Generalized Sparse Variation Regularization for Large Fluorescence Image Deconvolution

Abstract : In this work, we generalize the sparse variation (SV) combining the total-variation (TV) and the L 1 regularization and introduce a novel family of convex and non-quadratic regularizers for fast deconvolution of large 2D fluorescence images. These regularizers are defined as mixed Lp-L 2 norms (p ≥ 1) which group image intensity and spatial differentials, computed at each pixel of the image. By coupling a regularization term of this family with a quadratic data fidelity term, we propose a fast and efficient deconvolution method by using the primal-dual (proximal) algorithms to minimize the corresponding energy functional. Experiment results on both 2D simulated and real fluorescence scanner images demonstrate the performance of our method in terms of restoration quality as well as computational time.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01609810
Contributeur : Charles Kervrann <>
Soumis le : mercredi 4 octobre 2017 - 09:35:29
Dernière modification le : mardi 17 avril 2018 - 09:05:27

Fichier

HAL-SVDeconv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01609810, version 1

Collections

Citation

Hoaï-Nam Nguyen, Vincent Paveau, Cyril Cauchois, Charles Kervrann. Generalized Sparse Variation Regularization for Large Fluorescence Image Deconvolution. 2017. 〈hal-01609810〉

Partager

Métriques

Consultations de la notice

112

Téléchargements de fichiers

93