D. Abramson, J. Giddy, and L. Kotler, High performance parametric modeling with Nimrod/G: killer application for the global grid?, Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000, pp.520-528, 2000.
DOI : 10.1109/IPDPS.2000.846030

B. M. Adams, L. E. Bauman, W. J. Bohnhoï¿¿, K. R. Dalbey, M. S. Ebeida et al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantiï¿¿cation, and Sensitivity Analysis: Version 6.0 Theory Manual. Sandia National Laboratories, Tech. Rep, pp.2014-4253, 2014.

F. Archambeau, N. Méchitoua, and M. Sakiz, Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows, International Journal on Finite Volumes, vol.1, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

M. Baudin, K. Boumhaout, T. Delage, B. Iooss, and J. Martinez, Numerical stability of Sobol' indices estimation formula, Proceedings of the 8th International Conference on Sensitivity Analysis of Model Output, 2016.

M. Baudin, A. Dutfoy, B. Iooss, and A. Popelin, Open TURNS: An industrial software for uncertainty quantiï¿¿cation in simulation, 2017.

J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, vol.34, issue.4, pp.773-793, 2012.
DOI : 10.2307/1269548

URL : https://hal.archives-ouvertes.fr/hal-00689580

J. Bennett, R. Grout, P. Pébay, D. Roe, and D. Thompson, Numerically stable, single-pass, parallel statistics algorithms, 2009 IEEE International Conference on Cluster Computing and Workshops, pp.1-8, 2009.
DOI : 10.1109/CLUSTR.2009.5289161

C. Janine, H. Bennett, P. Abbasi, R. Bremer, A. Grout et al., Combining in-situ and in-transit processing to enable extremescale scientiï¿¿c analysis, High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pp.1-9, 2012.

C. Janine, V. Bennett, S. Krishnamoorthy, . Liu, W. Ray et al., Feature-based statistical analysis of combustion simulation data, pp.12-1822, 2011.

D. G. Cacuci, Sensitivity and uncertainty analysis -Theory, 2003.

F. Tony, G. H. Chan, . Golub, J. Randall, and . Leveque, Updating formulae and a pairwise algorithm for computing sample variances, COMPSTAT 1982 5th Symposium held at Toulouse, pp.30-41, 1982.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan et al., Pegasus, a workflow management system for science automation, Future Generation Computer Systems, vol.46, pp.17-35, 2015.
DOI : 10.1016/j.future.2014.10.008

M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, Damaris, CLUSTER -IEEE International Conference on Cluster Computing, 2012.
DOI : 10.1145/2110205.2110210

URL : https://hal.archives-ouvertes.fr/inria-00614597

M. Dreher and B. Raï¿¿n, A Flexible Framework for Asynchronous In Situ and In Transit Analytics for Scientiï¿¿c Simulations, 14th IEEE/ACM SC'17 Iooss, and Bruno Raï¿¿in International Symposium on Cluster, Cloud and Grid Computing (CCGrid'14, 2014.

T. Finch, Incremental calculation of weighted mean and variance, pp.11-16, 2009.

Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. G. Sunderland et al., Optimizing Code_Saturne computations on Petascale systems, 22nd International Conference on Parallel Computational Fluid Dynamics, pp.103-108, 2010.
DOI : 10.1016/j.compfluid.2011.01.028

F. Gamboa, A. Janon, T. Klein, and A. Lagnoux, Sensitivity analysis for multidimensional and functional outputs, Electronic Journal of Statistics, vol.8, issue.1, pp.575-603, 2014.
DOI : 10.1214/14-EJS895

URL : https://hal.archives-ouvertes.fr/hal-00881112

L. Gilquin, E. Arnaud, C. Prieur, and H. Monod, Recursive estimation procedure of Sobol' indices based on replicated designs, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01291769

D. Higdon, J. Gattiker, B. Williams, and M. Rightley, Computer Model Calibration Using High-Dimensional Output, Journal of the American Statistical Association, vol.103, issue.482, pp.571-583, 2008.
DOI : 10.1198/016214507000000888

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods In Uncertainty management in Simulation-Optimization of Complex Systems, pp.101-122, 2015.

B. Iooss, F. Van-dorpe, and N. Devictor, Response surfaces and sensitivity analyses for an environmental model of dose calculations, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.1241-1251, 2006.
DOI : 10.1016/j.ress.2005.11.021

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, vol.18, pp.342-364, 2014.
DOI : 10.1016/j.ress.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00665048

S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla et al., ISABELA-QA, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '11, p.31, 2011.
DOI : 10.1145/2063384.2063425

P. Lampitella, F. Inzoli, and E. Colombo, Note on a Formula for One-pass, Parallel Computations of Arbitrary-order, Weighted, Multivariate Central Moments, 2015.

H. Steven, B. Langer, J. Spears, J. E. Luc-peterson, R. Field et al., A HYDRA UQ Workï¿¿ow for NIF Ignition Experiments, Proceedings of the 2Nd Workshop on In Situ Infrastructures for Enabling Extremescale Analysis and Visualization (ISAV '16, pp.1-6, 2016.

L. , L. Gratiet, S. Marelli, and B. Sudret, Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Springer Handbook on Uncertainty Quantiï¿¿cation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428947

S. Marelli and B. Sudret, UQLab: a framework for uncertainty quantiï¿¿cation in MATLAB, Vulnerability, Uncertainty, and Risk: Quantiï¿¿cation, Mitigation, and Management, pp.2554-2563, 2014.

A. Marrel and M. D. Lozzo, Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators. Stochastic Environmental Research and Risk Assessment, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01253686

A. Marrel, B. Iooss, M. Jullien, B. Laurent, and E. Volkova, Global sensitivity analysis for models with spatially dependent outputs, Environmetrics, vol.34, issue.1, pp.383-397, 2011.
DOI : 10.2307/1269548

URL : https://hal.archives-ouvertes.fr/hal-00430171

A. Marrel, N. Perot, and C. Mottet, Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators, Stochastic Environmental Research and Risk Assessment, vol.34, issue.1, pp.959-974, 2015.
DOI : 10.2307/1269548

A. Marrel and N. Saint-geours, Sensitivity Analysis of Spatial and/or Temporal Phenomena, Springer Handbook on Uncertainty Quantiï¿¿cation, 2017.

P. Pébay, Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments, Sandia National Laboratories, vol.94, 2008.
DOI : 10.2172/1028931

P. Pebay, D. Thompson, and J. Bennett, Computing Contingency Statistics in Parallel: Design Trade-Offs and Limiting Cases, 2010 IEEE International Conference on Cluster Computing, pp.156-165, 2010.
DOI : 10.1109/CLUSTER.2010.43

P. Pébay, D. Thompson, J. Bennett, and A. Mascarenhas, Design and Performance of a Scalable, Parallel Statistics Toolkit, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp.1475-1484, 2011.
DOI : 10.1109/IPDPS.2011.293

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

C. Prieur and S. Tarantola, Variance-Based Sensitivity Analysis: Theory and Estimation Algorithms, Springer Handbook on Uncertainty Quantiï¿¿cation, 2017.

S. Pronk, G. R. Bowman, B. Hess, P. Larsson, I. S. Haque et al., Copernicus, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '11, 2011.
DOI : 10.1145/2063384.2063465

M. Romanus, F. Zhang, T. Jin, Q. Sun, H. Bui et al., Choong-Seock Chang, and Ivan Rodero. 2016. Persistent Data Staging Services for Data Intensive Insitu Scientiï¿¿c Workï¿¿ows, Proceedings of the ACM International Workshop on Data-Intensive Distributed Computing (DIDC '16, pp.37-44

I. M. Sobol, Sensitivity estimates for non linear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, pp.407-414, 1993.

T. Terraz, B. Raï¿¿n, A. Ribes, and Y. Fournier, In Situ Statistical Analysis for Parametric Studies, 2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), 2016.
DOI : 10.1109/ISAV.2016.012

URL : https://hal.archives-ouvertes.fr/hal-01383860

D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: the Condor experience. Concurrency -Practice and Experience, pp.2-4, 2005.

T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud et al., A Scalable Parallel Framework for Analyzing Terascale Molecular Dynamics Simulation Trajectories, Conference on Supercomputing. Article 56, 2008.

E. Volkova, B. Iooss, and F. Van-dorpe, Global sensitivity analysis for a numerical model of radionuclide migration from the RRC ???Kurchatov Institute??? radwaste disposal site, Stochastic Environmental Research and Risk Assessment, vol.16, issue.1, pp.17-31, 2008.
DOI : 10.1007/s00477-006-0093-y

B. Welford, Note on a Method for Calculating Corrected Sums of Squares and Products, Technometrics, vol.1, issue.1, pp.419-420, 1962.
DOI : 10.1080/00401706.1962.10490022

F. Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf et al., FlexIO: I/O Middleware for Location-Flexible Scientific Data Analytics, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, 2013.
DOI : 10.1109/IPDPS.2013.46