D. Abrams, M. Earley, S. Sporton, P. Kistler, M. Gatzoulis et al., Comparison of Noncontact and Electroanatomic Mapping to Identify Scar and Arrhythmia Late After the Fontan Procedure, Circulation, vol.115, issue.13, pp.1738-1746, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.633982

K. Aras, W. Good, J. Tate, B. Burton, D. Brooks et al., Experimental Data and Geometric Analysis Repository???EDGAR, Journal of Electrocardiology, vol.48, issue.6, 2015.
DOI : 10.1016/j.jelectrocard.2015.08.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624576

T. Berger, G. Fischer, B. Pfeifer, R. Modre, F. Hanser et al., Single-Beat Noninvasive Imaging of Cardiac Electrophysiology of Ventricular Pre-Excitation, Journal of the American College of Cardiology, vol.48, issue.10, pp.2045-2052, 2006.
DOI : 10.1016/j.jacc.2006.08.019

J. Burnes, B. Taccardi, and R. Y. , A Noninvasive Imaging Modality for Cardiac Arrhythmias, Circulation, vol.102, issue.17, pp.2152-2158, 2000.
DOI : 10.1161/01.CIR.102.17.2152

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034298/pdf

J. Burnes, B. Taccardi, P. Ershler, and R. Y. , Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts, Journal of the American College of Cardiology, vol.38, issue.7, pp.2071-2078, 2001.
DOI : 10.1016/S0735-1097(01)01653-9

B. Burton, J. Tate, B. Erem, D. Swenson, D. Wang et al., A toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.267-270, 2011.
DOI : 10.1109/IEMBS.2011.6090052

Z. Chen, J. Relan, W. Schulze, R. Karim, M. Sohal et al., Simultaneous non-contact mapping fused with CMR derived grey zone to explore the relationship with ventricular tachycardia substrate in ischaemic cardiomyopathy, Journal of Cardiovascular Magnetic Resonance, vol.15, issue.Suppl 1, p.64, 2013.
DOI : 10.1186/1532-429X-15-S1-P64

Z. Chen, R. Cabrera-lozoya, J. Rerlan, M. Sohal, A. Shetty et al., Biophysical Modeling Predicts Ventricular Tachycardia Inducibility and Circuit Morphology: A Combined Clinical Validation and Computer Modeling Approach, Journal of Cardiovascular Electrophysiology, vol.107, issue.7, pp.851-860, 2016.
DOI : 10.1016/j.pbiomolbio.2011.07.002

P. Chinchapatnam, K. Rhode, M. Ginks, C. Rinaldi, P. Lambiase et al., Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.1631-1642, 2008.
DOI : 10.1109/TMI.2008.2004644

URL : https://hal.archives-ouvertes.fr/inria-00616071

J. Coll-font, B. Burton, J. Tate, B. Erem, D. Swenson et al., New additions to the toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment, Comput Cardiol, vol.41, pp.213-216, 2014.

J. Coll-font, D. Potyagayo, W. Schulze, O. Doessel, and D. Brooks, Comparison of temporal dimensionality reduction methods for constrained inverse in cardiac electrical imaging, 2015 Computing in Cardiology Conference (CinC), pp.237-240, 2015.
DOI : 10.1109/CIC.2015.7408630

O. Ecabert, J. Peters, H. Schramm, C. Lorenz, V. Berg et al., Automatic Model-Based Segmentation of the Heart in CT Images, IEEE Transactions on Medical Imaging, vol.27, issue.9, pp.1189-1201, 2008.
DOI : 10.1109/TMI.2008.918330

B. Erem, J. Coll-font, M. Orellana, R. Stovicek, P. Brooks et al., Using Transmural Regularization and Dynamic Modeling for Noninvasive Cardiac Potential Imaging of Endocardial Pacing With Imprecise Thoracic Geometry, IEEE Transactions on Medical Imaging, vol.33, issue.3, pp.726-738, 2014.
DOI : 10.1109/TMI.2013.2295220

P. Friedman, Novel mapping techniques for cardiac electrophysiology, Heart, vol.87, issue.6, pp.575-582, 2002.
DOI : 10.1136/heart.87.6.575

URL : http://heart.bmj.com/content/heartjnl/87/6/575.full.pdf

S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol.41, issue.11, pp.2251-2269, 1996.
DOI : 10.1088/0031-9155/41/11/002

D. Geselowitz and T. Miller, A bidomain model for anisotropic cardiac muscle, Annals of Biomedical Engineering, vol.210, issue.3-4, pp.191-206, 1983.
DOI : 10.1113/jphysiol.1970.sp009256

R. Ghanem, P. Jia, C. Ramanathan, K. Ryu, A. Markowitz et al., Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping in patients, Heart Rhythm, vol.2, issue.4, pp.339-354, 2005.
DOI : 10.1016/j.hrthm.2004.12.022

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949041

C. Gornick, S. Adler, B. Pederson, J. Hauck, J. Budd et al., Validation of a New Noncontact Catheter System for Electroanatomic Mapping of Left Ventricular Endocardium, Circulation, vol.99, issue.6, pp.829-835, 1999.
DOI : 10.1161/01.CIR.99.6.829

F. Greensite and G. Huiskamp, An improved method for estimating epicardial potentials from the body surface, IEEE Transactions on Biomedical Engineering, vol.45, issue.1, pp.98-104, 1998.
DOI : 10.1109/10.650360

C. Han, S. Pogwizd, C. Killingsworth, and B. He, Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia, Heart Rhythm, vol.8, issue.8, pp.1266-1272, 2011.
DOI : 10.1016/j.hrthm.2011.03.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151469

C. Han, S. Pogwizd, C. Killingsworth, and B. He, Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart, AJP: Heart and Circulatory Physiology, vol.302, issue.1, pp.244-252, 2012.
DOI : 10.1152/ajpheart.00618.2011

P. Hansen, O. Leary, and P. , The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6, pp.1487-1503, 1993.
DOI : 10.1137/0914086

B. He, G. Li, and X. Zhang, Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model, IEEE Trans Biomed Eng, vol.50, pp.1190-1202, 2003.

R. Hoekema, G. Uijen, and A. Van-oosterom, The number of independent signals in body surface maps, Methods Inf Med, vol.38, pp.119-124, 1999.

G. Huiskamp and F. Greensite, A new method for myocardial activation imaging, IEEE Transactions on Biomedical Engineering, vol.44, issue.6, pp.433-446, 1997.
DOI : 10.1109/10.581930

A. Intini, R. Goldstein, P. Jia, C. Ramanathan, K. Ryu et al., Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete, Heart Rhythm, vol.2, issue.11, pp.1250-1252, 2005.
DOI : 10.1016/j.hrthm.2005.08.019

A. Kadish, J. Hauck, B. Pederson, G. Beatty, and C. Gornick, Mapping of Atrial Activation With a Noncontact, Multielectrode Catheter in Dogs, Circulation, vol.99, issue.14, pp.1906-1913, 1999.
DOI : 10.1161/01.CIR.99.14.1906

R. Karim, R. Housden, M. Balasubramaniam, Z. Chen, D. Perry et al., Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge, Journal of Cardiovascular Magnetic Resonance, vol.15, issue.1, p.105, 2013.
DOI : 10.1016/j.jcmg.2010.11.015

D. Keller, F. Weber, G. Seemann, and O. Dössel, Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs, IEEE Transactions on Biomedical Engineering, vol.57, issue.7, pp.1568-1576, 2010.
DOI : 10.1109/TBME.2010.2046485

M. Krueger, Personalized multi-scale modeling of the atria: heterogeneities, fiber architecture, hemodialysis and ablation therapy, 2012.

M. Krueger, G. Seemann, K. Rhode, D. Keller, C. Schilling et al., Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.73-84, 2013.
DOI : 10.1109/TMI.2012.2201948

D. Lai, J. Sun, Y. Li, and B. He, Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients, Physics in Medicine and Biology, vol.58, issue.11, pp.3897-3909, 2013.
DOI : 10.1088/0031-9155/58/11/3897

C. Liu, M. Eggen, C. Swingen, P. Iaizzo, and B. He, Noninvasive mapping of transmural potentials during activation in swine hearts from body surface electrocardiograms, IEEE Trans Med Imaging, vol.31, pp.1777-1785, 2012.

A. Loewe, W. Schulze, Y. Jiang, M. Wilhelms, A. Luik et al., ECG-Based Detection of Early Myocardial Ischemia in a Computational Model: Impact of Additional Electrodes, Optimal Placement, and a New Feature for ST Deviation, BioMed Research International, vol.37, issue.1, pp.1-11, 2014.
DOI : 10.1016/j.jelectrocard.2004.08.032

P. Macfarlane, A. Van-oosterom, O. Pahlm, P. Kligfield, M. Janse et al., Comprehensive electrocardiology Application of an electrocardiographic inverse solution to localize ischemia during coronary angioplasty, J Cardiovasc Electrophysiol, vol.37, issue.6, pp.2-18, 1995.

K. Mcdowell, S. Zahid, F. Vadakkumpadan, J. Blauer, R. Macleod et al., Virtual Electrophysiological Study of Atrial Fibrillation in Fibrotic Remodeling, PLOS ONE, vol.16, issue.Suppl: 36, p.117110, 2015.
DOI : 10.1371/journal.pone.0117110.t001

B. Messnarz, B. Tilg, R. Modre, G. Fischer, and F. Hanser, A New Spatiotemporal Regularization Approach for Reconstruction of Cardiac Transmembrane Potential Patterns, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.273-281, 2004.
DOI : 10.1109/TBME.2003.820394

H. Müller, P. Godde, K. Czerski, R. Agrawal, G. Feilcke et al., Localization of a ventricular tachycardiafocus with multichannel magnetocardiography and three-dimensional current density reconstruction, J Med Eng Technol, vol.23, pp.108-115, 1999.

M. Nash and A. Pullan, Challenges Facing Validation of Noninvasive Electrical Imaging of the Heart, Annals of Noninvasive Electrocardiology, vol.40, issue.1, pp.73-82, 2005.
DOI : 10.1016/S1361-8415(03)00013-6

B. Nielsen, M. Lysaker, and P. Grottum, Computing Ischemic Regions in the Heart With the Bidomain Model—First Steps Towards Validation, IEEE Transactions on Medical Imaging, vol.32, issue.6, pp.1085-1096, 2013.
DOI : 10.1109/TMI.2013.2254123

B. Pfeifer, F. Hanser, M. Seger, G. Fischer, R. Modre-osprian et al., Patient-Specific Volume Conductor Modeling for Non-Invasive Imaging of Cardiac Electrophysiology, The Open Medical Informatics Journal, vol.2, issue.1, pp.32-41, 2008.
DOI : 10.2174/1874431100802010032

M. Pop, M. Sermesant, D. Lepiller, M. Truong, E. Mcveigh et al., Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study, Medical Image Analysis, vol.13, issue.2, pp.370-380, 2009.
DOI : 10.1016/j.media.2008.07.002

URL : https://hal.archives-ouvertes.fr/inria-00616087

D. Potyagaylo, M. Segel, W. Schulze, and O. Dössel, Noninvasive Localization of Ectopic Foci: A New Optimization Approach for Simultaneous Reconstruction of Transmembrane Voltages and Epicardial Potentials, FIMH Lect Notes Comput Sci, vol.7945, pp.166-173, 2013.
DOI : 10.1007/978-3-642-38899-6_20

D. Potyagaylo, E. Cortes, W. Schulze, and O. Dössel, Binary optimization for source localization in the inverse problem of ECG, Medical & Biological Engineering & Computing, vol.11, issue.9, pp.717-728, 2014.
DOI : 10.1007/11907350_13

D. Potyagaylo, O. Doessel, and P. Dam, Influence of Modeling Errors on the Initial Estimate for Nonlinear Myocardial Activation Times Imaging Calculated With Fastest Route Algorithm, IEEE Transactions on Biomedical Engineering, vol.63, issue.12, pp.1-1, 2016.
DOI : 10.1109/TBME.2016.2561973

D. Potyagaylo, W. Schulze, and O. Dössel, A new method for choosing the regularization parameter in the transmembrane potential based inverse problem of ECG, Comput Cardiol, vol.39, pp.29-32, 2012.

A. Rahimi, J. Xu, and L. Wang, Lp-norm regularization in volumetric imaging of cardiac current sources, 2013.

C. Ramanathan, R. Ghanem, P. Jia, K. Ryu, and R. Y. , Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia, Nature Medicine, vol.10, issue.4, pp.422-428, 2004.
DOI : 10.1038/nm1011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950745

J. Relan, P. Chinchapatnam, M. Sermesant, K. Rhode, M. Ginks et al., Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia, Interface Focus, vol.48, issue.12, pp.396-407, 2011.
DOI : 10.1016/j.jacc.2006.07.062

URL : https://hal.archives-ouvertes.fr/inria-00616188

K. Rhode, D. Hill, P. Edwards, J. Hipwell, D. Rueckert et al., Registration and tracking to integrate X-ray and MR images in an XMR facility, IEEE Transactions on Medical Imaging, vol.22, issue.11, pp.1369-1378, 2003.
DOI : 10.1109/TMI.2003.819275

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Rhode, Y. Ma, J. Housden, R. Karim, C. Rinaldi et al., Clinical applications of image fusion for electrophysiology procedures, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.1435-1438, 2012.
DOI : 10.1109/ISBI.2012.6235840

J. Sapp, F. Dawoud, J. Clements, and B. Horácek, Inverse Solution Mapping of Epicardial Potentials: Quantitative Comparison With Epicardial Contact Mapping, Circulation: Arrhythmia and Electrophysiology, vol.5, issue.5, pp.1001-1009, 2012.
DOI : 10.1161/CIRCEP.111.970160

R. Schilling, N. Peters, and D. Davies, Simultaneous Endocardial Mapping in the Human Left Ventricle Using a Noncontact Catheter : Comparison of Contact and Reconstructed Electrograms During Sinus Rhythm, Circulation, vol.98, issue.9, pp.887-898, 1998.
DOI : 10.1161/01.CIR.98.9.887

W. Schulze, E. Henar, F. Potyagaylo, D. Loewe, A. Stenroos et al., Kalman Filter with Augmented Measurement Model: An ECG Imaging Simulation Study, FIMH Lect Notes Comput Sci, vol.7945, pp.200-207, 2013.
DOI : 10.1007/978-3-642-38899-6_24

W. Schulze, ECG imaging of ventricular activity in clinical applications Karlsruhe 58. SCI Institute: (2015) http://www.scirun.org, SCIRun: a scientific computing problem solving environment, Scientific Computing and Imaging Institute (SCI), 2015.

M. Sermesant, R. Chabiniok, P. Chinchapatnam, T. Mansi, F. Billet et al., Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Medical Image Analysis, vol.16, issue.1, pp.201-215
DOI : 10.1016/j.media.2011.07.003

A. Thiagalingam, E. Wallace, A. Boyd, V. Eipper, C. Campbell et al., Noncontact Mapping of the Left Ventricle:. Insights from Validation with Transmural Contact Mapping, Pacing and Clinical Electrophysiology, vol.14, issue.5, pp.570-578, 2004.
DOI : 10.1016/S0735-1097(02)01864-8

B. Tilg, G. Fischer, R. Modre, F. Hanser, B. Messnarz et al., Model-based imaging of cardiac electrical excitation in humans, IEEE Transactions on Medical Imaging, vol.21, issue.9, pp.1031-1039, 2002.
DOI : 10.1109/TMI.2002.804438

D. Wang, R. Kirby, R. Macleod, and C. Johnson, An optimization framework for inversely estimating myocardial transmembrane potentials and localizing ischemia, Proc Annu Int IEEE EMBS, vol.2011, pp.1680-1683, 2011.

Y. Wang, P. Cuculich, J. Zhang, K. Desouza, R. Vijayakumar et al., Noninvasive Electroanatomic Mapping of Human Ventricular Arrhythmias with Electrocardiographic Imaging, Science Translational Medicine, vol.5, issue.5, p.84, 2011.
DOI : 10.1016/j.hrthm.2008.02.009

L. Wang, F. Dawoud, S. Yeung, P. Shi, K. Wong et al., Transmural Imaging of Ventricular Action Potentials and Post-Infarction Scars in Swine Hearts, IEEE Transactions on Medical Imaging, vol.32, issue.4, pp.731-747, 2013.
DOI : 10.1109/TMI.2012.2236567

L. Wang, K. Wong, H. Zhang, H. Liu, and P. Shi, A Statistical Physiological-Model-Constrained Framework for Computational Imaging of Subject-Specific Volumetric Cardiac Electrophysiology Using Optical Imaging and MRI Data, Lecture Notes in Computer Science, vol.6364, pp.261-269, 2010.
DOI : 10.1007/978-3-642-15835-3_27

H. Wellens, P. Brugada, and W. Stevenson, Programmed electrical stimulation of the heart in patients with life- threatening ventricular arrhythmias: what is the significance of induced arrhythmias and what is the correct stimulation protocol?, Circulation, vol.72, issue.1, pp.1-7, 1985.
DOI : 10.1161/01.CIR.72.1.1

F. Wittkampf, E. Wever, R. Derksen, A. Wilde, H. Ramanna et al., LocaLisa : New Technique for Real-Time 3-Dimensional Localization of Regular Intracardiac Electrodes, Circulation, vol.99, issue.10, pp.1312-1317, 1999.
DOI : 10.1161/01.CIR.99.10.1312

J. Xu, A. Dehaghani, F. Gao, and L. Wang, Noninvasive Transmural Electrophysiological Imaging Based on Minimization of Total-Variation Functional, IEEE Transactions on Medical Imaging, vol.33, issue.9, pp.1860-1874, 2014.
DOI : 10.1109/TMI.2014.2324900

M. Yingliang, U. Mistry, A. Thorpe, R. Housden, Z. Chen et al., Automatic electrode and CT/MR image co-localisation for electrocardiographic imaging, FIMH Lect Notes Comput Sci, vol.7945, pp.268-275, 2013.

S. Yuan, P. Blomstrom, S. Pehrson, and S. Olsson, Localization of cardiac arrhythmias: conventional noninvasive methods, The International Journal of Cardiac Imaging, vol.55, issue.Suppl D, pp.193-205, 1991.
DOI : 10.1253/jcj.55.685

Z. Zhou, C. Han, T. Yang, and B. He, Noninvasive Imaging of 3-Dimensional Myocardial Infarction From the Inverse Solution of Equivalent Current Density in Pathological Hearts, IEEE Transactions on Biomedical Engineering, vol.62, issue.2, pp.468-476, 2015.
DOI : 10.1109/TBME.2014.2358618

A. Oostende and . Brugge, Belgium, and a Complex EP Fellow as well as Clinical Fellow in Advanced Interventional EP at Brugmann University Hospital