M. Eickenberg, E. Dohmatob, B. Thirion, and G. Varoquaux, Grouping total variation and sparsity : Statistical learning with segmenting penalties, " in Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2015, 18th International Conference Proceedings, Part I, pp.685-693, 2015.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

S. Lefkimmiatis, J. P. Ward, and M. Unser, Hessian Schatten-Norm Regularization for Linear Inverse Problems, IEEE Transactions on Image Processing, vol.22, issue.5, pp.1873-1888, 2013.
DOI : 10.1109/TIP.2013.2237919

URL : http://arxiv.org/pdf/1209.3318

H. T. Van-der-voort and K. C. Strasters, Restoration of confocal images for quantitative image analysis, Journal of Microscopy, vol.253, issue.2, pp.165-181, 1995.
DOI : 10.1098/rspa.1959.0199

G. M. Van-kempen, H. T. Van-der-voort, J. G. Bauman, and K. C. Strasters, Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration, IEEE Engineering in Medicine and Biology Magazine, vol.15, issue.1, pp.76-83, 1996.
DOI : 10.1109/51.482846

G. M. Van-kempen, L. J. Van-vliet, P. J. Verveer, H. T. Van, and . Voort, A quantitative comparison of image restoration methods for confocal microscopy, Journal of Microscopy, vol.185, issue.3, pp.354-365, 1997.
DOI : 10.1046/j.1365-2818.1997.d01-629.x

W. A. Carrington, Image restoration in 3-D microscopy with limited data, Proc. SPIE, 1990.

W. A. Carrington, R. M. Lynch, E. D. Moore, G. Isenberg, K. E. Fogarty et al., Superresolution three-dimensional images of fluorescence in cells with minimal light exposure, Science, vol.268, issue.5216, pp.1483-1487, 1483.
DOI : 10.1126/science.7770772

W. H. Richardson, Bayesian-Based Iterative Method of Image Restoration*, Journal of the Optical Society of America, vol.62, issue.1, pp.55-59, 1972.
DOI : 10.1364/JOSA.62.000055

L. B. Lucy, An iterative technique for the rectification of observed distributions, The Astronomical Journal, vol.79, issue.6, pp.745-754, 1974.
DOI : 10.1086/111605

L. A. Shepp and Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography, IEEE Transactions on Medical Imaging, vol.1, issue.2, pp.113-122, 1982.
DOI : 10.1109/TMI.1982.4307558

J. Sibarita and D. Microscopy, Available : https, pp.201-243, 2005.

P. L. Combettes and J. C. Pesquet, Image Restoration Subject to a Total Variation Constraint, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1213-1222, 2004.
DOI : 10.1109/TIP.2004.832922

URL : https://hal.archives-ouvertes.fr/hal-00621804

N. Dey, L. Blanc-feraud, C. Zimmer, P. Roux, Z. Kam et al., Richardson???Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microscopy Research and Technique, vol.59, issue.4, pp.260-266, 2006.
DOI : 10.1111/j.1365-2818.1990.tb04774.x

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, Blind deconvolution of 3D data in wide field fluorescence microscopy, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012.
DOI : 10.1109/ISBI.2012.6235915

URL : https://hal.archives-ouvertes.fr/hal-00691249

T. Chan, A. Marquina, and P. Mulet, High-Order Total Variation-Based Image Restoration, SIAM Journal on Scientific Computing, vol.22, issue.2, pp.503-516, 2000.
DOI : 10.1137/S1064827598344169

S. Lefkimmiatis, A. Bourquard, and M. Unser, Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications, IEEE Transactions on Image Processing, vol.21, issue.3, pp.983-995, 2012.
DOI : 10.1109/TIP.2011.2168232

S. Lefkimmiatis and M. Unser, Poisson Image Reconstruction With Hessian Schatten-Norm Regularization, IEEE Transactions on Image Processing, vol.22, issue.11, pp.4314-4327, 2013.
DOI : 10.1109/TIP.2013.2271852

URL : http://bigwww.epfl.ch/publications/lefkimmiatis1303.pdf

M. Arigovindan, J. C. Fung, D. Elnatan, V. Mennella, Y. M. Chan et al., High-resolution restoration of 3D structures from widefield images with extreme low signal-to-noise-ratio, Proceedings of the National Academy of Sciences, vol.9, issue.21, pp.17-344, 2013.
DOI : 10.1101/gad.9.21.2684

S. F. Gull and G. J. , Image reconstruction from incomplete and noisy data, Nature, vol.178, issue.5655, pp.686-690, 1978.
DOI : 10.1093/mnras/178.3.307

J. Starck and F. Murtagh, Astronomical Image and Data Analysis Available : https://doi, 2006.
DOI : 10.1007/978-3-662-04906-8

N. Zhao, Q. Wei, A. Basarab, D. Kouamé, and J. Y. Tourneret, Single image super-resolution of medical ultrasound images using a fast algorithm, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.473-476, 2016.
DOI : 10.1109/ISBI.2016.7493310

URL : https://hal.archives-ouvertes.fr/hal-01566911

A. C. Kokaram, N. Persad, J. Lasenby, W. J. Fitzgerald, A. Mckinnon et al., Restoration of images from the scanning-tunneling microscope, Applied Optics, vol.34, issue.23, pp.5121-5132, 1995.
DOI : 10.1364/AO.34.005121

M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Transactions on Medical Imaging, vol.17, issue.2, pp.285-293, 1998.
DOI : 10.1109/42.700740

L. Ying, D. Xu, and Z. P. Liang, On Tikhonov regularization for image reconstruction in parallel MRI, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1056-1059, 2004.
DOI : 10.1109/IEMBS.2004.1403345

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

M. Nikolova, Weakly Constrained Minimization: Application to the Estimation of Images and Signals Involving Constant Regions, Journal of Mathematical Imaging and Vision, vol.21, issue.2, pp.155-175, 2004.
DOI : 10.1023/B:JMIV.0000035180.40477.bd

C. Louchet and L. Moisan, Posterior Expectation of the Total Variation Model: Properties and Experiments, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.2640-2684, 2013.
DOI : 10.1137/120902276

URL : https://hal.archives-ouvertes.fr/hal-00764175

R. Bhatia, A Review of Linear Algebra Available : https://doi.org/10, pp.1-27978, 1007.

S. Delpretti, F. Luisier, T. Ramani, M. Blu, and . Unser, Multiframe sure-let denoising of timelapse fluorescence microscopy images, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.149-152, 2008.
DOI : 10.1109/ISBI.2008.4540954

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J. B. Sibarita et al., Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.442-454, 2010.
DOI : 10.1109/TMI.2009.2033991

URL : https://hal.archives-ouvertes.fr/inria-00541082

M. Makitalo and A. Foi, Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise, IEEE Transactions on Image Processing, vol.22, issue.1, pp.91-103, 2013.
DOI : 10.1109/TIP.2012.2202675

F. Dupe, J. Fadili, and J. Starck, A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations, IEEE Transactions on Image Processing, vol.18, issue.2, pp.310-321, 2009.
DOI : 10.1109/TIP.2008.2008223

URL : https://hal.archives-ouvertes.fr/hal-00264972

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/978-3-540-74936-3_22

URL : https://hal.archives-ouvertes.fr/hal-00490826

L. Condat, A Primal???Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications, vol.23, issue.1???2, pp.460-479, 2013.
DOI : 10.1081/NFA-120003674

URL : https://hal.archives-ouvertes.fr/hal-00609728

M. Heideman, D. Johnson, and C. Burrus, Gauss and the history of the fast fourier transform, IEEE ASSP Magazine, vol.1, issue.4, pp.14-21, 1984.
DOI : 10.1109/MASSP.1984.1162257

C. Van-loan, Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics, 1992.
DOI : 10.1137/1.9781611970999

M. Frigo and S. G. Johnson, FFTW: an adaptive software architecture for the FFT, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), pp.1381-1384, 1998.
DOI : 10.1109/ICASSP.1998.681704

P. L. Combettes, Ð. D?ungd?ung, and B. C. V?uv?u, Proximity for sums of composite functions, Journal of Mathematical Analysis and Applications, vol.380, issue.2, pp.680-688, 2011.
DOI : 10.1016/j.jmaa.2011.02.079

URL : https://hal.archives-ouvertes.fr/hal-00643804

P. L. Combettes, L. Condat, J. C. Pesquet, and B. C. V?uv?u, A forward-backward view of some primal-dual optimization methods in image recovery, 2014 IEEE International Conference on Image Processing (ICIP), pp.4141-4145, 2014.
DOI : 10.1109/ICIP.2014.7025841

URL : https://hal.archives-ouvertes.fr/hal-01098038

B. Mercier, Lectures on Topics in Finite Element Solution of Elliptic Problems, 1979.
DOI : 10.1007/978-3-662-00973-4

J. Eckstein and D. P. Bertsekas, On the Douglas???Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, pp.293-318, 1992.
DOI : 10.2140/pjm.1970.33.209

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol.93, issue.5-6, pp.475-504, 2004.
DOI : 10.1007/978-3-642-05156-2

URL : https://hal.archives-ouvertes.fr/hal-00017830

P. L. Combettes and V. R. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
DOI : 10.1137/050626090

URL : https://hal.archives-ouvertes.fr/hal-00017649

P. L. Combettes and J. Pesquet, Proximal Splitting Methods in Signal Processing, pp.185-212978, 2011.
DOI : 10.1007/978-1-4419-9569-8_10

URL : https://hal.archives-ouvertes.fr/hal-00643807

L. Condat, A generic proximal algorithm for convex optimization ? application to total variation minimization, IEEE Signal Processing Letters, vol.21, issue.8, pp.985-989, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01120544

J. J. Moreau, Proximit?? et dualit?? dans un espace hilbertien, Bulletin de la Société mathématique de France, vol.79, pp.273-299, 1965.
DOI : 10.24033/bsmf.1625

URL : http://www.numdam.org/article/BSMF_1965__93__273_0.pdf

H. L. Fu, J. L. Mueller, M. J. Whitley, D. M. Cardona, R. M. Willett et al., Structured Illumination Microscopy and a Quantitative Image Analysis for the Detection of Positive Margins in a Pre-Clinical Genetically Engineered Mouse Model of Sarcoma, PLOS ONE, vol.30, issue.11, pp.1-19, 2016.
DOI : 10.1371/journal.pone.0147006.t002

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit et al., DeconvolutionLab2: An open-source software for deconvolution microscopy, Methods, vol.115, pp.28-41, 2017.
DOI : 10.1016/j.ymeth.2016.12.015

B. Ng, A. Vahdat, G. Hamarneh, and R. Abugharbieh, Generalized sparse classifiers for decoding cognitive states in fMRI Held in Conjunction with MICCAI 2010 Available : https://doi, Proceedings of the First International Workshop on Machine Learning in Medical Imaging, pp.108-115, 2010.

B. M. Kandel, D. A. Wolk, J. C. Gee, B. Avants-asilomar, . Ca et al., Predicting cognitive data from medical images using sparse linear regression Available : https, Proceedings of the 23rd International Conference on Information Processing in Medical Imaging, pp.86-97978, 2013.

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, vol.72, pp.304-321, 2013.
DOI : 10.1016/j.neuroimage.2012.12.062

T. F. Chan and S. Esedoglu, Function Approximation, SIAM Journal on Applied Mathematics, vol.65, issue.5, pp.1817-1837, 2005.
DOI : 10.1137/040604297

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1328-1340, 2011.
DOI : 10.1109/TMI.2011.2113378

H. Nguyen, V. Paveau, C. Cauchois, and C. Kervrann, A variational method for dejittering large fluorescence line scanner images, working paper or preprint Available : https, 2017.