A. Bacciotti and L. Rosier, Liapunov functions and stability in control theory, Communications and Control Engineering, 2005.
DOI : 10.1007/b139028

URL : https://hal.archives-ouvertes.fr/hal-00139067

E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, On homogeneity and its application in sliding mode control, Journal of the Franklin Institute, vol.351, issue.4, pp.1866-1901, 2014.
DOI : 10.1016/j.jfranklin.2014.01.007

URL : https://hal.archives-ouvertes.fr/hal-00942326

P. S. Bhat and S. D. Bernstein, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, vol.17, issue.2, pp.101-127, 2005.
DOI : 10.1007/s00498-005-0151-x

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/45918/1/498_2005_Article_151.pdf

S. Bhat and D. S. Bernstein, Finite-time stability of homogeneous systems, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), pp.2513-2514, 1997.
DOI : 10.1109/ACC.1997.609245

W. Hahn, Stability of Motion, 1967.
DOI : 10.1007/978-3-642-50085-5

H. Hammouri and S. Benamor, Global stabilization of discrete-time homogeneous systems, Systems & Control Letters, vol.38, issue.1, pp.5-11, 1999.
DOI : 10.1016/S0167-6911(99)00040-7

H. Hermes, Homogeneus coordinates and continuous asymptotically stabilizing feedback controls, in, Differential Equations, Lecture Notes in Pure and Applied Math, vol.127, pp.249-260, 1991.
DOI : 10.1051/cocv:1997101

URL : http://www.numdam.org/article/COCV_1997__2__13_0.pdf

Y. Hong, H??? control, stabilization, and input???output stability of nonlinear systems with homogeneous properties, Automatica, vol.37, issue.6, pp.819-829, 2001.
DOI : 10.1016/S0005-1098(01)00027-9

A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, vol.41, issue.5, pp.823-830, 2005.
DOI : 10.1016/j.automatica.2004.11.029

Y. Orlov, Finite time stability of homogeneous switched systems, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.4271-4276, 2003.
DOI : 10.1109/CDC.2003.1271821

L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, vol.19, issue.6, pp.467-473, 1992.
DOI : 10.1016/0167-6911(92)90078-7

R. Sepulchre and D. Aeyels, Homogeneous Lyapunov functions and necessary conditions for stabilization, Mathematics of Control, Signals, and Systems, vol.3, issue.No. 3, pp.34-58, 1996.
DOI : 10.1007/978-1-4684-0374-9

URL : http://orbi.ulg.ac.be/bitstream/2268/78175/1/SA96.pdf

S. E. Tuna and A. R. Teel, Discrete-time homogeneous Lyapunov functions for homogeneous difference inclusions, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.1606-1610, 2004.
DOI : 10.1109/CDC.2004.1430274

V. I. Zubov, Methods of A. M. Lyapunov and their applications, P. Noordho: Limited, 1964.