K. A. Debruin and W. Krassowska, Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential, Biophysical Journal, vol.77, issue.3, pp.1213-1224, 1999.
DOI : 10.1016/S0006-3495(99)76973-0

T. R. Gowrishankar, A. T. Esser, Z. Vasilkoski, K. C. Smith, and J. C. Weaver, Microdosimetry for conventional and supra-electroporation in cells with organelles, Biochemical and Biophysical Research Communications, vol.341, issue.4, pp.1266-1276, 2006.
DOI : 10.1016/j.bbrc.2006.01.094

A. T. Esser, K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue, Technology in Cancer Research & Treatment, vol.24, issue.4, pp.261-274, 2007.
DOI : 10.1634/stemcells.2006-0176

W. Krassowska and P. D. Filev, Modeling Electroporation in a Single Cell, Biophysical Journal, vol.92, issue.2, pp.404-417, 2007.
DOI : 10.1529/biophysj.106.094235

J. Li and H. Lin, Numerical simulation of molecular uptake via electroporation, Bioelectrochemistry, vol.82, issue.1, pp.10-21, 2011.
DOI : 10.1016/j.bioelechem.2011.04.006

O. Kavian, M. Legù-ebe, C. Poignard, and L. Weynans, ???Classical??? Electropermeabilization Modeling at the Cell Scale, Journal of Mathematical Biology, vol.1724, issue.4, pp.235-265, 2014.
DOI : 10.1016/j.bbagen.2005.05.006

M. Legù-ebe, A. Silve, L. Mir, and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments, Journal of Theoretical Biology, vol.360, pp.83-94, 2014.
DOI : 10.1016/j.jtbi.2014.06.027

D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir et al., Sequential Finite Element Model of Tissue Electropermeabilization, IEEE Transactions on Biomedical Engineering, vol.52, issue.5, pp.816-827, 2005.
DOI : 10.1109/TBME.2005.845212

URL : https://hal.archives-ouvertes.fr/hal-00319701

A. G. Pakhomov, D. Miklavcic, and M. S. Markov, Advanced electroporation techniques in biology and medicine, 2010.

R. E. Neal, J. L. Millar, H. Kavnoudias, P. Royce, F. Rosenfeldt et al., In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation, The Prostate, vol.198, issue.1
DOI : 10.2214/AJR.11.6940

R. E. Neal, P. A. Garcia, H. Kavnoudias, F. Rosenfeldt, C. A. Mclean et al., In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models, IEEE Transactions on Biomedical Engineering, vol.62, issue.2, pp.561-569, 2015.
DOI : 10.1109/TBME.2014.2360374

A. Ivorra, B. Al-sakere, B. Rubinsky, and L. M. Mir, electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome, Physics in Medicine and Biology, vol.54, issue.19, pp.5949-5963, 2009.
DOI : 10.1088/0031-9155/54/19/019

S. Corovi?, I. Lackovi?, P. Sustari?, T. Sustar, T. Rodi? et al., Modeling of electric field distribution in tissues during electroporation, BioMedical Engineering OnLine, vol.12, issue.1, p.16, 2013.
DOI : 10.1186/1475-925X-6-37

R. E. Neal, P. A. Garcia, H. Kavnoudias, F. Rosenfeldt, C. A. Mclean et al., In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models, IEEE Transactions on Biomedical Engineering, vol.62, issue.2, pp.561-569, 2015.
DOI : 10.1109/TBME.2014.2360374

M. Mar?an, B. Kos, and D. Miklav?i?, Effect of Blood Vessel Segmentation on the Outcome of Electroporation-Based Treatments of Liver Tumors, PLOS ONE, vol.5, issue.8, p.125591, 2015.
DOI : 10.1371/journal.pone.0125591.t003

J. Teissié, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge, Biochimica and Biophysica Acta, pp.270-280, 2005.

J. Langus, M. Kranjc, B. Kos, T. Su?tar, and D. Miklav?i?, Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue, Scientific Reports, vol.274, issue.1, 2016.
DOI : 10.1148/radiol.14140311

A. Abdulle and M. Huber, Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.6, p.2
DOI : 10.1051/m2an/2016003

URL : https://infoscience.epfl.ch/record/200081/files/fehmm_parabolic_monotone_abdulle_huber.pdf

F. Maglietti, S. Michinski, N. Olaiz, M. Castro, C. Suárez et al., The Role of Ph Fronts in Tissue Electroporation Based Treatments, PLoS ONE, vol.18, issue.11, p.80167, 2013.
DOI : 10.1371/journal.pone.0080167.t001

M. K. Stehling, E. Guenther, P. Mikus, N. Klein, L. Rubinsky et al., Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation, PLOS ONE, vol.6, issue.4
DOI : 10.1371/journal.pone.0148317.t001

P. C. Franzone and G. Savaré, Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level, pp.49-78, 2002.
DOI : 10.1007/978-3-0348-8221-7_4

M. Amar, D. Andreucci, R. Gianni, and P. Bisegna, EVOLUTION AND MEMORY EFFECTS IN THE HOMOGENIZATION LIMIT FOR ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES, Mathematical Models and Methods in Applied Sciences, vol.127, issue.09, pp.1261-1295, 2004.
DOI : 10.1080/00036819708840562

L. Cima and L. M. Mir, Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements, Applied Physics Letters, vol.64, issue.19, 2004.
DOI : 10.1114/1.101

L. A. Dissado, A fractal interpretation of the dielectric response of animal tissues, Physics in Medicine and Biology, vol.35, issue.11, pp.1487-1503, 1990.
DOI : 10.1088/0031-9155/35/11/005

D. Miklav?i?, N. Pavselj, and F. X. Hart, Electric Properties of Tissues, 2006.
DOI : 10.1115/1.1695577

V. Raicu, T. Saibara, H. Enzan, and A. Irimajiri, Dielectric properties of rat liver in vivo: analysis by modeling hepatocytes in the tissue architecture, Bioelectrochemistry and Bioenergetics, vol.47, issue.2, pp.333-342, 1998.
DOI : 10.1016/S0302-4598(98)00172-X

C. Gabriel, Handbook of Biological Effects of Electromagnetic Fields, 2007.

J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectrochemistry and Bioenergetics, vol.41, issue.2, pp.135-160, 1996.
DOI : 10.1016/S0302-4598(96)05062-3

T. R. Gowrishankar and J. C. Weaver, An approach to electrical modeling of single and multiple cells, Proceedings of the National Academy of Sciences USA, pp.3203-3208, 2003.
DOI : 10.1038/35065725

D. Cukjati, D. Batiuskaite, F. Andre, D. Miklav?i?, and L. M. Mir, Real time electroporation control for accurate and safe in vivo non-viral gene therapy, Bioelectrochemistry, vol.70, issue.2, pp.501-507, 2007.
DOI : 10.1016/j.bioelechem.2006.11.001

URL : https://hal.archives-ouvertes.fr/hal-00158987

L. M. Mir, C. Poignard, R. Scorretti, A. Silve, and D. Voyer, Dynamic modeling of electroporation for the computation of the electric field distribution inside biological tissues during the applicat,on of the pulse voltage, 1srt World Congress on Electroporation IFMBE Proceedings, pp.211-214, 2015.

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, 1995.
DOI : 10.1137/1.9781611970944

J. Pommier, Y. Renard, and G. , An open source generic C ++ it library for finite element methods

R. D. Stoy, K. R. Foster, and H. P. Schwan, Dielectric properties of mammalian tissues from 0.1 to 100 MHz; a summary of recent data, Physics in Medicine and Biology, vol.27, issue.4, pp.501-513, 1982.
DOI : 10.1088/0031-9155/27/4/002

K. A. Debruin and W. Krassowska, Electroporation and Shock-Induced Transmembrane Potential in a Cardiac Fiber During Defibrillation Strength Shocks, Annals of Biomedical Engineering, vol.26, issue.4, pp.584-596, 1998.
DOI : 10.1114/1.101

T. Kotnik, D. Miklav?i?, and T. Slivnik, Time course of transmembrane voltage induced by time-varying electric fields???a method for theoretical analysis and its application, Bioelectrochemistry and Bioenergetics, vol.45, issue.1, pp.3-16, 1998.
DOI : 10.1016/S0302-4598(97)00093-7

S. G. Martinsen and H. P. , Schwan, Encyclopedia of surface and colloid science, 2002.

V. Raicu, T. Saibara, and A. Irimajiri, Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies, Bioelectrochemistry and Bioenergetics, vol.47, issue.2, pp.325-332, 1998.
DOI : 10.1016/S0302-4598(98)00171-8