A reconciliation-driven approach of case-based prediction: state of the art, method overview and application in food science

Fatiha Saïs 1, 2 Rallou Thomopoulos 3, 4, 1
4 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This chapter proposes an approach to generate predictions for decision support issues. It relies on case-based and reconciliation methods, using an ontology. The objective of the chapter is to provide an overview of the state of the art, but also to describe the proposed method and to illustrate it on a concrete application. In this approach, a reconciliation stage identifies groups of rules expressing a common experimental tendency. A prediction stage generates new rules, using both experimental tendencies obtained in the previous stage and new experimental descriptions. The method has been tested within a case study concerning food quality management. It has been compared to a classic predictive approach, leading to promising results in terms of accuracy, completeness and error rate.
Type de document :
Chapitre d'ouvrage
Nova Science Publisher, Inc. New York. Case-Based Reasoning: Strategies, Developments and Applications, 2015
Liste complète des métadonnées

Littérature citée [60 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01605378
Contributeur : Fatiha Saïs <>
Soumis le : jeudi 18 février 2016 - 14:47:49
Dernière modification le : vendredi 19 octobre 2018 - 15:18:02
Document(s) archivé(s) le : jeudi 19 mai 2016 - 10:45:50

Fichier

chapter_Sais_Thomopoulos.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01605378, version 2

Citation

Fatiha Saïs, Rallou Thomopoulos. A reconciliation-driven approach of case-based prediction: state of the art, method overview and application in food science . Nova Science Publisher, Inc. New York. Case-Based Reasoning: Strategies, Developments and Applications, 2015. 〈hal-01605378v2〉

Partager

Métriques

Consultations de la notice

517

Téléchargements de fichiers

164