meta-models, editing a single transformation rule, editing a multiple
transformation rule, editing an only-attribute mapping, and saving and loading a

transformation model. At the end, users were asked to complete a questionnaire,
evaluating the transformation meta-model and the tool features on a 1 to 5 scale (with
1 the most negative value and 5 the most positive one). The main results are reported
in terms of mean values and standard deviations.

The assessment of arrow-drawing paradigm for creating single transformations was
on the positive side (4.45 + 0.69), although some participants expressed some
complaints related to some confusion occurring when selecting target elements, due to
a lack of knowledge of either the source or the target meta-model. One user proposed
introducing a suggestion feature: when the designer is drawing an arrow, the nodes
that are semantically similar with the source one should be highlighted with a
different colour. Also tool support for creating multiple transformation rules was
considered on the positive side (3.73 + 0.90). The participants suggested introducing a
brief explanation of the three types of multiple transformations that can be defined
with the tool. Moreover, users suggested that it should be possible to identify the type
of multiple transformation directly from its graphical representation: the arrow should
have a different colour or some other kind of indication. There should also be the
possibility to see a summary of a multiple transformation, listing the values of the
hierarchy and/or ordering attributes for each component at once. Overall, the
evaluation provided encouraging feedback regarding the ways to represent
transformations.

3 Conclusions and Acknowledgments

In this paper we discuss a tool for the specification of user interfaces
transformations across specifications at various abstraction levels. The tool prototype
allows UI designers to create their own transformations and to apply them to the UI
meta-models. The tool has been integrated in a model-based authoring environment.
The first evaluation of the tool provided positive feedback regarding the
transformation meta-model with its tool support. Future work will be dedicated to
investigating further refinements in the tool support, together with further empirical
evaluation of the approach proposed.

We gratefully thank the support from the EU ICT SERENOA Project
(http://www.serenoa-fp7.eu/).

References

1. Aquino, N. and Vanderdonckt, J. and Pastor O. Transformation templates: adding
flexibility to model-driven engineering of user interfaces. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC’10), ACM, 1195--1202.

2. Paternò, F. and Santoro, C. and Spano, L. D. MARIA: A universal, declarative,
multiple abstraction-level language for service-oriented applications in
ubiquitous environments. ACM TOCHI, Volume 16, Issue 4, 2009, 19:1--19:30.

