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ABSTRACT

Co-simulation refers to simulating a complex system using several coupled numerical models. Engineers
define the rate of data exchange between the models by setting communication steps. FMI is a standardized
interface which easily allows coupling and co-simulation of numerical models. The RCOSIM approach
allows the parallelization on multi-core processors of co-simulations using the FMI standard. In this paper,
we tackle the limitations of this approach. First, we extend the co-simulation to multi-rate, i.e. with different
communication steps. We present graph transformation rules and an algorithm that allow the execution of
each model at its respective rate while ensuring correct data exchange between models. Second, we present
an acyclic orientation heuristic for handling mutual exclusion constraints between operations that belong to
the same model due to the non-thread-safe implementation of FMI. We evaluate the obtained speedup on a
multi-core processor and the effect on the accuracy of the numerical results.

Keywords: parallel, co-simulation, multi-core, acyclic orientation, scheduling.

1 INTRODUCTION

The recent advancement in merging different technologies and engineering domains has led to the emergence
of the field of Cyber-Physical Systems (CPS). In such systems, embedded computers interact with, and con-
trol physical processes. Because of the heterogeneity of the involved components (multi-physics, sensors,
actuators, embedded computers), CPS may feature very complex architectures and designs, ever raising the
need for time, cost, and effort-effective approaches for building robust and reliable systems. Numerical
simulation has proven successful in responding to this need, and is therefore increasingly considered to be
an indisputable step in design verification and validation. For complex CPS, experts of different engineering
disciplines may be involved in the design process by developing models for different parts of the system. In
a later stage, the developed models need to be integrated into one simulation environment and coupled to-
gether in order to perform simulation at the system level. This approach is called co-simulation. Each model
is assigned an integration step, which in some cases is driven by the dynamics of the modeled system and the
control objective, and exchanges data with the other models according to a communication step which can
be equal or larger than its integration step. Enabling co-simulation of heterogeneous models requires using
adequate tools and methods. In this scope, the Functional Mock-up Interface (FMI) (Blochwitz et al. 2012)
was developed with the goal of facilitating the co-simulation and the exchange of numerical models. FMI
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defines a standardized interface that can be implemented by modeling tools in order to create models that
can be connected with other FMI models. A model that is developed using FMI is exported as a Functional
Mock-up Unit (FMU) which is a package that encapsulates an XML file containing, among other data, the
definitions of the model’s variables, and a library defining the equations of the model as C functions.

Co-simulation is an alternative approach to monolithic simulation where a complex system is modeled
as a whole using differential equations and simulated by numerically solving these equations. In a CPS,
the controlled physical process constitutes a multi-physics system and is modeled in the continuous-time
domain using (hybrid) Ordinary Differential Equations (ODEs). Because they are aimed to be implemented
on embedded computers, numerical laws that control the physical process are modeled in the discrete-
time domain. All of these features add to the complexity of the numerical models. Co-simulation has a
number of advantages over the monolithic approach. It allows modeling each part of the system using the
most appropriate tool instead of using a single modeling software. Also, it allows a better intervention of
the experts of different fields at the subsystem level. Furthermore, co-simulation facilitates the upgrade, the
reuse, and the exchange of models. In co-simulation, the equations of each FMU are integrated using a solver
separately. FMUs exchange data by updating their inputs and outputs according to their communication
steps. It is worth noting that in this paper, the term co-simulation is used to refer to the simulation of
FMUs generated from FMI for Model Exchange, FMI for Co-Simulation, or a combination of both types.
In our approach, when importing Model Exchange FMUs, a dedicated solver is assigned for each FMU.
For connected FMUs with different communication steps, the master algorithm can provide extrapolation
techniques to produce the missing data. In the following, we consider FMI co-simulation without step
rejection.

Figure 1 shows the evolution of time and data exchange between three FMUs. The vertical double arrows
represent data exchange between the FMUs. FMU B must be assigned a communication step HB equal to
the smaller communication step among HA and HC since it exchanges data with both FMU A and FMU
B. Co-simulation requires domain-specific information for each involved FMU. Such information, which is
beyond the scope of FMI, can be provided by domain experts, for example by using an approach like the one
propped by Sirin et al. (2015). The communication steps of FMUs can be shared as part of this information.

FMU A

FMU B

Integration step 
hA

 Communication step
HA

Integration step 
hB

Communication step 
HB

FMU C Integration step 
hC

Communication step 
HC

Figure 1: Evolution of time and data exchange between three FMUs during co-simulation

Usually, assembling FMUs results in a heavy co-simulation, requiring high processing power. Increasing
CPU performance through frequency scaling has reached some technological limits. As a consequence,
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during the last decade, parallelism has been by far the main way for increasing the performance of proces-
sors. In fact, the last years have witnessed a major shift among semiconductor manufacturers to building
multi-core processors, i.e. integrating multiple processors into one chip allowing parallel processing on a
single computer. Enabling parallel execution of heavy co-simulations on multi-core processors is keenly
sought by the developers and the users of simulation tools. However, fulfilling this objective is not trivial
and appropriate parallelization techniques need to be applied on co-simulation models in order to accelerate
their execution on multi-core processors.

In order to achieve (co-)simulation acceleration using multi-core execution, different approaches are possi-
ble and were already explored. From a user point of view, it is possible to modify the model design in order
to prepare its multi-core execution, for example by using models that are developed using parallel computing
libraries as in (Gebremedhin et al. 2012). Using parallel solvers as in (Elmqvist et al. 2014) is another alter-
native. (Galtier et al. 2015) presented the DACCOSIM framework which allows multi-threaded distributed
simulation of FMUs on multi-core processors as well as clusters of computers. However, the parallelization
achieved through this approach is not automatic as the user has to define the distribution of the FMUs on the
architecture. A more detailed discussion of related work is given in (Ben Khaled et al. 2014).

In this paper, we address the problem from a co-simulation tool provider point of view. In such a tool,
the user connects different FMUs, embedding solvers or using solvers provided by the co-simulation tool.
In this case, it is not possible to change the models, the solvers, nor the modeling tools. The Refined
CO-SIMulation (RCOSIM) (Ben Khaled et al. 2014) approach allows the parallelization on multi-core
processors of co-simulations using the FMI standard, by generating an efficient multi-core FMI master.
This approach is based on a representation of the co-simulation using a Directed Acyclic Graph (DAG).
Each vertex of this graph represents an operation which is an atomic unit of execution consisting of one
or several FMU C function calls. Each edge represents a precedence relation between two operations.
In this paper, we deal with the limitations of this approach that we highlighted in a recent work (Saidi
et al. 2016). Although RCOSIM resulted in interesting co-simulation speedups, it has two limitations that
have to be considered in the multi-core scheduling problem in order to obtain better performances. First,
RCOSIM supports only mono-rate co-simulations, i.e. the different FMUs have to be assigned the same
communication step. Indeed, because of this limitation, RCOSIM is unable to handle an important number
of industrial applications containing multiple communication steps as provided by the engineers. Second,
the functions of an FMU may not be thread-safe, i.e. they cannot be executed in parallel as they may share
some resource (e.g. variables) that might be corrupted if two operations try to use it at the same time.
Consequently, if two or more operations belonging to the same FMU are executed on different cores, a
mechanism that ensures these operations are executed in disjoint time intervals must be set up. Previously,
these mutual exclusion constraints were tackled in RCOSIM by executing the operations of the same FMU
on the same core which restricts the exploitation of the parallelism.

We propose in this paper a solution for each of the aforementioned limitations by making extensions to
RCOSIM. In order to allow handling multi-rate co-simulations, we present a graph transformation algorithm
that is applied to the initial constructed graph. Then, mutual exclusion constraints are represented by adding,
in the graph, non oriented edges between operations belonging to the same FMU. We present an acyclic
orientation heuristic that is used to assign directions to the added non oriented edges. The proposed solutions
are implemented in the xMOD multi-model integration software. We evaluate the obtained speedup on a
multi-core processor and assess the effect on the accuracy of the numerical results.

The rest of the paper is organized as follows. The next section gives an overview of the RCOSIM method
and the proposed extensions. In section 3, graph transformation rules and an algorithm for handling multi-
rate co-simulation are presented. In section 4, an acyclic orientation heuristic is presented. This heuristic
is meant to handle the mutual exclusion constraints between the operations that belong to the same FMU.
Section 5 describes the allocation and scheduling heuristic. In section 6, we present the obtained results.
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We give a brief description of the industrial use case that is used to assess the proposed method and then
present the obtained speedup and the numerical error evaluation. Finally, we conclude with some remarks
and perspectives for future work in section 7.

2 OVERVIEW OF RCOSIM

The proposed method is an extension of the RCOSIM approach. We briefly present RCOSIM in this section
before giving a description of the proposed extensions to tackle its limitations.

The entry point is a user-specified set of interconnected FMUs as depicted in Figure 2a. The execution
of each FMU is seen as computing a set of input operations (one operation for each of the inputs of the
FMU), a set of output operations (one operation for each of the outputs of the FMU), and one state operation
for updating the state variables of the FMU. An operation is defined by a number of FMU C function
calls. An input (resp. output ) operation is executed by calling fmiSet (resp. fmiGet) function and a state
operation is executed by calling SetTime, GetDerivatives, SetContinuousStates, etc., functions in the case of
FMI for Model Exchange or DoStep function in the case of FMI for Co-Simulation. Thanks to FMI, it is
additionally possible to access information about the internal structure of a model encapsulated in an FMU.
In particular, as shown in Figure 2b, FMI allows the identification of Direct Feedthrough (e.g. YB1) and Non
Direct Feedthrough (e.g. YA1) outputs of an FMU and other information depending on the version of the
standard. RCOSIM consists in using FMU information on input/output dependencies to build a graph with
an increased granularity, and then exploiting the potential parallelism (Saidi et al. 2016) of this transformed
graph by using a heuristic to build an off-line multi-core schedule.

YA1

YA2

YA3

UA1

UA2

UB1

UB2

UB3

YB1

YB2

FMU A

FMU B

(a) Inter-FMU dependencies specified by the user
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YA2

YA3

UA1

UA2

UB1

UB2

UB3

YB1

YB2

FMU A

FMU B

(b) Intra-FMU dependencies provided by FMI

Figure 2: An example of inter and intra-FMU dependencies of two FMUs connected by the user

The co-simulation can be described by a DAG GI(VI,AI) called the operation graph where each vertex oi ∈VI
represents one operation and each oriented edge (oi,o j) ∈ AI , that we call an arc, represents a precedence
relation between two operations. The operation graph is built by exploring the relations between the FMUs
and between the operations of the same FMU. A vertex is created for each operation and arcs are then
added between vertices if a data dependency exists between the corresponding operations. If FMI 1.0 is
used, which does not give information about the dependencies between the state variables computation and
the input and output variables computations, we must add edges between all input operations and the state
operation of the same FMU. Furthermore, edges connect all output operations and the state operation of the
same FMU because the computation at the simulation step k of an output must be performed with the same
value of the state as for all the outputs belonging to the same FMU. Running the co-simulation consists in
executing the graph repeatedly. A new execution of the graph cannot be started unless the previous one
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was totally finished. The operation graph corresponding to the FMUs of Figure 2 is shown in Figure 3. In
order to accelerate the co-simulation, the approach proceeds in two main phases: first, the operation graph
is constructed by exploring the inter and intra-FMU dependencies and then, the operations are allocated to
the available cores in such a way to minimize the makespan of the graph. The makespan corresponds to the
execution time of the whole graph.

Y A1 UB3

Ẋ  A

U  A2 U  B1

U  A1 U  B2

Ẋ    B

Y A2Y B2

Y B1 Y A3

Figure 3: Operation graph obtained from the FMUs of Figure 2

We use the notation M(oi) to refer to the FMU to which the operation oi belongs, and T (oi) to de-
note the type of the operation oi, i.e. T (oi) ∈ {input,out put,state}. Once the operation graph is con-
structed, each operation oi is characterized by a set of parameters. A profiling phase allows measur-
ing the execution time C(oi). For each operation, the average execution time of multiple co-simulation
runs is used. When real-time execution is aimed, Worst Case Execution Times (WCET) can be used
instead. An operation oi is characterized by its communication step H(oi) which is equal to the com-
munication step of its FMU. The set of successors (resp. predecessors) of an operation oi is de-
noted Γ(oi) (resp. Γ(oi)). In addition, the following parameters are defined for each operation oi:
the earliest start time from the graph beginning S(oi) = maxo j∈Γ(oi)

(E(o j)) (0 i f Γ(oi) = /0), the earli-
est end time from the graph beginning E(oi) = S(oi)+C(oi), the latest end time from the graph end
E(oi) = maxo j∈Γ(oi)(S(o j)) (0 i f Γ(oi) = /0), the latest start time from the graph end S(oi) = E(oi)+C(oi),
and the flexibility F(oi) = R−S(oi)−C(oi)−E(oi). R = maxoi∈VI (E(oi)) denotes the critical path of the
graph. These notations are used through the different phases of the proposed method in this paper.

Sections 3 and 4 describe new transformations that we propose to apply to the operation graph for han-
dling multi-rate FMUs and mutual exclusion constraints between the operations beloning to the same FMU,
respectively. Finally, the allocation of the different operations to the cores is achieved using a multi-core
scheduling heuristic.

3 TRANSFORMATION ALGORITHM FOR MULTI-RATE GRAPHS

This section presents an algorithm that transforms the initial multi-rate operation graph GI(VI,AI) into a
mono-rate operation graph GM(VM,AM). The aim of this transformation is to ensure that each operation is
executed according to the communication step of its respective FMU and also to maintain a correct data ex-
change between the different FMUs, whether they have different or identical communication steps. Similar
algorithms have been used in the real-time scheduling literature (Ramamritham 1995).

We define the Hyper-Step (HS) as the least common multiple (lcm) of the communication steps of all the
operations: HS = lcm(H(o1),H(o2), . . . ,H(on)) where n = |VI| is the number of operations in the initial
graph. The Hyper-Step is the smallest interval of time for describing a repeatable pattern of all the opera-
tions. The transformation algorithm consists first of all in repeating each operation oi, ri times where ri is
called the repetition factor of oi and ri =

HS
H(oi)

. Each repetition of the operation oi is called an occurrence
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of oi and corresponds to the execution of oi at a certain simulation step. We use a superscript to denote the
number of each occurrence, for instance os

i denotes the sth occurrence of oi. Then, arcs are added between
operations following the rules presented hereafter. Consider two operations oi,o j ∈ VI connected by an arc
(oi,o j) ∈ AI , then adding an arc (os

i ,o
u
j) to AM, depends on the simulation steps (time) at which os

i and ou
j

are executed. In other words, if ks and ku are the simulation steps associated with os
i and ou

j respectively,
then the inequality ks ≤ ku is a necessary condition to add the arc (os

i ,o
u
j) to AM. In addition, ou

j is con-
nected with the latest occurrence of oi that satisfies this condition, i.e. with the occurrence os

i such that
s = max(0,1, . . . ,ri−1) : ks ≤ ku. In the case where H(oi) = H(o j) (and therefore ri = r j), occurrences os

i
and ou

j which correspond to the same number, i.e. s = u, are connected by an arc. On the other hand, if
H(oi) ̸= H(o j), we distinguish between two types of dependencies: we call the arc (oi,o j) ∈ AI a slow to
fast (resp. fast to slow) dependency if H(oi)> H(o j) (resp. H(oi)< H(o j)). For a slow to fast dependency
(oi,o j)∈ AI , one occurrence of oi is executed while several occurrences of o j are executed. In this case, arcs
are added between each occurrence os

i : s ∈ {0,1, . . . ,ri−1}, and the occurrence ou
j such that:

u =

⌈
s× H(oi)

H(o j)

⌉
.

We recall that for a slow to fast dependency, the master algorithm can preform extrapolation of the inputs of
the receiving FMU. For a fast to slow dependency (oi,o j) ∈ AI , arcs are added between each occurrence os

i ,
and the occurrence ou

j : u ∈ {0,1, . . . ,r j−1} such that:

s =
⌊

u×
H(o j)

H(oi)

⌋
.

Arcs are added also between the occurrences of the same operation, i.e. (os
i ,o

s′
i ) where s ∈ {0,1, . . . ,ri−2}

and s′ = s+ 1. Finally, for each FMU, arcs are added between the sth occurrence of the state operation,
where s ∈ {0,1, . . . ,ri− 2}, and the (s+ 1)th occurrences of the input and output operations. The multi-
rate graph transformation is detailed in Algorithm 1. The algorithm traverses all the graph by applying the
aforementioned rules in order to transform the graph and finally stops when all the nodes and the edges have
been visited.

Figure 4 shows the graph obtained by applying the multi-rate transformation algorithm on the graph of
Figure 3. In this example HB = 2×HA, where HA and HB are the communication steps of FMUs A and B
respectively.

YS
 A1 US

 B3

ẊS
  A

YS
 B1 US

 A2 YS
 A3 US

 B1

YS
 B2 US

 A1 YS
 A2 US

 B2

ẊS
  B

US+1
 A1

YS+1
 A1

US+1
 A2 YS+1

 A3

YS+1
 A2

ẊS+1
 A

Figure 4: Graph obtained by applying the multi-rate transformation algorithm on the graph of Figure 3
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Algorithm 1: Multi-rate graph transformation algorithm

Input: Initial operation graph GI(VI,AI);
Output: Transformed operation graph GM(VM,AM);
Set GI(VI,AI) the initial multi-rate operation graph and GM(VM,AM) the new mono-rate graph;
VM ← /0; AM ← /0;
foreach operation oi ∈VI do

Compute the repetition factor of oi: ri← HS
H(oi)

;
Repeat the operation oi: VM ←VM ∪{os

i},s ∈ {0, . . . ,ri−1};
end
foreach arc (oi,o j) ∈ AI do

if H(oi)> H(o j) ((oi,o j) is a slow to fast dependency) then
Compute u =

⌈
s× H(oi)

H(o j)

⌉
and add the arc (os

i ,o
u
j) to the new graph GM(VM,AM):

AM ← AM ∪{(os
i ,o

u
j)},s ∈ {0, . . . ,ri−1};

end
else if H(oi)< H(o j) ((oi,o j) is a fast to slow dependency) then

Compute s =
⌊

u× H(oi)
H(o j)

⌋
and add the arc (os

i ,o
u
j) to the new graph GM(VM,AM):

AM ← AM ∪{(os
i ,o

u
j)},u ∈ {0, . . . ,r j−1};

end
else

Add the arc (os
i ,o

s
j) to the new graph GM(VM,AM): AM ← AM ∪{(os

i ,o
s
j)},s ∈ {0, . . . ,ri−1};

end
end
foreach operation oi ∈V do

Add an arc between successive occurrences of oi: AM ← AM ∪{(os
i ,o

s+1
i )},s ∈ {0, . . . ,ri−2};

end
foreach operation oi ∈V such that T (oi) = state do

Add arcs (os
i ,o

s+1
j ) to the new graph GM(VM,AM) between oi and every operation o j such that

M(o j) = M(oi) and T (o j) ∈ {input,out put}: AM ← AM ∪{(os
i ,o

s+1
j )},s ∈ {0, . . . ,ri−2};

end

4 ACYCLIC ORIENTATION HEURISTIC FOR HANDLING MUTUAL EXCLUSION
CONSTRAINTS

We describe in this section a heuristic for handling mutual exclusion constraints between operations be-
longing to the same FMU. These constraints are induced from the non thread-safe implementation of FMI.
Without loss of generality, the superscript which denotes the number of the occurrence of an operation is
not used in the rest of the paper for the sake of clarity. Each vertex of the graph GM(VM,AM) represents an
operation that we refer to using the notation oi.

In addition to the precedence relations represented by arcs, mutual exclusion relations are represented by
(non oriented) edges in the mixed graph GX(VX ,AX ,DX), where VX is the set of vertices (operations), AX the
set of arcs, and DX the set of edges. This mixed graph is obtained from the graph GM(VM,AM) by adding
edges between operations belonging to the same FMU. Note that VX =VM. A precedence relation between
the pair of operations oi and o j is denoted by an arc (oi,o j) ∈ A which describes an order of execution
between oi and o j, whereas a mutual exclusion relation between the pair of vertices op and oq is denoted by
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an edge [op,oq] ∈ DX which means that op and oq have to be executed in disjoint time intervals but in either
order ([op,oq] = [oq,op]). Choosing one order or another does not impact the numerical results of the co-
simulation since these operations do not have data dependencies. Still, we have to ensure mutual exclusion
between them due to the non-thread-safe implementation of FMI. The goal of the heuristic proposed here
is to assign directions to the edges of DX in order to define an order of execution between each pair of
operations joined by an edge with the aim of minimizing the length of the critical path of the resulting
graph, and subject to the constraint that no cycle is generated in the obtained graph as the term acyclic
orientation suggests. Indeed, the existence of a cycle in the graph prevents the definition of an execution
order for the operations belonging to this cycle, and leads to a deadlock during the execution. The output
of the heuristic is a graph GF(VF ,AF , /0) = GF(VF ,AF). The problem of acyclic orientation of mixed graphs
has been studied and shown to be NP-Hard in (Andreev et al. 2000, Sotskov et al. 2002, Al-Anzi et al.
2006). In these studies, only the case of operations with unit (or equal) execution times were considered
and the acyclic orientation problem was interpreted as a graph coloring problem. In this paper, we consider
operations with different execution times and use an approach which takes into account that only operations
belonging to the same FMU are joined by edges.

The orientation of the edges of DX means applying a function α : {[oi,o j] ∈ DX} → {(oi,o j),(o j,oi)}.
Without loss of generality, consider that α([oi,o j]) = (oi,o j), then oi is added to Γ(o j) and o j is added to
Γ(oi). Consequently, the inequality E(oi) ≤ S(o j) holds and therefore oi and o j are executed in disjoint
time intervals. The first step of the heuristic consists in building the mixed graph GX(VX ,AX ,DX) by adding
edges between operations belonging to the same FMU. The output of the heuristic is a topological ordering
of the operations of each FMU. This can be interpreted for each FMU M as an assignment of integers φ :
VF →{1,2, . . . ,m} defining the order of execution for these operations, where m is the number of operations
of the FMU M . We call the integer assigned to an operation its rank.

Algorithm 2 details the acyclic orientation heuristic. After adding the edges to the graph, the heuristic
iteratively assigns ranks to the operations. It keeps a list of already ordered operations l for each FMU M
and at each main iteration it selects the operation which has the earliest start time S(oi) to be added to the list
of its FMU. Ties are broken by selecting the operation with the least flexibility F(oi). We call the operation
to be ordered at a given iteration, the pending operation. The the pending operation oi is assigned the ranks
τ ∈ {x,x+1, . . . , length(l)+1} in ascending order, where x = maxo j∈Γ(oi)

(φ(o j)+1) (1 i f Γ(oi) = /0). For
each rank τ , the assignment φ(oi) = τ is made and the ranks assigned to all the already ordered operations
oi′ ∈ l such that φ(oi′) ≥ φ(oi) are increased φ(oi′) = φ(oi′) + 1. Then, every edge [oi,o′i] ∈ DX : o′i ∈ l
is assigned a direction from the operation with the lower rank to the operation with the higher rank. At
this point, the increase in R, the critical path of the graph, is evaluated. Next, the operations oi′ ∈ l such
that φ(oi′) > φ(oi) are reassigned their previous ranks φ(oi′) = φ(oi′)− 1, and the pending operation is
assigned the next rank φ(oi) = φ(oi)+1. The increase in the critical path is evaluated again similarly. After
repeating this for all the ranks τ ∈ {x,x+ 1, . . . , length(l)+ 1}, the pending operation is finally ordered at
the rank which leads to the least increase in the critical path and edges [oi,o′i] ∈ DX : o′i ∈ l are assigned
directions as described before. The heuristic begins another iteration by selecting a new operation to be
ordered. The heuristic assigns a rank to one operation at each iteration. Every operation is assigned a rank
higher than the ranks of all its predecessors which guarantees that no cycle is generated. The heuristic finally
stops when all the operations have been assigned ranks.

5 ALLOCATION AND SCHEDULING HEURISTIC

In order to achieve fast execution of the co-simulation on a multi-core processor, an efficient allocation and
scheduling of the operation graph has to be performed. A multi-core scheduling heuristic is applied on the
final graph GF(VF ,AF) obtained after the acyclic orientation phase. Because of the number of fine-grained
operations, and since the execution times and the dependencies between the operations are known before
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Algorithm 2: Acyclic orientation heuristic

Input: Operation graph GM(VM,AM);
Output: New operation graph GF(VF ,AF);
Set GM(VM,AM) the operation graph, GX(VX ,AX ,DX) the mixed graph, and GF(VF ,AF) the final graph;
VX ←VM; AX ← AM; DX ← /0; VF ←VM; AF ← AM;
Set Ω the set of all the operations: Ω←VX ;
foreach pair oi,o j such that M(oi) = M(o j) do Add the edge [oi,o j] to DX : DX ← DX ∪{[oi,o j]} ;
while Ω ̸= /0 do

Select the operation oi ∈Ω whose start time S(oi) = maxo j∈Ω(S(o j)). Break ties by selecting the
operation with the least flexibility;

Set M ←M(oi) and l the list of the already ordered operations of FMU M ;
Set σ ← ∞; (Initialize the increase in the critical path);
Set x = maxo j∈Γ(oi)

(φ(o j)+1) (1 i f Γ(oi) = /0);
for τ = x to length(l)+1 do

φ(oi) = τ;
foreach oi′ ∈ l such that φ(oi′)≥ φ(oi) do φ(oi′)← φ(oi′)+1 ;
foreach oi′ ∈ l do

if φ(oi′)> φ(oi) then Assign a direction to the edge [oi,oi′ ] ∈ DX : α([oi,oi′ ])← (oi,oi′) ;
else Assign a direction to the edge [oi,oi′ ] ∈ DX : α([oi,oi′ ])← (oi′ ,oi) ;

end
Compute the new critical path and set σ ′ the increase in the critical path;
if σ ′ < σ then rank← τ , σ ← σ ′ ;
foreach oi′ ∈ l such that φ(oi′)> φ(oi) do Reassign oi′ its previous rank: φ(oi′)← φ(oi′)−1 ;

end
φ(oi) = rank;
foreach oi′ ∈ l do

if φ(oi′)> φ(oi) then Assign a direction to the edge [oi,oi′ ] ∈ DX : α([oi,oi′ ])← (oi,oi′) ;
else Assign a direction to the edge [oi,oi′ ] ∈ DX : α([oi,oi′ ])← (oi′ ,oi) ;

end
Remove oi from Ω;

end

runtime, it is more convenient to use an offline scheduling heuristic which has the advantage of introducing
lower overhead than online scheduling heuristics. We use an offline scheduling heuristic similar to the one
proposed in (Grandpierre et al. 1999) which is a fast greedy algorithm whose cost function corresponds well
to our minimization objective. The heuristic considers the different timing parameters of each operation
oi ∈ VF in order to compute a schedule that minimizes the makespan of the graph. The heuristic schedules
the operations of the graph GF(VF ,AF) on the different cores iteratively and aims at minimizing a cost
function which expresses the schedule pressure of an operation on a specific core. The schedule pressure is
the difference between the makespan increase, by allocating this operation to this core, and the operation’s
flexibility. The heuristic updates the set of candidate operations to be scheduled at each iteration. An
operation is added to the set of candidate operations if it has no predecessor or if all its predecessors have
already been scheduled. For each candidate operation, the schedule pressure is computed on each core and
the operation is allocated to its best core, the one that minimizes the pressure. Then, a list of candidate
operation-best core pairs is obtained. Finally, the operation with the largest pressure on its best core is
selected and scheduled. Synchronization operations are added between the scheduled operation and all its
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predecessors that were allocated to different cores. The heuristic repeats this procedure and finally stops
when all the operations have been scheduled.

6 EVALUATION

The proposed parallelization approach has been applied on an industrial use case. In this section, we give a
description of the use case and then present the obtained results.

Tests have been performed on a computer running the Windows 7 operating system with 16 GB RAM and
an Intel core i7 processor running 8 cores at 2.7 GH. Experiments have been carried out on a Spark Ignition
(SI) RENAULT F4RT engine co-simulation. It is a four-cylinder in line Port Fuel Injector (PFI) engine in
which the engine displacement is 2000 cm3. The air path is composed of a turbocharger with a mono-scroll
turbine controlled by a waste-gate, an intake throttle and a downstream-compressor heat exchanger. This
co-simulation is composed of 5 FMUs: one FMU for each cylinder and one FMU for the airpath. The
FMUs were imported into xMOD using the FMI export features of the Dymola tool. This use-case leads
to an initial graph containing over 100 operations. We refer to our proposed method as MUO-RCOSIM
(for Multi-Rate Oriented RCOSIM). We compared the obtained results with two approaches: The first one
is RCOSIM which is mono-rate and thus we had to use the same communication step for all the FMUs.
We used a communication step of 20µs. The second one consists in using RCOSIM with the multi-rate
graph transformation algorithm. We refer to it as MU-RCOSIM (for Multi-Rate RCOSIM). For MUO-
RCOSIM and MU-RCOSIM we used the recommended configuration of the communication steps for this
use case. For each cylinder, we used a communication step of 20µs. The communication step used for the
airpath is 100µs. In fact, the airpath has slower dynamics than the cylinders and this configuration of the
communication steps corresponds to the specification given by engine engineers. For each FMU, we used a
Runge-Kutta 4 solver with a fixed integration step equal to the communication step. The graph of this use
case is transformed by Algorithm 1 into a graph containing over 280 operations that are scheduled by the
multi-core scheduling heuristic.

The validation of the numerical results of the co-simulation using the proposed method is achieved through
the comparison of the co-simulation outputs with reference outputs. Since it is not possible to solve the
equations of the FMU analytically, the reference outputs are obtained by using RCOSIM which has been
shown in (Ben Khaled et al. 2014) to give a very good accuracy of the numerical results. Figure 5a shows the
obtained results for the torque (an output of the airpath). We note that the results match with the reference,
and the generated error is very small remaining within an acceptable bound (< 1%). Similar accuracy results
were obtained for the different outputs of the co-simulation.

The speedup obtained using MUO-RCOSIM is compared with the speedups obtained using RCOSIM and
MU-RCOSIM. The speedup was evaluated by running the co-simulation in xMOD. Execution times mea-
surements were performed by getting the system time stamp at the beginning and at the end of the co-
simulation. For a given run of the co-simulation, the speedup is computed by dividing the mono-core
co-simulation execution time of RCOSIM by the co-simulation execution time of this run on a fixed num-
ber of cores. Figure 5b sums up the results. The same speedup is obtained using MUO-RCOSIM and
MU-RCOSIM even when only 1 core is used. This speedup is obtained thanks to using the multi-rate con-
figuration. More specifically, increasing the communication step of the airpath from 20µs to 100µs results
in fewer calls to the solver leading to an acceleration in the execution of the co-simulation. By using multiple
cores, speedups are obtained using both MUO-RCOSIM and MU-RCOSIM. Additionally, MUO-RCOSIM
outperforms MU-RCOSIM with an improvement in the speedup of, approximately 30% when 2 cores are
used, and approximately 10% when 4 cores are used. This improvement is obtained thanks to the acyclic
orientation heuristic which defines an efficient order of execution for the operations of each FMU that are
mutually exclusive. This defined order tends to allow the multi-core scheduling heuristic to better adapt the
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potential parallelism of the operation graph to the effective parallelism of the multi-core processor (num-
ber of cores) resulting in an improvement in the performance. MU-RCOSIM, on the other hand, uses the
solution of RCOSIM which consists in simply allocating mutual exclusive operations to the same core intro-
ducing restrictions on the possible solutions of the multi-core scheduling heuristic. When using 8 cores, no
further improvement is possible since the potential parallelism is fully exploited. Worse still, the overhead
of the synchronization between the cores becomes counter-productive, which explains why the speedup with
8 cores is less than the speedup with 4 cores for all the approaches. The best performance is obtained using
5 cores with slight improvement compared to using 4 cores.
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Figure 5: Speedup and numerical results of e-RCOSIM

7 CONCLUSION

This paper addressed the problem of automatic parallelization of multi-rate co-simulations using the FMI
standard. We proposed an extension of the RCOSIM approach. First, we presented a set of rules and an
algorithm in order to allow the execution of multi-rate FMUs where each FMU is executed according to its
communication step, and correct data exchange between FMUs is ensured. Second, we presented an acyclic
orientation heuristic that is applied on the operation graph in order to define an execution order between
the operations of the same FMU which are mutually exclusive due to the non-thread-safe implementation
of FMI. This heuristic results in a graph which can be efficiently exploited by the multi-core scheduling
heuristic leading to an improvement in the co-simulation performance. The obtained speedup and numerical
accuracy results show the efficiency of our proposed method. In future work, we aim at comparing our
solution with an exact scheduling algorithm and also an online scheduling approach. Also, we will test
our proposed method on other industrial applications. In addition, we envision to extend MUO-RCOSIM to
real-time multi-core scheduling in order to perform Hardware-in-the-Loop simulation whose main challenge
is to map the real-time constraints on the different operations of the graph.
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