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Abstract. An important concern in the design of a publish/subscribe
system is its expressiveness, which is the ability to represent various
types of information in publications and to precisely select information
of interest through subscriptions. We present an enhancement to existing
content-based publish/subscribe systems with support for a 2D spatial
data type and eight associated relational operators, including those to
reveal overlap, containment, touching, and disjointedness between re-
gions of irregular shape. We describe an algorithm for evaluating spa-
tial relations that is founded on a new dynamic discretization method
and region-intersection model. In order to make the data type practical
for large-scale applications, we provide an indexing structure for access-
ing spatial constraints and develop a simplification method for eliminat-
ing redundant constraints. Finally, we present the results of experiments
evaluating the effectiveness and scalability of our approach.

1 Introduction

The data models of existing content-based publish/subscribe systems embody
only the most basic and primitive types: numbers, strings, and dates. This is
true, for example, of the Java Message Service specification (JMS), which is
restricted to the primitive data types of Java.1 In this paper we present an
extended data model supporting 2D spatial objects. The representation of 2D
objects is essential in many problem domains, but perhaps its primary use is
in the representation and processing of geographical information. This type of
information has concrete applications in agriculture, transportation, logistics,
infrastructure management, and more recently various personal applications.

The simplest approach to incorporating 2D spatial objects into a content-
based publish/subscribe system would be to establish some sort of convention
for indicating regions in an x/y coordinate space, such as by giving the locations
of opposite corners of rectangular regions or by giving the center point of a
circular region of some radius. The coordinate space itself might be abstract or
it might be associated with a standard reference model such as longitude and

1 JMS defines an SQL-like selection feature for its content-based subscriptions. How-
ever, this selection feature is practically equivalent to a set (i.e., a disjunction) of
subscriptions based on name-operator-value constraints.
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latitude. Notice that this simple approach has the benefit of requiring only some
conventional use of the primitive data types and relational operators already
commonly supported by publish/subscribe systems.

The simplest matching problem would be to test whether a point in a space
is contained within a given region. This concept has been explored for so-called
location-based services [1, 9, 10, 16, 29], and used in practice to underpin practical
applications such as Facebook Places.2 It has also been explored for use within
the virtual world of games, where game state and actions are bound to a notion
of virtual location [22].

Our goal is to support a richer concept of region and region matching. In
particular, we seek to support regions having irregular, and therefore more re-
alistic boundary shapes, whereas prior work has focused on simple shapes, such
as axis-aligned rectangles [24, 27]. Moreover, we seek to support the matching of
regions to other regions, not just points to regions, which implies a much richer
set of potential matching relations, such as overlaps, where two regions share
some interior points but not others, meets, where two regions touch but do not
overlap, and equals, where two regions mutually cover each other.

Consider, for example, an event notification emitted by a severe-weather
warning system that reports a storm affecting a geographical area A with max-
imum expected wind speed w and precipitation level p. A facility management
company might be interested in receiving such notifications, but only when A
overlaps with one of the company’s facilities (e.g., a building), and if the wind
speed w and precipitation level p are above certain safety thresholds. In this
and similar applications, subscriptions would include 2D geographical regions
obtained from, say, a geographical information system (GIS) database, while
notification messages would contain 2D observation overlays, such as weather
systems, pollutant concentrations, group/herd movement, and the like. In or-
der to capture such regions and their relationships within a content-based pub-
lish/subscribe system, a new data type for 2D spatial objects is required.

We derive the new data type from a standard model found in geographical in-
formation systems in which a 2D region is defined as a the space enclosed within
a boundary consisting of line segments. Given two such boundary-delimited re-
gions, the model induces eight binary relations between the regions. The theo-
retical basis for the evaluation of the eight relations is the 4-intersection model
developed in the seminal work of Egenhofer and Franzosa [14] and used in many
spatial database management systems. In this model, each binary relation be-
tween two regions A and B can be evaluated by testing the emptiness of four
intersections between the boundary, interior, and exterior point sets of A and B.

Starting from this abstract model, we develop a concrete representation of
regions based on a discretization of their boundaries, and use the eight basic
binary relations between regions to form the relational operators of the type. We
also derive a small set of concrete conditions that lead to an efficient evaluation
of the relations. The boundary discretization, and the corresponding evaluation
of the spatial relations, are based on a newly formulated variant of the Egenhofer

2 http://www.facebook.com/places/



A Matching Algorithm for 2D Spatial Objects 3

and Franzosa 4-intersection model. We were driven to develop this new model
because the original requires all interior points of a region to be inspected and
conventional discretization methods [17, 18] rely on a global grid structure.

The original model and conventional methods were developed for traditional
GIS database applications, where the problem is to compute and store all the spa-
tial relations among large numbers of relatively static regions, and then quickly
process a spatial query against those stored relations [26]. In that context it is
reasonable to incur the considerable computational costs of a global-grid dis-
cretization and a full interior point inspection, since they can be performed in
an off-line preprocessing step. Publish/subscribe systems, by contrast, face the
problem of having to perform an on-line computation to reveal the spatial rela-
tions that exist between previously unseen regions contained in high-rate mes-
sage traffic and large numbers of stored regions representing spatial constraints.
This demands the new approach introduced in this paper in which boundary
discretization is dynamic and point inspections can be significantly reduced.

The ideas presented here provide the theoretical basis for accommodating
2D spatial objects in the basic matching/filtering/forwarding function of pub-
lish/subscribe systems, as well as the routing function of distributed versions
of such systems. In this paper we focus on the matching problem, describing
a specific algorithm, indexing structure, and logical simplification method for
2D spatial constraints, integrated and evaluated within a general content-based
matching algorithm. The indexing structure, which we call the CR-tree, is an
extension of the well-known R-tree developed by Guttman [20]. Our extension
allows the matching algorithm to efficiently evaluate a large set of spatial con-
straints, as we demonstrate experimentally. We also demonstrate the effective-
ness of the spatial-constraint simplification method.

In summary, we make the following contributions: (1) the use of topologi-
cal relations between 2D spatial objects within content-based publish/subscribe
systems; (2) a discretization of a common 2D model that admits to an efficient
representation and use of 2D objects in matching; (3) an indexing structure to
process large numbers of 2D spatial constraints during the matching process;
and (4) a logical simplification method for 2D spatial constraints. We provide
background on general spatial modeling in Section 2, and then define a specific
spatial model, its discretization, and a matching algorithm in Section 3. The
CR-tree index and spatial simplification method are described in Section 4. We
present the results of an experimental evaluation in Section 5.

2 Background

To support 2D objects within a content-based publish/subscribe system, we
must define spatial concepts and models that would lead to efficient and robust
implementations. In particular, we seek a fast matching algorithm capable of
evaluating incoming 2D regions (represented as attribute values in messages)
against potentially large numbers of 2D spatial constraints (contained in sub-
scriptions). In this section, we lay out such definitions and models. Furthermore,
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since we develop the 2D spatial model as an extension of a concrete content-
based matching algorithm, namely the Siena Fast Forwarding algorithm [8], we
also review the algorithm and its existing indexing structures.

2.1 Spatial Concepts and Spatial Modeling

Space is regarded as being composed of an infinite number of points forming a
continuum, the so-called Euclidean model. We represent a region as a polygon.
More specifically:

Definition 1. A region is a simple polygon, that is, the portion of the Euclidean
space delimited by a closed finite sequence of line segments such that any two
adjacent segments share an end point, and no end point belongs to more than
two segments. Furthermore, no point other than an end point is shared by two
segments (i.e., line segments do not intersect).

As a concrete example, consider a message used within an environmental
management system to warn about leaks of dangerous chemicals or other pol-
luting agents in lakes or oceans. A hypothetical message of this type is shown
in Figure 1. The warning indicates the affected area by specifying a 2D region
(attribute “area”). The region is defined by the end points of the line segments
that form its boundary, given as a sequence (only partially shown) of point pairs.

string warning = “hazardous leak”
region area = (23.1, 10.9), (30.3, 27.0), (48.0, 19.0), . . .
int concentration = 172
int hazard = 4

Fig. 1. A message describing a 2D object as the region “area”.

Using the region connection calculus introduced by Cohn et al. [12] we can
prove the existence of eight jointly exhaustive and pair-wise disjoint (JEPD)
binary topological relations between 2D regions. This means that any pair of
regions must have a topology that is characterized by one and only one of the
eight relations. The complete set of relations between two regions A and B is
illustrated in Figure 2. The first four relations are symmetric; the remaining
four should be read as A relation B (e.g., A inside B). These qualitative topo-
logical relations between regions define the constraints that can be expressed
in subscriptions that select 2D spatial objects. Since our objective is to iden-
tify all matching constraints for a given region, we must develop an algorithmic
evaluation of these relations.

In order to implement such constraints in subscription predicates, we need
to model the concept of topological relations between regions. Following the
analysis of Egenhofer et al. [13–15], if A ⊆ R2 is a region, then there exists a set
U ⊆ R2 such that U = (A0 ∪ ∂A ∪ A−), where A0, A−, and ∂A are the interior,
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Fig. 2. The eight jointly exhaustive and pair-wise disjoint (JEPD) relations between
regions.

exterior, and boundary sets of A, respectively. Notice that they are mutually
disjoint subsets of U , that is, A0, ∂A, and A− form a partition of U . We refer to U
as the universe. It is then provable that the topological relation between any two
regions A,B ⊆ U can be identified by specifying the nine possible intersections
between their interiors, exteriors, and boundaries (the 9-intersection model),
each of which can be either empty or non-empty. Egenhofer and Franzosa [14]
introduced a model based on only four intersections (the 4-intersection model),
obtained by removing redundant entries from the 9-intersection model. Below is
the list of intersections in the 4-intersection model of Egenhofer and Franzosa.

Intersection 1. Intersection between the boundary of A and the boundary of
B denoted by ∂A ∩ ∂B.

Intersection 2. Intersection between the boundary of A and the interior of B
denoted by ∂A ∩B0.

Intersection 3. Intersection between the interior of A and the boundary of B
denoted by A0 ∩ ∂B.

Intersection 4. Intersection between the interior of A and the interior of B
denoted by A0 ∩B0.

In Section 3 we introduce a discretization of regions, as well as a variation of
this 4-intersection model, that are specifically designed to ensure efficient and
robust evaluation of the JEPD spatial constraints.

2.2 The Siena Fast Forwarding Algorithm

Siena is a popular distributed publish/subscribe system that uses name-value
pairs in published messages and name-operator-value constraints to define sub-
scriptions [7]. Following the terminology used in Siena, a filter is a conjunction
of constraints (that defines a subscription) and a predicate is a disjunction of
filters (representing a set of subscriptions).

The matching algorithm developed within the Siena project, called Siena Fast
Forwarding (SFF) [8], follows the approach of Yan and Garcia-Molina [30] by
using a counting algorithm for predicate matching. In particular, the algorithm
builds a forwarding table consisting of a global index of all the unique constraints
found in a set of predicates, where each predicate is associated with an interface
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of a content-based broker/router. Given this constraint index and an input mes-
sage, the matching process amounts to finding the set of interfaces through which
the message must be forwarded. The algorithm proceeds by evaluating each at-
tribute of the message against the index of constraints, counting the numbers
of matching constraints per filter. When the count reaches the total number
of constraints in a filter associated with a predicate, the algorithm forwards the
message to the interface associated with that predicate. As an example, Figure 3
shows the high-level contents of a forwarding table for a broker/router with two
interfaces, I1 and I2, each associated with a predicate of two filters, f1.1 and
f1.2, and f2.1 and f2.2, respectively. Notice that the message shown in Figure 1
would match f2.2 and, therefore, would be forwarded through interface I2.

I1

f1.1
string stock =“MTK”
int price < 100

f1.2

string stock = “DYS”
int price > 200
bool bubble = true

I2

f2.1
region cloud overlaps (10, 5), (7, 12), . . .
int pressure < 1000

f2.2

string warning = “hazardous leak”
region area disjoint (3, 2), (15, 40), . . .
int concentration > 100
int hazard > 3

Fig. 3. A forwarding table with 2D regions.

SFF already implements specific constraint indexes for some basic data types,
including integer, float, Boolean, and string, along with their operators. It also
provides a way to extend the algorithm with more types and operators, and with
type- and operator-specific constraint indexes. We use this extension feature to
plug in our implementations for representing 2D regions, a spatial constraint
index, and the algorithm for evaluating 2D constraints.

3 Spatial Model

The abstract notion of a 2D object is generally defined by a set of points taken
from a continuous space. Therefore, in order to realize a concrete implementation
of this abstract model, we must somehow map these continuous 2D objects
onto a discrete structure amenable to efficient algorithmic processing. The term
discretization refers generally to both the mapping of a continuous object onto
a discrete set and the algorithmic processing of that discrete set. A conventional
approach to the discretization of 2D regions is to construct a discretized universe
using a global grid structure [17, 18]. However, this method involves the mapping
of regions onto grid points, which is a surprisingly complex procedure [19, 21]
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that would introduce unacceptable levels of overhead to a publish/subscribe
system.

We follow a completely different approach. The key idea behind this new dis-
cretization is to use a point-region check as the primary building block for the
evaluation algorithm. In particular, let pointCheck(p,R) be a decision proce-
dure that returns the topological relation between point p and region R as either
in, out, or meet, meaning that p is within the interior, exterior, or boundary of
R, respectively. This pointCheck procedure takes two discrete structures, a
point and a finite set of line segments, and can be implemented efficiently using
a ray-shooting algorithm from a computational-geometry library [5, 23]. We use
the procedure to efficiently evaluate the eight JEPD spatial relations through a
variant of the 4-intersection model of Egenhofer and Franzosa.

3.1 A New 4-Intersection Model

The 4-intersection model of Egenhofer and Franzosa reduces the identification
of the topological relations between two regions A and B to the problem of
determining whether each of the four intersections is empty or not. Our general
approach to discretizing each intersection decision is to find a “witness” point
that would indicate that the intersection is not empty. In particular, the first
three of the four intersections can be discretized as follows:

Discretization 1. To decide the emptiness of ∂A ∩ ∂B, find a point p on the
boundary of A that can be tested as a boundary point for B. If such a p is
found, then consider the intersection non-empty ; otherwise empty.

Discretization 2. To decide the emptiness of ∂A ∩ B0, find a point p on the
boundary of A that can be tested as an interior point for B. If such a p is
found, then consider the intersection non-empty ; otherwise empty.

Discretization 3. To decide the emptiness of A0 ∩ ∂B, find a point p on the
boundary of B that can be tested as an interior point for A. If such a p is
found, then consider the intersection non-empty ; otherwise empty.

The fourth intersection in the model of Egenhofer and Franzosa is A0 ∩ B0,
which involves two interior sets whose discretization is prohibitively complex for
achieving fast content-based matching. To overcome this problem we replace the
fourth intersection with the intersection between the boundary set of A and the
exterior set of B. Thus, we define a new 4-intersection model with the new fourth
intersection being ∂A ∩ B−, which admits to an efficient discretization similar
in form to the previous three:

Discretization 4. To decide the emptiness of ∂A ∩ B−, find a point p on the
boundary of A that can be tested as an exterior point for B. If such a p is
found, then consider the intersection non-empty ; otherwise empty.

Of course, given this change to the intersection model, we must show that all
eight topological relations between regions can still be decided unambiguously.
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(∂A ∩ ∂B, ∂A ∩B0, A0 ∩ ∂B, ∂A ∩B−)

(∅, ∅, ∅, 1) (1, ∅, ∅, 1) (1, 1, 1, 1) (1, ∅, ∅, ∅) (∅, 1, ∅, ∅) (∅, ∅, 1, 1) (1, ∅, 1, 1) (1, 1, ∅, ∅)
∅: empty, 1: non-empty

Table 1. The eight JEPD relations as captured by the new 4-intersection model.

We do this in Table 1, which details the precise correspondence between the four
intersections and the topological relations.

We can now proceed to implement the evaluation of the topological relations
as a concrete algorithm. We emphasize that this algorithm is based on a crucial
property of the new 4-intersection model, namely that all its intersections involve
at least one boundary set ∂X, and either another boundary set ∂Y , an interior set
Y 0, or an exterior set Y −. Having a boundary set ∂X to start with, the algorithm
can proceed first by discretizing ∂X into a finite set of points p ∈ ∂X and then
by checking the relation of each point p with the other region Y (boundary,
interior, or exterior) using the pointCheck(p, Y ) primitive.

3.2 Algorithm

Our method for identifying the topological relation between two regions A and
B, each expressed as a sequence of points, is given as Algorithm 1. The algo-
rithm uses four Boolean variables i1, i2, i3, and i4 that indicate the presence
of “witnesses” for the non-emptiness of each of the four intersections in our 4-
intersection model. The variables are initialized as false and become true as soon
as the algorithm finds one point in the corresponding intersection.

The algorithm can find witness points for the first, second, and fourth in-
tersections (thereby assigning i1, i2, and i4) through a single iteration over the
points of the boundary of the first region ∂A (lines 6–18). In this loop the al-
gorithm considers only some points of the boundary ∂A, effectively discretizing
that boundary. The selection of points is performed by the discretize procedure
sketched on lines 46–49 and discussed in detail in Section 3.3, below.

The loop over the points of ∂A may terminate immediately whenever the
algorithm finds witnesses for intersections 2 and 4, since they unambiguously
identify the overlaps relation. At the end of the loop, the algorithm can identify
the equals, inside, and covered-by relations. Lines 19–25 implement this deci-
sion based on the values of i1, i2, and i4. Notice that some of the conditions
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Algorithm 1 Topological relation between two regions.

1: procedure findRelation(A,B)
2: i1 ← false . witness: i1 ⇒ ∂A ∩ ∂B 6= ∅
3: i2 ← false . witness: i2 ⇒ ∂A ∩B0 6= ∅
4: i3 ← false . witness: i3 ⇒ A0 ∩ ∂B 6= ∅
5: i4 ← false . witness: i4 ⇒ ∂A ∩B− 6= ∅
6: for each p ∈ discretize(∂A) do
7: T ← pointCheck(p,B);
8: if T = meet then
9: i1 ← true

10: else if T = in then
11: i2 ← true
12: else if T = out then
13: i4 ← true
14: end if
15: if i2 ∧ i4 then
16: return overlaps . (?, 1, ?, 1)
17: end if
18: end for
19: if i1 ∧ ¬i2 ∧ ¬i4 then
20: return equals . (1, ∅, ?, ∅)
21: else if ¬i1 ∧ i2 ∧ ¬i4 then
22: return inside . (∅, 1, ?, ∅)
23: else if i1 ∧ i2 ∧ ¬i4 then
24: return covered-by . (1, 1, ?, ∅)
25: end if
26: for each p ∈ discretize(∂B) do
27: T ← pointCheck(p,A);
28: if T = in then . A0 ∩ ∂B 6= ∅
29: i3 ← true
30: break (goto line 35)
31: else if T = out then . no overlap here, so it must be A0 ∩ ∂B = ∅
32: break (goto line 35)
33: end if
34: end for
35: if ¬i1 ∧ ¬i3 then . no need to check ¬i2 ∧ i4
36: return disjoint . (∅, ∅, ∅, 1)
37: else if i1 ∧ ¬i3 then
38: return meets . (1, ∅, ∅, 1)
39: else if ¬i1 ∧ i3 then
40: return contains . (∅, ∅, 1, 1)
41: else if i1 ∧ i3 then
42: return covers . (1, ∅, 1, 1)
43: end if
44: end procedure
45:
46: procedure discretize(X) . parameter D is the linear point density
47: `← length of ∂X
48: return `D equally spaced points on ∂X
49: end procedure
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are redundant (e.g., when the algorithm reaches line 19, i2 and i4 cannot both
be true). However, for clarity and ease of verification, we write each condition
explicitly and in the same order as the corresponding relation appears in Table 1.

If none of the immediately identifiable relations hold, the algorithm proceeds
by checking whether the third intersection is empty or not. The algorithm iterates
through the points of the boundary ∂B, checking each point against A. As soon
as a point in ∂B is found to be an interior point of A, the algorithm breaks out
of the loop with i3 = true. The algorithm also breaks out of the loop if a point
in ∂B is found to be an exterior point of A, since we know that A and B do
not overlap. Finding one point of ∂B outside of A implies that no points will be
found inside, so the loop terminates with i3 = false.

After the loop, i1 and i3 can be used to identify one of the remaining possible
relations, namely disjoint, meets, contains, or covers (lines 35–43).

3.3 Boundary Discretization

The algorithm tests a finite number of points in a boundary to find a witness
for each intersection. These points are chosen uniformly along the boundary by
the procedure discretize based on a linear point density parameter D. More
specifically, discretize starts with the points that define the boundary (i.e.,
the end points of the line segments that compose the boundary) and then adds
equally spaced points on each segment to reach a total density of D points per
unit of length. Let A be a region defined by n line segments of total length `.
Assuming D ≥ n/`, discretize selects all the n end points of the line segments,
plus another `D−n equally spaced points along ∂A. Of course, the point density
parameter D has a crucial effect on performance and precision. Higher densities
mean higher precision but also potentially higher execution times. The setting
of this parameter is therefore application specific.

Notice that the algorithm is likely to iterate only over the first region bound-
ary ∂A, with a run-time complexity proportional to the length of ∂A. Therefore,
one way to save some time is to evaluate the topological relation between B
and A instead of A and B when the length of ∂B is smaller than the length
of ∂A. In this case, the algorithm must translate the result of the evaluation
between B and A back to the corresponding relation between A and B. This is
easily done, since disjoint, meets, overlaps, and equals are symmetric relations
that do not need translation, and A contains B is equivalent to B inside A, and
A covered-by B is equivalent to B covers A.

Finally, to increase numerical robustness in the algorithm, we introduce a
halo around each point with radius r = d/2, where d is the (shortest) distance
between the point and its adjacent points along the same line segment. This
provides a more robust and qualitatively better result by providing a smoother
transition from disjoint to overlaps via an extended meets region.
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3.4 Complexity

In the worst case, Algorithm 1 executes two full loops over the discretized bound-
aries of the input regions. Each loop starts with an invocation of the discretize
procedure, and each iteration of the loop invokes pointCheck. Let n be the total
number of line segments in the boundaries of the two input regions, and let ` be
the total length of those boundaries. Then, the complexity of the pointCheck
algorithm we use is O(n), and with a point density D, the complexity of dis-
cretize is O(`D). Therefore, since there are a total of `D iterations, the overall
complexity of Algorithm 1 is O(n`D).

4 Indexing and Simplification

The algorithm described in Section 3 simply evaluates one spatial constraint at
a time. If we were to incorporate that algorithm as is within a broker/router, the
broker/router would have to process each incoming message using a linear scan
of all spatial constraints in its forwarding table. In this section we present an
indexing structure and simplification method that are designed to avoid linear
scans and reduce the sheer number of spatial constraints that must be checked.

4.1 Spatial Index

The indexing structure presented here is an extension of the well-known Guttman
R-tree index [20]. Many optimized versions and variants of the original R-tree
have been proposed, including the R*-tree [2], TV-tree [25], X-tree [4], and
R+-tree [28]. They are mainly used in computer-aided design, GIS database,
and computer graphics applications, where fast spatial searching is a necessity.

R-trees have also been employed in publish/subscribe systems, but for a
completely different purpose: Rather than representing constraints on 2D spa-
tial objects, they have been used to represent constraints on values drawn from
primitive data types, such as integers. For example, Bianchi et al. [6] introduce
an R-tree index called the DR-tree to capture the covering relation among sub-
scriptions, such that when a match for a subscription s1 implies a match for a
subscription s2 they can avoid processing s2 if a match is found for s1. Such uses
of R-tree-like indexing structures view the constraints as forming axis-aligned,
rectangular “value spaces” and simply evaluate them for what we would call here
the covers or covered-by relations. Instead, we develop a variant of the R-tree to
represent constraints on true 2D objects of irregular shape, and evaluate them
for a broader set of relations meaningful in the realm of physical space.

Guttman’s R-tree represents complex spatial objects by covering them with
less complex ones. Specifically, the R-tree uses minimum bounding rectangles
(MBRs) to represent n-dimensional objects. R-trees are structurally similar to
other search trees, particularly B-trees. Each node t in an R-tree holds an MBR
Rt that contains or covers all spatial objects stored in t’s subtree. This property
guides the search over the R-tree: The search algorithm starts with a query MBR
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Rq and walks the tree by descending into every subtree t whose MBR Rt overlaps
with Rq. The search then returns all visited objects that are contained in Rq.

The spatial index we have developed is based on the original R-tree and uses
MBRs to represent sets of stored objects. However, unlike an R-tree that stores
spatial objects, this index must store constraints on spatial objects. We call such
a structure a constraint R-tree, or CR-tree. A CR-tree extends the algorithms
of the original R-tree to implement a fast search over a potentially large set of
spatial constraints. In particular, the search takes a query object q representing
a value in a message, and returns all the spatial constraints stored in the CR-tree
that are satisfied by q. A CR-tree stores constraints in its leaves, but is otherwise
structurally identical to an R-tree. Each node t in a CR-tree holds the MBR of
the union of the regions that define all the constraints stored in t’s subtree. In
addition, node t holds a list of all the disjoint constraints stored in t’s subtree.
CR-tree insertion and deletion use the corresponding R-tree algorithms, plus a
simple linked-list maintenance operation to update the list of disjoint constraints.

The CR-tree search algorithm is also based on the R-tree algorithm. It starts
by computing the MBR Rq of the query object q and then walks through the
CR-tree to find potential matching constraints. To decide whether to visit a node
t in the CR-tree, the search algorithm evaluates the topological relation between
the query MBR Rq and the node MBR Rt. If t is an internal node, the search
proceeds as in an R-tree by visiting t whenever Rq intersects Rt. If Rq does not
intersect Rt, then the search algorithm does not visit t, but instead treats all
the disjoint constraints associated with t as having been immediately matched.

If t is a leaf node, then the search algorithm visits t and evaluates the con-
straint stored in t if any one of a set St of specific relations holds between Rq and
Rt. The specific set St associated with node t depends on the spatial constraint
stored in t. For example, if t stores a covers constraint with comparison region
X (bounded by t’s MBR Rt), then a search with query MBR Rq must visit t and
consider that covers constraint if Rq covers Rt or if Rq equals Rt. Notice that
these relations are evaluated between rectangles (i.e., MBRs), and can therefore
be checked in constant time without resorting to Algorithm 1, which is used
only at the point where individual constraints must be evaluated. Table 2 shows
the complete mapping between spatial constraints stored in leaf nodes of the
CR-tree and the corresponding set of MBR relations [11].

Thus, we can view the CR-tree as a means to reduce the set of constraints
that must be thoroughly checked using Algorithm 1. Moreover, the CR-tree does
not simply exclude constraints because they do not match, but also allows us
to immediately decide that some of those constraints do match, again without
resorting to Algorithm 1. In this sense, the CR-tree, unlike the R-tree from which
it is derived, is more than just a traditional search tree, but also a participant
in the evaluation process.

Another important element of an R-tree is the splitting algorithm, which is
used to split nodes when they become too large due to the insertion of many
objects. In our CR-tree we use the quadratic-cost splitting algorithm [20], which
provides a good balance between simplicity and performance.
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Constraints MBR relations
disjoint (D) D ∨M ∨O ∨ I ∨ cB ∨ Ct ∨ Cv

meets (M) M ∨O ∨ E ∨ I ∨ cB ∨ Ct ∨ Cv

overlaps (O) O ∨ E ∨ I ∨ cB ∨ Ct ∨ Cv

inside (I) I

contains (Ct) Ct

covered-by (cB) cB ∨ E

covers (Cv) Cv ∨ E

equal (E) E

Table 2. MBR relations for each type of constraint.

4.2 Simplification

Simplification is the process of removing redundant constraints from a forwarding
table. For example, a filter on integer values x 6= 0 ∧ x > 10 can be rewritten
simply as x > 10 because x > 10 ⇒ x 6= 0 for all x or, in other words, because
x 6= 0 “covers” x > 10. We develop a similar form of simplification scheme for
2D spatial constraints. As is commonly done in the publish/subscribe literature,
we first define “covers” and “conflicts” relations between spatial constraints. Let
C1 and C2 be two spatial constraints defined by spatial relation rel1 and region
R1, and relation rel2 and region R2, respectively. We then say that C1 covers C2

iff X rel2 R2 ⇒ X rel1 R1 for all regions X. Similarly, we say that C1 conflicts
with C2 iff ¬(X rel1 R1 ∧X rel2 R2) for all regions X.

As is the case for basic data types, the covers and conflicts relations between
two spatial constraints C1 and C2 can be evaluated efficiently on the basis of
the topological relation between R1 and R2, and can therefore be used to sim-
plify predicates. Let P be a predicate consisting of a disjunction of n filters
f1, f2, . . . , fn, where each filter fi consists of a conjunction of mi constraints
Ci,1, Ci,2, . . . , Ci,mi

. Pairwise redundant constraints in a filter, entire filters, and
pairwise redundant filters can now be identified and eliminated through the fol-
lowing simplification rules.

Rule 1. A filter fi can be removed from predicate P if, for any pair of con-
straints Ci,j and Ci,k in fi, Ci,j conflicts with Ci,k. This is because, from
the definition of the conflict relation, fi is always false.

Rule 2. If Ci,j and Ci,k are two constraints in the same filter fi, then Ci,j can
be removed if Ci,j covers Ci,k. This is because, from the definition of the
cover relation, any region that satisfies Ci,k also satisfies Ci,j .

Rule 3. Let fh and fi be two filters in predicate P . We can eliminate filter fi
from P if for all constraints Ch,k in fh there exists a constraint Ci,j in fj
such that Ch,k covers Ci,j . This is because, from the definition of the covers
relation, fi is satisfied by a subset of the messages that satisfy fh. This rule
can also be seen as the definition of a covering relation between filters.
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We implement a simplification algorithm based on these rules. The implemen-
tation realizes the covers and conflicts relations for all combinations of spa-
tial relations in the intuitive way. For example, (x covered-by A) conflicts with
(x disjoint B) if (A overlaps B). We discuss the effectiveness of spatial simplifi-
cations as part of the experimental evaluation presented Section 5.

5 Evaluation

We now present an experimental evaluation of the matching performance and
general scalability of the spatial model and its implementation. In particular, we
ask whether the absolute performance is acceptable and, more importantly, how
the matching time scales with the number of spatial constraints. For this purpose
we use both synthetic workloads and workloads derived from real GIS data. The
synthetic workloads are useful in highlighting the scalability of the matching
algorithm, especially in worst-case configurations, while the GIS workloads show
how the matching algorithm performs in realistic situations.

We also compare the approximate matching of our algorithm against the ex-
act matching of a polygon-intersection algorithm. Polygon intersection is a binary
decision problem that is unable to distinguish among the specific relations of the
region-connection calculus. In particular, a false result from polygon intersection
indicates either meets or disjoint, while a true result indicates either overlaps,
equals, inside, contains, covers, or covered-by. Despite this shortcoming, it is
important to consider polygon intersection, since it is a well-studied problem
in classical computational geometry having known efficient algorithms [3] and
well-engineered implementations.3 We use it as a performance benchmark.

Synthetic Regions. We generate synthetic regions, serving as spatial con-
straints or message attributes, within a rectangular universe U of size UX by
UY . We initially choose two points within U , uniformly at random, that repre-
sent the minimum bounding rectangle R for the region we generate. We then
select three or four points each on a separate segment on the perimeter of R.
We complete the generation of the region by adding points chosen uniformly
at random in R, up to a total of 20 points, and then order the points to form
the boundary of the region in such a way that the boundary has no intersecting
segments (as per Definition 1 in Section 2.1). Finally, we exclude regions with
an area smaller than 10% of the size of the universe U so as to obtain regions of
similar size and, therefore, a more diverse combination of topological relations.

Implementation. The experiments use an implementation of the spatial model
integrated within the Siena Fast Forwarding (SFF) matching framework4 and
executed with a sequential, single-threaded matching process on an Intel i5 pro-
cessor with 6GB of DDR3 memory. A crucial parameter in the implementation is
the linear point density D. The first set of experiments use a fixed point density
of 2000 points per universe half-length, that is D = 2000/(UX + UY ). Because

3 http://www.cgal.org (CGAL: Computational Geometry Algorithms Library)
4 http://www.inf.usi.ch/carzaniga/cbn/forwarding/
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Fig. 4. Performance of the matching algorithm: (a) with and without the CR-tree
constraint index enabled and (b) with and without spatial simplification enabled.

we use a square universe (UX = UY ), the chosen point density intuitively can be
seen as a 1000× 1000 pixel image. We experimented with other point densities
and found that the performance varies more or less linearly with the point den-
sity. In the second set of experiments, we study the trade off between accuracy
and performance of the matching algorithm under various point densities.

5.1 Worst-Case Performance and Scalability

In our first experiment we measure the time needed to match an input region
against synthetic workloads of increasingly larger sets of constraints. This exper-
iment is intended to evaluate the performance of Algorithm 1 and the impact of
the CR-tree index. To do so, we generate workloads consisting of N predicates
(N up to 10000), each composed of a single filter with a single constraint. All
constraints are on the same attribute and all messages contain the same single
attribute associated with a 2D region, so each message carries an input region
that must in principle be evaluated against all N constraints.

Figure 4a shows the performance of Algorithm 1 in isolation and together
with the CR-tree, and in comparison with an exact polygon-intersection algo-
rithm. Each data point represents the average matching time of several input
regions over several sets of the same number of constraints. The variability of the
matching time is minimal (1–2ms), so we do not show this in the plots. The solid
line represents a sequential execution of CGAL’s polygon-intersection algorithm
over a list of all the constraints. The dashed line represents the same sequential
execution of Algorithm 1, while the dotted line represents the use of the CR-tree
index to reduce the number of examined constraints.

With the point density used in this experiment, Algorithm 1 incurs an er-
ror rate of only 0.089% and runs about six times faster than the exact CGAL
polygon-intersection algorithm. Thus, the experiment shows that the approx-
imate algorithm offers a good combination of performance and accuracy. We
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repeated this experiment with different point densities and found that the ap-
proximate algorithm is still faster than the exact algorithm with a point density
of 12000 points per universe half-length and a corresponding error rate of only
about 0.015%.

The experiment demonstrates that the absolute matching times are within
reasonable bounds. Notice that it represents an extreme worst-case scenario,
requiring the evaluation of thousands of constraints on the same attribute and
without the possibility of taking shortcuts. The results also show that the CR-tree
is effective in reducing the matching time of a linear scan. This, too, is a worst-
case scenario for the CR-tree, since we use regions that are large with respect to
the universe and, therefore, they do not lend themselves to an effective partition
under disjoint MBRs. In the experiment of Section 5.2 we see that when applied
to realistic GIS workloads the performance is substantially better.

In a second experiment, shown in Figure 4b, we evaluate the performance
of the constraint index (Algorithm 1 within a CR-tree) in a scenario of more
articulated predicates. In particular, we construct workloads in which a total of
N constraints (N up to 10000) are distributed over 5, 15, and 25 predicates, each
consisting of filters of two constraints. Even though this experiment explores a
more realistic set of predicates, we still focus only on the performance of the
2D spatial components of the matching algorithm. Therefore, as in the first
experiment, we use a single attribute in all constraints and in all messages.

Each line in Figure 4b shows the matching time as a function of the total
number of constraints. We can see that the behavior of the SFF matcher ex-
tended with support for 2D spatial objects is consistent with that of the original
SFF matcher [8], and that the absolute matching times are also reasonable. In
particular, the matching times tend to be flat for larger and larger predicates.
This effect is not due to the 2D spatial constraint index, but rather to the struc-
ture of the SFF algorithm and also to the nature of the matching problem: with
fewer and larger predicates, a message is likely to match at least one filter for
all predicates, thereby cutting short the full evaluation.

The results in Figure 4b also show the effectiveness of the spatial simplifier.
The solid lines show the performance for non-simplified workloads, while the cor-
responding dashed lines show the performance under simplification. Notice that
the simplification method effectively accelerates the flattening of the matching
times. This is because as more filters (and constraints) are added to the same
predicate, more of those filters (and constraints) are likely to become redundant.

5.2 Accuracy and Performance in Realistic Configurations

To evaluate our algorithm in realistic configurations, we derive workloads from
three GIS data sets. The first contains 85550 polygons representing vegetation
in southern California, the second 17048 polygons representing natural features
(parks, forests, woods, water areas, etc.) in the Rhône-Alpes district of France,
and the third 4170 polygons representing buildings in central London.5

5 We obtained the first data set from http://atlas.ca.gov, and the second two from
http://www.openstreetmap.org.
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Fig. 5. Incremental precision gain as a function of the point density.

Using the process described at the beginning of this section we generate three
different types of input regions for placement into messages, referred to here as
A, B, and C. Type A represents regions that are relatively round and uniform
shapes, such as clouds and storms, having nearly square MBRs and at most
10 boundary points. Type B represents regions of irregular and more complex
shapes, such as the movement of herds and environmental hazards such as forest
fires. These regions exhibit correspondingly less-regular MBRs and between 30
and 50 boundary points. Finally, type C represents narrow and long regions,
described using up to five boundary points, such as the paths taken by aircraft
at high altitudes. The sizes of all three types of regions are chosen randomly to
have an MBR area between 1% and 25% of the universe.

We first study how the point density affects the accuracy of the matching
algorithm. We run the matching algorithm using 100 of each of the three types
of input regions over each of the three GIS-derived sets of spatial constraints. We
vary the point density from 0 to 40000 points per universe half-length. Note that
these are boundary points considered by the matching algorithm in addition to
the points that define the boundary (so, a point density of 0 makes sense). For
each point density D we compare the results of the matching process for density
D with those using density D + 10000, and record the difference between the
two sets of matched predicates.

We plot the results of this analysis in Figure 5. At a high level we can see that
all the curves show very low differences and converge toward an exact match. To
appreciate the meaning of each value, consider an incremental precision gain of
0.02% at density D = 10000. That 0.02% can be interpreted as the probability
of the matching results differing by one predicate (matching in one case and not
matching in the other) at densities D = 10000 and D + 10000 = 20000.

We next evaluate the performance of the matching algorithm. For this ex-
periment we set the point density to D = 10000 (intuitively corresponding to a
5000 × 5000 universe). The experiments are set up according to two scenarios
corresponding to the two sets of experiments presented in Section 5.1. For the
first scenario, we construct a filter with one constraint from each polygon in the
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Scenario 1 Scenario 2
1 filter per predicate 25 predicates
1 constraint per filter 2 constraints per filter

source number of region CR-tree simplifier
data set constraints type disabled enabled disabled enabled

Vegetation in
southern California

85550
A 1841.00 ms 73.00 ms 67.00 ms 0.18 ms
B 4000.00 ms 89.00 ms 78.00 ms 0.54 ms
C 1512.00 ms 7.00 ms 4.40 ms 0.12 ms

Natural features
in Rhône-Alpes

17048
A 951.00 ms 108.00 ms 59.00 ms 1.40 ms
B 1323.00 ms 93.00 ms 169.00 ms 6.40 ms
C 851.00 ms 7.00 ms 72.00 ms 0.53 ms

Buildings in
central London

4170
A 59.00 ms 1.40 ms 0.95 ms 0.75 ms
B 169.00 ms 6.40 ms 5.00 ms 1.24 ms
C 72.00 ms 0.53 ms 0.32 ms 0.05 ms

Table 3. Average matching times for GIS-derived workloads.

GIS data set, choosing 2D operators uniformly at random, and then we assign
one filter per predicate. With one filter per predicate, this scenario is intended
to stress-test the matching algorithm with and without the CR-tree enabled. In
the more realistic second scenario, we construct 25 predicates by building filters
consisting of two constraints generated from the regions in the GIS data set, and
then simply combine the generated filters into the 25 predicates.

The results are reported in Table 3. The table shows the average matching
times of several input regions, for each input region type, and over the three data
sets. (Variance in matching times is minimal so not shown.) Notice that the re-
sults in both scenarios are consistent with the general qualitative characteristics
of the matching algorithm outlined in the synthetic workload experiments of
Section 5.1. However, in this more realistic case, the absolute performance of the
algorithm is substantially better, with total matching times of fractions of mil-
liseconds. This is because regions within the GIS data sets represent real objects
and, therefore, tend to overlap considerably less as well as tend more often to
be mutually disjoint than those of the worst-case synthetic workloads.

6 Conclusions

We have presented an enhancement to existing content-based publish/subscribe
systems with support for a 2D spatial data type and eight associated relational
operators. We described an algorithm for evaluating the spatial relations that
is founded on a dynamic discretization method. In order to make the use of
this new data type practical we developed an indexing structure for spatial
constraints, called the CR-tree, as well as a simplification method for eliminating
redundant spatial constraints. Our experimental evaluation demonstrates the
effectiveness and scalability of our approach when integrated into a state-of-the-
art publish/subscribe matching engine.
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In future work we plan to further refine the CR-tree by exploring improved
methods for splitting nodes as the number of constraints grows. The method
we currently use is a generic one developed for the original R-tree spatial-object
index. We suspect that there might be more effective methods, possibly heuristic
in nature, tailored to an index of spatial constraints.
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