
HAL Id: hal-01597773
https://inria.hal.science/hal-01597773

Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Predico: A System for What-if Analysis in Complex
Data Center Applications

Rahul Singh, Prashant Shenoy, Maitreya Natu, Vaishali Sadaphal, Harrick Vin

To cite this version:
Rahul Singh, Prashant Shenoy, Maitreya Natu, Vaishali Sadaphal, Harrick Vin. Predico: A System for
What-if Analysis in Complex Data Center Applications. 12th International Middleware Conference
(MIDDLEWARE), Dec 2011, Lisbon, Portugal. pp.123-142, �10.1007/978-3-642-25821-3_7�. �hal-
01597773�

https://inria.hal.science/hal-01597773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Predico: A System for What-if Analysis in Complex
Data Center Applications

Rahul Singh1, Prashant Shenoy1, Maitreya Natu2, Vaishali Sadaphal2, and Harrick
Vin2

1 Dept. of Computer Science, University of Massachusetts,
Amherst, USA

{rahul,shenoy}@cs.umass.edu
2 Tata Research Development and Design Center

Pune, India
{maitreya.natu,vaishali.sadaphal,harrick.vin}@tcs.com

Abstract. Modern data center applications are complex distributed systems with
tens or hundreds of interacting software components. An important management
task in data centers is to predict the impact of a certain workload or reconfig-
uration change on the performance of the application. Such predictions require
the design of “what-if” models of the application that take as input hypothetical
changes in the application’s workload or environment and estimate its impact on
performance.
We present Predico, a workload-based what-if analysis system that uses com-
monly available monitoring information in large scale systems to enable the ad-
ministrators to ask a variety of workload-based “what-if” queries about the sys-
tem. Predico uses a network of queues to analytically model the behavior of large
distributed applications. It automatically generates node-level queueing models
and then uses model composition to build system-wide models. Predico employs
a simple what-if query language and an intelligent query execution algorithm
that employs on-the-fly model construction and a change propagation algorithm
to efficiently answer queries on large scale systems. We have built a prototype
of Predico and have used traces from two large production applications from a
financial institution as well as real-world synthetic applications to evaluate its
what-if modeling framework. Our experimental evaluation validates the accuracy
of Predico’s node-level resource usage, latency and workload-models and then
shows how Predico enables what-if analysis in two different applications.

1 Introduction

Today online server applications have become popular in domains ranging from bank-
ing, finance, e-commerce, and social networking. Such server applications run on data
centers and tend to be complex distributed systems with tens or hundreds of interact-
ing software components running on large server clusters. As an example, consider an
online stock trade processing application of a major financial firm. This application
consists of 471 separate software components that process incoming stock trades at low
latencies. Figure 1 shows another application which disseminates stock prices and mar-
ket news to the terminals of stock traders; this application consists of 8970 components.

2 Singh et al.

The components are depicted as nodes of the graph and process stock data and news
from a multitude of sources, filter, aggregate, and then disseminate updates for each
company to desktops that subscribe to such streams. Such data center applications dif-
fer significantly in scale and complexity when compared to traditional multi-tier web
applications.

Typical data center applications evolve over time as new functionality is added,
its workload volume grows, or its hardware or software is updated. To deal with such
changes, an important management task for administrators is to predict the impact of
any planned (or hypothetical) change on the performance of individual components or
the entire system. This task, which is referred to as what-if analysis, requires the design
of what-if models that take as input a potential change in the application workload or its
settings and predict the impact of that change on application behavior. However, given
the complexity of today’s data center application, manual design of such what-if models
is no longer feasible since data center administrators may not be able to comprehend
the behavior of a complex system of tens of interacting components. Consequently,
a what-if analysis system must be able to automatically derive such models from prior
observations of application’s behavior. Further, the system must be able to scale to large
complex applications with hundreds of interacting components, while allowing rich
what-if analysis efficiently. While a number of modeling techniques have been proposed
for distributed or multi-tier web applications [10, 14, 17, 13, 7, 12], such models are not
directly targeted for what-if analysis or are not designed to scale to larger data center
applications such as the ones illustrated in Figure 1.

Fig. 1. Stock Price and Market Data Dissemination Application; only a subset of the application
is shown for brevity.

In this paper, we present Predico, a what-if analysis system to predict the impact
of workload changes on the behavior of data center applications. Predico makes the
following contributions:

– Modeling of complex data center applications: Predico employs a queuing-theoretic
framework to model large distributed data-center applications. Our modeling frame-
work is based on a network of queues and captures the dependence between the
workload of each component of the application and the corresponding resource uti-
lization, request latency and the outgoing workloads to other components. Predico
uses monitoring data and request logs to estimate the parameters of such a model

Predico: What-if Analysis in Complex Data Center Applications 3

and employs model composition to create larger system-level models for groups of
interacting application components.

– Intelligent query execution: Predico uses a novel change propagation algorithm that
uses these models to execute a what-if query and determine the impact of a work-
load change on other components. This algorithm first computes an influence graph
to determine which application components are impacted by the specified what-
if query and then uses a change propagation technique to propagate the specified
workload change through each component in the influence graph.

– Prototype Implementation: We have implemented a prototype of our Predico what-
if modeling framework. Our prototype incorporates a What-If Query Language
(WIFQL) that can be used by administrators to pose queries. Since our prototype
needs to handle large data center applications with hundreds of interacting com-
ponents, we implement several optimizations to scale the modeling framework to
such large applications. Specifically Predico uses on-the-fly model construction and
employs a cache of previously constructed models to reduce model computation
overhead.

– Evaluation based on real traces and real-world synthetic applications: We con-
duct an experimental evaluation of Predico using traces of two large production
applications from a financial institution as well as realistic synthetic applications.
Our experimental results validate the accuracy of Predico’s modeling framework
in building node-level resource usage, latency and workload models and illustrate
Predico’s ability to enable accurate what-if analysis.

2 Background and Problem Formulation

Our work assumes a large distributed application with N interacting components. We
assume that the application is structured as a directed acyclic graph (DAG), where each
vertex represents a software component and edges capture the interactions (i.e., flow of
requests) between neighboring nodes. For simplicity, we assume that each component
runs on a separate physical (or virtual) machine.3 We assume that the DAG has one or
more source nodes, that serve as entry points for application requests and one or more
sinks, that serve as exits. The flow and processing of requests through such applications
is captured by the DAG structure and is best explained with examples.

As examples of such distributed applications we consider two production financial
applications. The first application is a stock trade processing application at a major fi-
nancial firm; the application consists of 471 nodes and 2073 edges. New stock trade
requests arrive at one of the source nodes and flow through the system and exit from the
sink nodes as “results”. Each intermediate node performs some intermediate process-
ing on the trade request and triggers additional requests at downstream nodes. Nodes
may aggregate incoming stock trades or break down a large stock order into smaller
requests at downstream nodes. Figure 1 shows the structure of a market data dissem-
ination application that disseminates stock prices and news updates for a company to
trading terminals (“desktops”) of stock traders. In this case, news items arrive from a
number of sources and stock prices are obtained from a variety of exchanges, and this

3 This assumption is easily relaxed and we employ it for simplicity of exposition.

4 Singh et al.

information is processed, transformed, filtered and/or aggregated and disseminated to
any desktop node that has subscribed to information for a particular company. This ap-
plication has 8970 nodes and 22719 edges and must provide updates at low latency in
order for stock traders to make trades based on the latest market news.

Thus, we assume that requests flow through the DAG, with intermediate processing
at each node; a request may trigger multiple requests at one or more downstream child
nodes, and each node may aggregate requests from upstream parents. As can be seen,
such applications are significantly larger and more complex than traditional multi-tier
web applications.

We assume that the DAG structure for each application is known a priori (there are
automated techniques to derive the DAG structure by observing incoming and outgoing
traffic at each node [8]). We assume that each node in the DAG is a black box—i.e.,
we can observe the incoming and outgoing request streams along its edges and the total
node-level utilization but that we have no knowledge of the internals of the software
component and how it processes each request. This is a reasonable assumption in prac-
tice since IT administrators typically do not have direct knowledge of the application
logic inside a software component, requiring us to treat it as a black box. However, ad-
ministrators have access to request logs that the application components may generate
and can also track OS-level resource utilizations on each node.

We assume that there are R different types of requests in the entire distributed ap-
plication. Each node can receive different types of requests belonging to the R types
and can in turn trigger one or more requests of one of the R types at downstream child
nodes. Given our black box assumption, the precise dependence of what type of out-
puts are generated by what set of inputs is unknown (and must be learned automatically
by correlating request logs at a parent and a child). Similarly, the precise processing
demands imposed by a set of requests are unknown and must also be learned.

Assuming such a data center application, our first problem is to model each appli-
cation component (i.e., node of the DAG) by capturing the dependence between the
incoming workload mix and the request latency, resource utilization, and the outgo-
ing workload. Second, we need to use these node-level models to create system-level
models that capture the behavior of a group of interacting nodes. Third, given such
system-level models, we wish to enable rich workload-based what-if analysis of the
distributed application. Such an analysis should allow administrators to pose what-if
queries to determine the impact of a workload change at a particular node(s) on some
other node(s) of the system. A typical what-if query is assumed to contain two parts:
(i) the “if” part, which specifies the hypothetical workload change, and (ii) the “what”
part, which specifies the nodes where the impact of this change should be computed.
For instance, a volume-based what-if query could ask “what is the impact of doubling
the volume of requests seen by source node i on the incoming workload and CPU uti-
lization seen at some downstream node j?” Queries could also be concerned with the
impact on latency: “what is the impact of doubling the volume of type B requests at
node j on the latency of requests at node i?”

Thus, to design our what-if analysis system, we must address the following three
problems: (i) how should we model the dependence between the incoming workload
at a node and the request latency, node utilization and the outgoing workload to down-

Predico: What-if Analysis in Complex Data Center Applications 5

n1

n3

n2
n4

n5

n6

Fig. 2. Modeling a data center application using an open network of queues

stream nodes? (ii) how should we combine node-level models to create system-level
models that capture the aggregate behavior of a group of interacting nodes in the DAG?
(iii) what algorithms should be used to efficiently execute a what-if query using these
models? From an implementation standpoint, we are interested in a fourth question as
well: (iv) How should our system scale to complex data center applications with tens or
hundreds of components?

3 Modeling a Data Center Application

In this section, we first present a queuing model for a data center application that allows
us to model the utilization and response time of these nodes. We then describe the con-
struction of models to capture the input/output workload dependencies of these nodes.
Finally, we explain how these node-level models are composed to construct system-
wide models.

3.1 Queuing theoretic node-level models

Consider the DAG of a data center application with k nodes denoted by n1, . . . , nk

and R different type of requests. We model the data center application using an open
network of k queues, one for each node with R classes of requests. We model each
node as a M/G/1/PS queue i.e. the service times are assumed to have an arbitrary
distribution and the service discipline at each node is assumed to be processor sharing
(PS). Requests can arrive at a queue from other queues which are its parents in the
DAG or in the case of source nodes of the DAG from external sources. For analytical
tractability we assume that the distribution of inter-arrival times of requests coming
from outside have a poisson distribution. We denote the arrival rates of requests of class
r at the queue ni from outside by λr0,i. We assume that different classes of requests
arriving at a queue have different mean service rates. We denote the mean service rate
of requests of class r at node i by µr

i .
Thus the DAG of a data center application is modeled as an open network of queues

as shown in Figure 2. We use the well known queueing theory result called the BCMP
theorem [1] to analyze this network of queues. The BCMP theorem states that for such
queueing networks the utilization, denoted by ρi, of a node ni, is given by :

ρi =

R∑
r=1

ρri =

R∑
r=1

λri
µr
i

(1)

6 Singh et al.

n1

n2 n3

n6n5n4

Fig. 3. Node-level model

n1

n2 n3

n6n5n4

n7 n8

Fig. 4. Model Composition

where ρri denotes the resource utilization at node ni due to class r requests, λri
denotes the arrival rate of requests of type r at node ni and µr

i denotes the service rate
of requests of type r at node ni. This equation models the resource utilization of the
node as a function of the per-class arrival rate and per-class service rates. Similarly, the
average number of requests of type r at node ni under steady-state, denoted by K

r

i , is
given by:

K
r

i =
ρri

1− ρi
(2)

We can now use Little’s Law [3] to find out the T
r

i , the average response time of
requests of type r at node ni using Equations 1 and 2:

T
r

i =
K

r

i

λri
=

1

µr
i (1− ρi)

(3)

This equation models the response time at a node as a function of the total node
resource utilization ρi and the per-class service rate µr

i .
Given a value for the per-class workload, λri , at a node we can use Equation 1 to find

out the utilization ρi and then use the computed value ρi to find out the response time
using Equation 3. The per-class service times µi

r is the only unknown in the equations.
Since we assume that each node of the data center application is a black-box we need
to estimate these unknowns from the available information gathered from monitoring
of the node. We assume that request logs at a node contain an entry for each incoming
request containing the timestamp and the request string or type of request and that
the resource utilization of the node is being periodically monitored using a tool like
iostat. Given such logs, multiple values of ρi and λri can be collected over time. Since
Equation 1 captures the relationship between these R + 1 variables, the values of the
unknown per-class service rates µr

i can be numerically estimated using a regression
method such as least squares.

3.2 Workload models

While queueing theory allows us to model the performance metrics of a node, we also
need to capture the relationship between the incoming workload and the outgoing work-
load of a node.

To understand the node-level workload models that Predico needs to build, consider
the node shown in Figure 3. This node n1 has two parent nodes n2 and n3 and three

Predico: What-if Analysis in Complex Data Center Applications 7

child nodes n4, n5 and n6. Let λr2,1 and λr3,1 denote the arrival rate of requests of type
r from node n2 and n3 respectively to node n1. Similarly, let λr1,4, λ

r
1,5 and λr1,6 denote

the arrival rate of requests of type r at node n4, n5 and n6 respectively from node
n1. Predico needs to build models that capture the workload of each outgoing edge
as functions of workload of the incoming edges. Thus, we seek a function for each
of λr1,4, λ

r
1,5 and λr1,6 that expresses them as a function of

−−→
λ2,1 and

−−→
λ3,1 where

−→
λi,j is

short-hand for observed rates of various request types on the edge going from node ni
to nj i.e. (λ1i,j , λ

2
i,j , · · ·λRi,j) . Similarly, we seek functions for each of the other request

types :

λw1,4 = fw1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (4)

We model workload-to-workload dependencies as piecewise linear functions. Al-
though these dependencies are linear in steady state by the principle of job flow bal-
ance [3], [9], we choose piecewise linear modeling to capture the behavior of caches
in servers. For instance, a node with a cache can initially be sending a large number of
requests to downstream nodes when the cache is empty, but when the cache becomes
full, it might serve requests from its cache instead of sending requests to its down-
stream nodes. This changing dependence of outgoing workload on incoming workload
can be captured by two linear functions, one each for when a cache is cold and and
when it is hot. To incorporate piecewise linear modeling, we replace the linear model
shown in Equation 4 with a piecewise-linear model by dividing the 2R-dimensional
space spanned by (

−−→
λ2,1,

−−→
λ3,1) into n hypercube regions. A linear model is then used to

capture the relationship in each of these regions independently. Thus, we can rewrite
Equation 4 as a set of linear functions one for each region :

λw1,4 =



∑r=R
r=1

(
Aw,r

1 λr2,1 +Bw,r
1 λr3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Z1∑r=R

r=1

(
Aw,r

2 λr2,1 +Bw,r
2 λr3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Z2

.∑r=R
r=1

(
Aw,r

n λr2,1 +Bw,r
n λr3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Zn

(5)

where Zi is the ith hypercube region.
Equation 5 relates the outgoing workload to incoming workload, but to use it for

computing the outgoing workload λw1,4 for a given value of incoming workload
−−→
λ2,1 and

−−→
λ3,1 we need to first find the number of regions, n, and the regions themselves, Zi. We
then need to find individual linear functions for each region by computing the weights
of the corresponding linear function,Aw,r

1 andBw,r
1 . We use a regression analysis tech-

nique called multivariate adaptive regression splines (MARS) [6] that automatically fits
piecewise linear functions on data. Predico uses the monitoring data that contains mul-
tiple measurements of the variables

−−→
λ2,1,

−−→
λ3,1 and λw1,4 to give as training data to MARS

which finds out the different regions and the linear function in each region.

3.3 Model Composition: From Node-level to System-level Models

Predico uses node-level models to construct system-wide models using model compo-
sition. Model composition essentially “chains” together multiple node-level models to

8 Singh et al.

compute the workload, resource utilization and response time of a node as a function of
one or more ancestor nodes. We illustrate the composition algorithm used by Predico
using an example. Consider the sub-graph in Figure 4 that shows a parent node n2,
extending our earlier example in Figure 3. At the node-level, Predico can compute the
outgoing workload going from node n2 to node n1,

−−→
λ2,1, as a set of R piecewise linear

functions, one for each request type :

λw2,1 = fw2,1(
−−→
λ8,2,

−−→
λ7,2) , 1 ≤ w ≤ R (6)

Equation 4 gives the outgoing workload going from node n1 to n4 :

λw1,4 = fw1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (7)

Substituting the value of
−−→
λ2,1 from Equation 6 into Equation 7 we obtain a “composed

model” :
λw1,4 = fw1,4(

−−→
f2,1(
−−→
λ8,2,

−−→
λ7,2),

−−→
λ3,1) , 1 ≤ w ≤ R (8)

where
−−→
f2,1(
−−→
λ8,2,

−−→
λ7,2) is shorthand for (f12,1(

−−→
λ8,2,

−−→
λ7,2), f

2
2,1(
−−→
λ8,2,

−−→
λ7,2) , . . . , f

R
2,1(
−−→
λ8,2,

−−→
λ7,2)).

Doing so enables the outgoing workload sent from node n1 to n4 to be expressed as a
function of incoming workload of parent node n2. This process can be repeated for the
outgoing workload going to nodes n5 and n6 from node n1 and can also be recursively
extended to nodes that are further upstream from n2.

Creation of the composed model shown in Equation 8 requires composing the piece-
wise linear function fw1,4 with each of theR piecewise linear functions fw2,1, 1 ≤ w ≤ R.
Two piecewise linear functions can be easily composed by composing the individual
linear functions in each corresponding region which leads to another piecewise linear
function. Thus the composed model shown in Equation 8 is again a piecewise linear
function which captures the relation between the outgoing workload of node n1 and the
incoming workload of a parent node n2.

We can now do a similar composition to find the dependence of the resource uti-
lization of node n1, denoted by ρ1, and the response time of requests of type r at node
n1, denoted by T

r

1 on the incoming workload of parent node n2 denoted by
−−→
λ8,2,

−−→
λ7,2.

Substituting Equation 6 into the resource utilization equation given by Equation 1 we
get :

ρ1 =

R∑
r=1

ρr1 =

R∑
r=1

λr1
µr
1

=

R∑
r=1

λr3,1 + λr2,1
µr
1

(9)

=

R∑
r=1

λr3,1 + fr2,1(
−−→
λ8,2,

−−→
λ7,2)

µr
1

(10)

which expresses the resource utilization of node n1 as a function of the incoming
workload of node n2. Similarly, we can substitute from Equation 10 into the response
time Equation 3 to express the response time of request type r at node n1 as a function
of the incoming workload of parent node n2 :

Predico: What-if Analysis in Complex Data Center Applications 9

T
r

1 =
1

µr
1(1− ρ1)

(11)

4 Answering What-if Queries

In this section we describe the three step process used by Predico to answer a given
what-if query. The execution of a what-if query is a three step process comprising of:
1) finding the influence graph of the given query, 2) creating the node-level models of
the nodes in the influence graph using the modeling technique described above and 3)
using the change propagation algorithm to execute the query. We describe the three
steps in greater detail below.

4.1 On-the-Fly Model Construction using the Influence Graph

Since the number of nodes and edges in the DAG may be large in complex applica-
tions, it is not economical to precompute all possible node-level models and periodi-
cally recompute models that have become invalid due to an actual workload or hardware
change. Instead Predico employs a “just-in-time” policy to compute models on-the-fly
when a query arrives; only those models that are necessary to answer the query are com-
puted. Models from prior queries are cached and reused if they are still valid. Predico
uses the notion of an influence graph to determine which models should be constructed
to answer a query. Given a what-if query, the influence graph is the set of all possible
paths from the nodes in the “if” part of the query to the nodes in the “what” part. Ba-
sically the influence of a workload change will propagate along all paths from the “if”
nodes/edges to the “what” nodes; so the influence graph captures all of the nodes that
must be considered to answer the query and other nodes in the DAG can be ignored.

Upon the arrival of a what-if query, Predico first computes the influence graph by
generating the set of nodes that lie along all paths from the “if” nodes/edges to the
“what” nodes. It then triggers on-demand construction of node-level workload models
for all the nodes in the influence graph and node-level resource utilization and response
time models for the “what” nodes alone. The use of the influence graph to prune the
DAG and the reuse of previously computed models from the model cache enhances the
scalability of the system and reduces computational overheads. The influence graph is
also crucial for efficient query execution, as we will see in the next section.

4.2 Query Execution Using Change Propagation

After creating the node-level models for the nodes of the influence graph, Predico now
needs to “execute” the query. Query execution involves propagating the specified work-
load change through the influence graph, one node at a time, to compute its final impact
on the nodes/edges specified in the “what” part of the query. Once the workload change
has been propagated to the nodes in the “what” part, the node-level models can be used
to answer the query. Change propagation is equivalent to model composition—instead
of directly computing a composed model for the “what” nodes/edges as a function of the

10 Singh et al.

Input : node-level models and influence graph for a what-if query
Output: value of workload/resource usage at ”what” nodes/edges
for s In ”if” nodes/edges do

nodeQueue← s
while nodeQueue 6= ∅ do

currentNode← Pop(nodeQueue)
for e In GetIncomingEdges(currentNode) do

if ValueChanged(e) then
GetChangedValue(e)

else
GetUnchangedValue(e)

for o In GetOutgoingEdges(currentNode) do
if o is in the influence graph then

use node-level model of currentNode to find workload value on o
SetValue(o)
ValueChanged(o) = TRUE

for c In GetChildNodes(currentNode) do
if c is in the influence graph then

Push(nodeQueue,c)

Algorithm 1: Change Propagation via the Influence Graph

“if” nodes/edges, the propagation algorithm propagates the specified change through
the influence graph all the way down to the nodes/edges in the “what” part to achieve
the same result.

Predico’s change propagation algorithm is described in Algorithm 1. It takes the
node-level models and the influence graph, and traverses the influence graph in a breadth
first manner. It starts with the nodes/edges in the “if” part and computes the values for
the changed workload and then uses the model to compute its impact on the outgo-
ing workload. This process is referred to as propagating the change from the incoming
edges of a node to its outgoing edges. To illustrate, consider a query that is interested in
estimating the impact of a doubling of the workload for a particular edge. If the original
request rate was 10 req/s, then the new workload will be 20 req/s for that edge. This new
value is used, along with the unchanged request rates for all other edges not impacted
by the change, to compute the outgoing request rates for that node.

The algorithm proceeds in a breadth first fashion through the influence graph, start-
ing with the “if” nodes/edges and computing the outgoing workload for each of the “if”
nodes. The outgoing workload of a node becomes the incoming workload for down-
stream node(s), and the change propagation process repeats, one node at a time, in a
breadth-first fashion, until the change has propagated to all of the “what” nodes/edges.
At this point, the algorithm computes the value of interest at the node by using the
node-level models and terminates.

5 Predico Implementation

This section describes WIFQL, a query language that can be used to pose what-if
queries to Predico and the implementation details of Predico prototype.

Predico: What-if Analysis in Complex Data Center Applications 11

query = what part if part ;
what part = “compute” (simple compute part | compound compute part);
compound compute part = (simple compute part “AND”

(simple compute part | compound compute part));
simple compute part = (“cpu utilization” | “spare capacity” | “latency”)

“at nodes” node id {, node id }) |
“workload on” (edge id {, edge id });

edge id = “(” node id, node id “)” ;
if part = “if” (simple change part | compound change part);
compound change part = (simple change part “AND”

(simple change part | compound change part))
<EOL>;

simple change part = workload change | hardware change ;
workload change = “workload” { “for request class”

request class id } ((“at node” node id) |
(“on edge” edge id)) set operator value ;

hardware change = (“cpu speed” | “memory” | “disk speed”)
set operator value ;

set operator = “*=” | “/=”;

Fig. 5. The grammar for Predico’s What-If
Query Language (WIFQL)

What-If
Analysis
Engine

On-the-fly
modeling
engine

model
cache

Monitoring &
log data

DAGWIFQL
queries

User

Predico Execution Engine

Fig. 6. Predico Architecture

5.1 Posing What-if Queries in Predico

Since the goal of Predico is to enable users to understand the impact of potential work-
load changes on the system behavior, our system supports a simple query language to
enable a rich set of queries to be posed by IT administrators. Any query in our What-If
Query Language (WIFQL) has two parts: a what part and an if part. The if part of the
query describes the hypothetical change, while the what part asks the system to com-
pute the impact of that change on different performance metrics at one or more nodes
in the system. As an example of an WIFQL query, consider

compute workload on edges (n1, n4), (n1, n5), (n1, n6)
cpu utilization at nodes n1, n2
latency at nodes n1, n2
if workload on (n2, n1) *= 2
workload on (n3, n1) *= 0.5

This example query asks the system to compute the impact of a doubling of the
workload along the edge going from node n2 to n1 and a halving of the workload along
the edge going from node n3 to n1 on the CPU utilization and latency at nodes n1 and
n2 and the workload on the edges going from node n1 to nodes n4, n5 and n6.

Figure 5 describes our query language grammar. As shown, the if part allows users
to specify hypothetical changes to the workload or changes to the hardware (e.g., a
faster CPU). The workload changes, which is the focus of this work, can be specified
by identifying one or more edges or nodes in the DAG and indicating a change in vol-
ume or a change in the mix of requests; set operators such as multiply and divide can
be used to specify relative changes to the current workload, rather than absolute values.
The what part specifies the performance metrics of interest at particular nodes or edges;
several metrics are supported including resource utilizations, workloads, latencies or

12 Singh et al.

spare capacities. As indicated earlier, we assume that the DAG representing the appli-
cation is known a priori and is used by queries to refer to particular nodes and edges of
interest and specify workload changes on these nodes or edges.

5.2 Prototype Implementation

We have implemented a prototype of Predico using Python and the R statistical lan-
guage to perform what-if analysis in large data center applications. Figure 6 depicts the
high-level architecture of Predico.

The Predico frontend is implemented using a python implementation of the lex and
yacc parsing tools. It accepts user-posed queries and parses them by using the gram-
mar rules of WIFQL. User-posed queries are then executed by the Predico execution
engine, which comprises of two key components; the on-the-fly modeling engine and
the what-if analysis engine. The on-the-fly modeling engine first computes the influ-
ence graph using a graph API in python and then creates node-level models by using
on-the-fly model construction. The modeling engine retrieves data about the workload
on the incoming and outgoing edges of the node and the total resource utilization of the
node and then invokes an R module for building the node-level models. The R module
uses the MARS function present in the MDA package to build piecewise linear node-
level workload models and the linear regression function to find the per-class service
rates using least squares regression. Next, the what-if analysis engine uses these models
to answer (“execute”) the query via the change propagation algorithm to propagate the
hypothetical workload change through the model and compute its impact on the nodes
of interest to the user. The change propagation algorithm is again implemented by us-
ing the graph API written in python. The what-if analysis engine stores the node-level
models computed by the modeling engine in a model cache that is implemented as three
tables in the MySQL relational database engine; one each for storing the weight vec-
tors used in node-level workload models, the regions of the piecewise-linear model and
the per-class service rates of a node required in the node-level resource utilization and
response-time models.

6 Experimental Evaluation

In this section, we evaluate the performance of Predico by performing experiments on
two applications. We first evaluate the accuracy of the analytical node-level resource
utilization and response-time models and then the piecewise-linear workload models.
We then perform experiments to ascertain the accuracy of system-level models formed
by composition. We then employ Predico to perform case studies where we pose what-
if queries to Predico and compare the predictions with ground truth values observed in
actual experimental data.

6.1 Experimental Setup

We evaluate Predico on two different applications. The first set of applications are from
the financial domain and are being used by the data center of a financial institution. The
second application is a benchmark e-commerce application.

Predico: What-if Analysis in Complex Data Center Applications 13

1. We evaluate our system on traces collected from the two production financial appli-
cations described in Section 2. The traces collected from the stock trade processing
application contain the total number of requests sent out by every component within
every 30 second interval. The traces collected from the market data dissemination
application contain data for the number of bytes sent out from every component on
each of its outgoing edge, within every 30 second interval. Table 1 lists the charac-
teristics of the traces.

Application #Nodes #Edges Duration Metric # of Records
Market Data

8970 22719 1 day outgoing bytes 7763764
Dissemintation

Stock Trade
471 2073 4 days outgoing requests 6060952

Processing
Table 1. Characteristics of Production Traces

2. The second application is the TPC-W benchmark [15] which models an online
bookstore application. We implement the TPC-W application as a 2-node Java
servlet based application consisting of the front-end server (Tomcat) and a back-
end database (MySQL). Notice that this application does not follow our DAG as-
sumption since replies are sent back from the back-end database to the front-end
server. Predico is also able to handle such applications that contain cycles between
neighboring nodes by considering the two edges of the cycle separately. To im-
plement this application we use a testbed comprising of two virtual machines for
performing this experiment. Each virtual machine has a single 2.8 GHz Pentium 4
processor with 1GB memory. We use Tomcat version 5.5.26 and MySQL version
5.1.26 for setting up our TPC-W application. The TPC-W experimental setup al-
lows us to monitor the end-to-end latency and resource utilization values apart from
workload values.

6.2 Accuracy of Node-level Resource Usage and Latency Models

We model the data center application as an open network of queues that lead to Equa-
tion 1 which captures the node-level resource utilization and Equation 3 which cap-
tures the node-level latency. We validate the accuracy of this queueing model using the
TPCW application running on a two server testbed.

We use the httperf load generation tool to simulate requests arriving from customers
with exponentially distributed inter-arrival times. The TPC-W web application exposes
14 different servlets which a customer visiting the website can invoke. We create a
workload comprising of requests to two of these servlets, the “new products ” and “ex-
ecute search”. We independently vary the arrival rate of requests to both these servlets
from 10 to 100 requests per second with increase of 10 requests per second, thus gen-
erating a total of 100 arrival rate combinations. For each arrival rate combination, we
let the system run for 15 minutes and measure the CPU utilizations at the Tomcat and
MySQL server and the end-to-end latency. We use half of the 100 values for estimating

14 Singh et al.

0 2 4 6 8 10
Percentage Error (%)

0

20

40

60

80

100

C
D

F

Prediction Error in CPU Utilization

tomcat

mysql

Fig. 7. Node-level Resource Usage model Accu-
racy

0 20 40 60 80 100
Percentage Error (%)

0

20

40

60

80

100

C
D

F

Prediction Error in End-to-End Latency

New Products

Execute Search

Fig. 8. Node-level Latency model Accuracy

the values of the per-class service rates on each of the 2 nodes and then use these values
to predict the per-node resource utilizations and per-node per-class response time for
the other half. The per-node response times are summed up to get the end-to-end la-
tency. We compute the prediction errors by comparing the predictions of the node-level
models with the values observed during the experiments. Figure 7 and Figure 8 shows
the distribution of prediction errors in terms of percentage relative error in predicting
the resource utilization and latency respectively.

By using an open network of queue modeling, we are able to predict node-level CPU
utilization to within 2% of the actual value. The median prediction error for response
time using our modeling approach is less than 10%.

6.3 Accuracy of Node-level Workload Models

We evaluate the accuracy of using piecewise-linear functions created by using MARS to
model the relationship of the outgoing workload of a node with the incoming workload
of the node. We use the traces collected from the two applications to create these models
and then ascertain the accuracy of these models.

For each of the two applications, we selected each component in turn and extracted
the data for the workload on its incoming edges and outgoing edges. We then use MARS
to estimate a function which expresses the workload on each outgoing edge of a com-
ponent as a piecewise linear function of the workload on all the incoming edges on the
component. We evaluate the accuracy of the piecewise linear model in predicting the
workload on each outgoing edge of this component. Cross-validation was used to mea-
sure the prediction accuracy; we divide the trace data for the selected component into
training windows of 1 hour each and compute a model using MARS for each window
for each outgoing edge. We then use each model to predict the data points outside of the
window it was trained on; the deviations between the predicted and actual values were
measured. We use the root mean square (RMS) error as a metric of error; we divide
the RMS error by the range of actual values to report the results in normalized RMS
error (%). The average normalized RMS error for the models of all the outgoing edges
of a component is taken as the error for that component. We depict the errors for all

Predico: What-if Analysis in Complex Data Center Applications 15

10 20 30 40 50 60 70 80 90 100
Normalized RMS Error (%)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
N

o
d
e
s

Market Data Dissemination App

Level-1 Errors

Level-2 Errors

Level-3 Errors

Level-4 Errors

Fig. 9. Composed modeling for Market Data Dis-
semination App

10 20 30 40 50 60 70 80 90 100
Normalized RMS Error (%)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
N

o
d
e
s

Stock Trade Processing App

Level-1 errors

Level-2 errors

Level-3 errors

Fig. 10. Composed Modeling for Stock Trade Pro-
cessing App

the components of the two applications using CDF curves that show the percentage of
components that have errors below a certain value. Figure 9 shows the errors for the
market data dissemination application while Figure 10 shows the errors for the stock
trade processing application. The curve labeled ”Level-1” errors shows the CDF for the
errors. We describe the concept of levels and the description about the ”Level-2” and
”Level-3” curves later in this section. The CDF curves indicate that the workload-to-
workload models of 70% of the components have errors less than 10% in the case of the
market data dissemination application while models for 80% of the components have
errors less than 15% in the case of the stock trade processing application.

Our experimental results show that piecewise linear modeling provides accurate
models of node-level workload for production data center applications.

6.4 Accuracy of System-level models with increasing composition depth

We evaluate the accuracy of system-level models created by composing multiple node-
level models. Composition of multiple node-level models leads to an accumulation of
the error terms. We conduct experiments to measure the increase in error with com-
posing increasing number of node-level models. We again use the traces from the two
financial applications to evaluate the accuracy of system-level models. We reuse the
node-level models of each component built for validating the accuracy of node-level
workload models in the previous section for this experiment.

We select each component and compose its node-level workload model with that
of its ancestor components to express the outgoing workload of this component as a
function of the incoming workload of its ancestors. By using composition repeatedly
we successively construct models expressing workload of a component as a function of
its ancestors at different levels. Level 1 model is built between the outgoing workload
of a component and its incoming workload. Level 2 model is built between the outgoing
workload of a component and the incoming workload of its immediate parents. Simi-
larly level i model is built between the component and its ancestors that are reachable
in (i - 1) edges. We compute the average normalized RMS error of each component by
computing the average normalized RMS error for the models of all the outgoing edges

16 Singh et al.

e4 e3
e1

e2e5
Prediction Source Prediction Target

e1 e2 e3 e4
e3 2.4% 2.6%
e4 4.7% 3.05% 4.39%
e5 4.67% 2.95% 4.33% 0.79%

(a) (c)

20

5

10

52

111

92

4

19

81

74 73

Prediction Prediction Target
Source

81 19 74 73 4 92
111, 20, 5, 101, 52 12.47 % 12.45% 10.2% 9.28% 12.5 % 12.54%

19, 4, 92, 81 10.63% 9.46 %
74 3.34%

(b) (d)

Fig. 11. Prediction Errors of composed modeling on different topologies

of the component using cross-validation and then averaging the errors. Figures 9 and 10
show the CDF of normalized RMS errors for each level for the two applications. The
CDF curve drops with increasing levels implying that the errors increase as we predict
the workload of a component using ancestors higher up the component in the graph.
Inspite of the increasing errors with increasing levels, the errors remain tolerable; for
the Market Data Dissemination application even at level 4 the prediction errors for 80%
of the components are less than 20%, while for the Stock Trade Processing at the level
of 3 for 75% of the components the errors are less than 20%.

Our results on using composition to create system-level models on the traces col-
lected from the two production applications reveal that even with increasing composi-
tion depth, the system-level models are effective in predicting workload.

6.5 Accuracy of System-level models with varying topology

The node-level models can be composed in a number of ways to create a system-level
model depending on the topology of the DAG. We perform experiments to ascertain
the prediction accuracy of composed models under different topologies. For this ex-
periment we select some subgraphs in the DAGs for the two applications. We select
subgraphs that correspond to three topologies-chain, split and join. These topologies
correspond to different ways in which the components can interact with one another
in an application: (i) in the chain topology, each component receives requests from a
single upstream component, (ii) in the split topology, a component can send requests
to multiple downstream components and (iii) in the join topology, a component can
receive requests from multiple upstream components. For each subgraph, we create
node-level models for each component and then use composition to create models to
predict the workload on each outgoing edge of the subgraph. We measure prediction er-

Predico: What-if Analysis in Complex Data Center Applications 17

e1 e2
e3

e4

PredictionEdge
Hour

e1
h1 A

h2 2A

h3 2.5A

h2 h3
Prediction Hour

0

2

4

6

8

10

%
 E

rr
o
r

Prediction error on edges

edge e2

edge e3

edge e4

(a) Subgraph 1 (b) Subgraph 1 Average Workload (c) Prediction Errors

Fig. 12. What-If case study on Market Data Dissemination Application

rors in predicting workload of each outgoing edge as a function of incoming workload
of its ancestors at increasing levels.

Figures 11(a) and 11(b) show the subgraphs that we choose for this experiment.
Figures 11(a) is from the Market Data Dissemination application and Figure 11(b) is
a subgraph from the Stock Trade Processing application. Figure 11(a) illustrates the
chain and split topologies, while figure 11(b) is an example of a join and split topology.
Tables 11(c) and 11(d) show how the errors of the composed models vary as we predict
the workload on various edges/nodes of the graphs. For the subgraphs selected from
the market data dissemination application the prediction errors on all edges are within
5% while for the subgraph selected from the stock trade processing application the
prediction errors are within 13%.

The errors reveal that Predico’s composition based modeling technique performs
well even in case of complex application topologies.

6.6 Workload-only What-if Analysis Case Study

We create use-case scenarios to illustrate how Predico can be used in practice and evalu-
ate its performance in answering what-if questions which commonly arise in large-scale
applications. In this section, we pose workload-related what-if questions; we choose
subgraphs from the market data dissemination application and the stock trade process-
ing application and use Predico to predict the impact of workload changes on source
nodes at the workload on the other edges of the subgraphs.

We choose one subgraph each from the market data dissemination application and
the stock trade processing application. The first subgraph has 1 source node while the
other subgraph has 3 source nodes.

The topology of the first subgraph is shown in Figure 12(a). On this subgraph we
pose the query: “what happens to the workload on downstream edges of subgraph 1 if
the outgoing workload of the single source node increases by 2 and 2.5 times the current
value”. We examine the application traces and find periods of 1 hour duration each, h1,
h2 and h3, such that the outgoing workload from the source node increases by 2 and
2.5 times the workload in h1 in the hours h2 and h3 respectively. Predico uses the trace

18 Singh et al.

143

34 235

206

19 92

Prediction Node
Hour

143 19,92
h1 A B
h2 1.12 A 1.5 B
h3 1.8 A 1.65 B

h2 h3
Prediction Hour

0

2

4

6

8

10

12

14

16

18

%
 E

rr
o
r

Prediction error on nodes

Node 34

Node 235

Node 206

(a) Subgraph 2 (b) Subgraph 2 Average Workload (c) Prediction Errors

Fig. 13. What-If case study on Stock Trade Processing Application

from hour h1 and then predicts the workload values in hours h2 and h3. We compare
the ground truth value of the workload seen in the two hours and compare Predico’s
predictions to compute the errors. Figure 12(c) plots the errors on all the downstream
edges in terms of the normalized RMS error for each of the two changes mentioned in
the what-if question.

The topology of the second subgraph is shown in Figure 13(a). On this subgraph we
pose the query: “what happens to the workload on downstream nodes a) if the workload
on the source nodes 143, 19 and 92 becomes 1.12, 1.5 and 1.5 times respectively the
current value b) if the workload on the source nodes 143, 19 and 92 becomes 1.8, 1.65
and 1.65 times respectively the current value times”. We compare Predico’s prediction
with ground truth values observed in the traces to compute the errors. Figure 13(c) plots
the errors for the two queries for the downstream nodes in terms of normalized RMS
error.

The trace collected from the stock trade processing application only contain the re-
quests going out of each node and we assume that these requests are equally distributed
among all its outgoing edges. Similarly, in the case of the market data dissemination
application, the traces contain the bytes sent out on each edge and we assume that the
number of bytes are an approximation of the number of requests. We note that even
under these simplifying assumptions, Predico is able to make predictions with errors
between 8% and 18%.

7 Related Work

A number of recent efforts have focused on building systems for performing what-
if analysis on various distributed systems. The design and implementation of a self-
predicting cluster-based storage system is presented in [13]. The approach, however,
involves intrusive instrumentation of the system that is not feasible in production envi-
ronments. WISE [12] is a system for answering what-if deployment and configuration
questions for content distribution networks (CDN). WISE, however, only answers ques-
tions related to network latency and does not consider the server processing within data
centers.

Predico: What-if Analysis in Complex Data Center Applications 19

Apart from systems that are directly aimed at performing what-if analysis, a number
of modeling techniques have been proposed that predict the performance of the system
and can be employed for answering what-if questions about the system. Most of these
techniques are aimed at multi-tiered systems. A number of these techniques use queu-
ing models to predict the response time and resource utilization of such applications
[16],[2],[5]. Similar to our approach, least squares is used to parameterize the queuing
models in [17]. Similar to our automatic model derivation, the authors of [7] also au-
tomatically derive node-level models to capture relationships between workload; their
technique is based on linear models while we have used a queuing-network modeling
based approach. In [10], nonstationarity in workloads is utilized to derive models for
predicting the resource utilization and response time of an application as a function of
workload volume and workload mix. The modeling approach proposed in [11] creates
“profiles” for the different components of a distributed application to model the resource
demands placed by the components under different workloads on the underlying hard-
ware. IRONModel [14] proposes a modeling architecture for creating robust models.
The models are used for answering what-if questions about the impact of reconfigura-
tions on the response time and throughput of a large storage system. In contrast to these
systems, Predico is aimed at large-scale systems and enables easily modeling arbitrary
distributed applications by joining together individual node-level models. Modellus [4]
also uses composition of models to model data center applications. Modellus, however,
models workload-to-workload interactions only while Predico looks at response time
models as well. Also, Modellus is only a modeling framework, while Predico combines
modeling with a full-scale what-if analysis system.

8 Conclusions

Data center operators often need to ascertain the impact of unseen workload changes
on large distributed applications. Predicting how a certain change in workload will in-
fluence complex data center applications is a challenging problem that needs automa-
tion. In this paper we presented Predico, a system which enables the user to perform
“what-if” analysis on large distributed applications. Predico is non-intrusive and only
uses commonly available monitoring data to construct models and uses a new change
propagation technique to estimate the impact of specified workload changes.

We modeled a large-scale data center application as an open network of queues to
derive resource utilization, latency and workload models. We used traces from two large
production applications from data centers of a major financial institution and data from
synthetic enterprise applications to evaluate the efficacy of Predico’s what-if modeling
framework. Our experimental evaluation validated the accuracy of the node-level re-
source utilization, response time and workload models and then showed how Predico
enables what-if analysis in two different applications.

Acknowledgements: This reseach was supported in part by NSF grants CNS-0855128,
CNS-0916972, CNS-0720616 and OCI-1032765.

20 Singh et al.

References

1. Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. J. ACM, 22(2):248–260,
1975.

2. Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for autonomic data
centers using analytic performance models. In ICAC, pages 229–240, Washington, DC,
USA, 2005.

3. Peter J. Denning and Jeffrey P. Buzen. The operational analysis of queueing network models.
ACM Comput. Surv., 10:225–261, September 1978.

4. P. Desnoyers, T. Wood, P. Shenoy, S. Patil, and H. Vin. Modellus: Automated Modeling of
Complex Internet Data Center Applications. Technical report, UMass CS, 2009.

5. Yixin Diao, Joseph L. Hellerstein, Sujay S. Parekh, Hidayatullah Shaikh, Maheswaran
Surendra, and Asser N. Tantawi. Modeling differentiated services of multi-tier web ap-
plications. In MASCOTS, pages 314–326, 2006.

6. Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics,
19(1), 1991.

7. Guofei Jiang, Haifeng Chen, and K Yoshihira. Discovering Likely Invariants of Distributed
Transaction Systems for Autonomic System Management. In ICAC, pages 199–208, Dublin,
Ireland, June 2006.

8. Andreas Kind, Paul Hurley, and Jeroen Massar. A light-weight and scalable network profiling
system. ERCIM News, 60, 2005.

9. Daniel A. Menascé and Virgı́lio A. F. Almeida. Capacity planning for Web performance:
metrics, models, and methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

10. Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationarity for perfor-
mance prediction. In EuroSys, pages 31–44, 2007.

11. Christopher Stewart and Kai Shen. Performance Modeling and System Management for
Multi-component Online Services. In Proc. USENIX Symp. on Networked Systems Design
and Implementation (NSDI), May 2005.

12. Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and Mostafa Ammar.
Answering what-if deployment and configuration questions with wise. SIGCOMM Comput.
Commun. Rev., 38(4):99–110, 2008.

13. E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan, and G. R. Ganger. Informed
data distribution selection in a self-predicting storage system. In ICAC, pages 187–198,
Washington, DC, USA, 2006. IEEE Computer Society.

14. Eno Thereska and Gregory R. Ganger. Ironmodel: robust performance models in the wild.
SIGMETRICS Perform. Eval. Rev., 36(1):253–264, 2008.

15. TPC. the tpcw benchmark. Website. http://www.tpc.org/tpcw/.
16. Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Assar Tantawi.

An Analytical Model for Multi-tier Internet Services and Its Applications. In Proc. of the
ACM SIGMETRICS Conf., Banff, Canada, June 2005.

17. Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A regression-based analytic model for
dynamic resource provisioning of multi-tier applications. In ICAC, Washington, DC, USA,
2007.

