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We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in
the number of closed sets. This implies that there is a polynomial time algorithm to compute the convex hull number
of a graph, when all its convex subgraphs are given as input. We then show that deciding if the smallest preimage of
a closed set is logarithmic in the size of the ground set is LOGSNP-hard if only the ground set is given. A special
instance of this problem is to compute the dimension of a poset given its linear extension graph, that is conjectured to
be in P.

The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the
definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices S. While for
|S| = 2 an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is
NP-complete even if |S| = 3. Finally, we consider the problem of computing the isometric hull number of a graph
and show that computing it is ΣP

2 complete.

Keywords: Convex hull in graphs, complexity

1 Introduction
In the present paper we focus on two classical notions of metric subgraphs: convex subgraphs and iso-
metric subgraphs. In both settings we study the complexity of computing a hull, i.e., a smallest metric
subgraph containing a set of vertices and the hull number, i.e., a smallest set of vertices whose hull is
the entire graph. While convex hulls and the convex hull-number are well studied and a subject of recent
research (CHZ00; HJM+05; CCG06; CHM+10; DPRS10; CPRPdS13; DGK+09; ACG+13; AK16), iso-
metric hulls and the corresponding hull-number seem to be as novel as it is natural.

We start introducing results concerning convexity. LetG = (V,E) be a graph. A set S ⊆ V is convex if,
for any u, v ∈ S, any (u, v)-shortest path inG is included in S. The (convex) hull conv(S) of a set S ⊆ V
is the smallest convex set containing S. Note that since convex sets are closed under intersection, the con-
vex hull is indeed unique. A (convex) hull set of G is a set S ⊆ V such that conv(S) = V . The (convex)
hull number hn(G) ofG is the size of a minimum hull set ofG. The hull number was introduced in (ES85),
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and since then has been the object of numerous papers. Application of graph convexity and the associ-
ated parameters include problems in contexts that require disseminating processes, such as contamina-
tion (BP98), marketing strategies (KKT15), spread of opinion (jDR09), spread of influence (KSZ14) and
distributed computing (HP01). Most of the results on the hull number are about computing good bounds
for specific graph classes, see e.g. (CHZ00; HJM+05; CCG06; CHM+10; DPRS10; CPRPdS13). While
computing the convex hull of a set vertices can be done in polynomial time, computing the hull number
of a graph G is known to be NP-complete (DGK+09) and remains so if G is a bipartite graph (ACG+13)
and even if G moreover is a partial cube (AK16), i.e., an isometric subgraph of a hypercube.

In the context of the present paper it will be useful to see graph convexity from a more general per-
spective. Indeed, the function conv : 2V → 2V sending vertex sets to their convex hulls belongs to a
wider family of functions. Given a set A, a function cl : 2A → 2A is a closure if it satisfies the following
conditions for all sets X,Y ⊆ A:

• X ⊆ cl(X) (extensive)

• X ⊆ Y =⇒ cl(X) ⊆ cl(Y ) (increasing)

• cl(cl(X)) = cl(X) (idempotent)

Clearly, conv is a closure. This leads to the following generalization of the hull number of a graph, that
we call Minimum Generator Set (MGS):

Given a set A, a polynomial time computable closure cl : 2A → 2A and an integer k, is there
a set X ⊆ A with |X| ≤ k such that cl(X) = A?

Since conv is a polynomial time computable closure, together with the results about the hull number
it follows that MGS is NP-complete. However, in (AK16), it was conjectured that MGS is solvable in
polynomial time if the set of images Im(cl) of cl is part of the input. We call this setting Generating with
large input in Subsection 2.1. Our first result is to answer the conjecture from (AK16) in the positive for
a larger class of functions. We call a function f : 2A → 2A a pseudo-closure if f satisfies f(X ∪ Y ) =
f(f(X) ∪ f(Y )) for any X,Y ⊆ A. The fact that closures are pseudo-closures is shown in Lemma 2.1.
In Theorem 2.3 we devise an algorithm that takes a pseudo-closure f and finds minimum generating sets
for all images of f in polynomial time (in |A|, |Im(f)| and the computation time of f ). Thus, in particular
we solve the conjecture of (AK16).

Pseudo-closures embody a large class of objects, most importantly closures. The latter are essentially
the same as lattices (see Subsection 2.2.1). This interpretation yields that it can be decided in polynomial
time if an element ` in a lattice L can be written as join of k join-irreducibles. Lattices encode many
combinatorial objects and our algorithm can be applied there. For instance using lattices given in (Her94)
and (SO96) our results yield polynomial-time algorithms to decide whether:

• a finite metric space has a hull set of size k, if all convex sets are given as input,

• a (semi)group can be generated by k elements, if all sub(semi)groups are given.

Then, in Section 2.2, we return to MGS in its original setting, i.e., with input (only) A, with the extra
restriction that we consider only atomistic closures, i.e., closures cl : 2A → 2A that satisfy cl({x}) = {x}
for all x ∈ A. We show that MGS is W[2]-hard (Corollary 2.6) already in this setting and its log-variant
LOGMGS
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Given a set A, a polynomial time computable atomistic closure cl : 2A → 2A and an integer
k ≤ log(|A|), is there a set X ⊆ A with |X| ≤ k such that cl(X) = A?

is LOGSNP-hard (Cor. 2.8).
It is then natural to restrict our attention again to the polynomial time computable atomistic clo-

sure conv. In this setting LOGMGS specializes to LOGHULL NUMBER(i). However, the complexity of
LOGHULL NUMBER is open and might actually be polynomial time. Indeed, in (AK16), it was conjec-
tured that, given a poset P together with all its linear extensions, the dimension of P can be computed
in polynomial time. Moreover, the latter problem turns out to be an instance of LOGHULL NUMBER
restricted to partial cubes, i.e., isometric subgraphs of hypercubes.

We study possible strategies to reduce to the hull number problem for partial cubes, in order to show
that LOGHULL NUMBER for partial cubes is LOGSNP-complete. This takes us naturally to the second
metric hull problem of concern in this paper. In order to introduce it, let again G = (V,E) be a graph.
A set S ⊆ V is isometric if, for any u, v ∈ S, some (u, v)-shortest path of G is included in S. An
isometric hull iso(S) of a set S ⊆ V is a smallest isometric set containing S. Thus, this problem can be
seen as a variation of the Steiner Tree problems. In particular, an isometric hull of two vertices is simply
a shortest path and, already in this case, clearly there is no unique isometric hull. While computing a
shortest path is easy, in Section 3 we show that computing an isometric hull of a set of vertices S is NP-
complete even if |S| = 3 (Theorem 3.1). Note that above we have already mentioned partial cubes that are
exactly isometric subgraphs of hypercubes. To illustrate the difficulty of the isometric hull computation,
we present a set X of vertices of the hypercube Qd for which we do not know if there is a partial cube
containing it of size polynomial in |X| and d. See Question 2.11 and the discussion thereafter.

Analogously to the convex hull set, an isometric hull set of G is a set S ⊆ V such that iso(S) = V .
Similarly to the convex hull number, the isometric hull number ihn(G) of G is the size of a minimum
isometric hull set of G. Clearly, since already computing isometric hulls is hard one can expect a higher
complexity for computing the isometric hull number. Indeed, we show that computing the isometric hull
number of a graph is ΣP2 complete(ii) (Theorem 3.2).

2 Minimum generators of pseudo-closures
Let A be any set and f : 2A → 2A a pseudo-closure. Note, that setting Y = X in f(X ∪Y ) = f(f(X)∪
f(Y )) one obtains, that f(X) = f(f(X)) for all X ⊆ A, i.e., pseudo-closures are idempotent. In
particular, pseudo-closures generalize closures in a different way than preclosures, which are not required
to be idempotent. Finally, f is said size-increasing if X ⊆ Y =⇒ |f(X)| < |f(Y )| or f(X) = f(Y )
for all X,Y ⊆ A. Let us first argue that in a way pseudo-closures are closures without the property of
being extensive.

Lemma 2.1 Let f : 2A → 2A. The following are equivalent:

(i) f is a closure,

(ii) f is an extensive pseudo-closure,

(iii) f is an extensive and size-increasing pseudo-closure.
(i) The LOGHULL NUMBER Problem takes a graph G = (V,E) and k ≤ log |V | as inputs and asks whether hn(G) ≤ k.
(ii) See, e.g., (PY96; DF12; FG06) for the definitions of the complexity classes LOGSNP, ΣP

2 and W [2], respectively.
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Proof: (i) =⇒ (iii): Let f be a closure, then it is extensive and increasing by definition and clearly also
size-increasing. Since f(X) ⊆ f(X ∪ Y ) and f(Y ) ⊆ f(X ∪ Y ), then f(X) ∪ f(Y ) ⊆ f(X ∪ Y ).
Hence, f(f(X)∪ f(Y )) ⊆ f(f(X ∪Y )) = f(X ∪Y ). Moreover, X ⊆ f(X) and Y ⊆ f(Y ), therefore,
f(X ∪ Y ) ⊆ f(f(X) ∪ f(Y )). Therefore f is an extensive and size-increasing pseudo-closure.

(iii) =⇒ (ii): trivial.
(ii) =⇒ (i): Let f be an extensive pseudo-closure. As argued above f is idempotent. It remains to

prove that f is increasing. Let X ⊆ Y . We have

f(X) ⊆ f(X) ∪ f(Y ) ⊆ f(f(X) ∪ f(Y )) = f(X ∪ Y ) = f(Y ),

where the second inclusion uses that f is extensive and the first equality uses that f is a pseudo-closure.
2

Just to give an example of a pseudo-closure, that is not a closure, consider:

Proposition 2.2 Let cl : 2A → 2A be a closure and ∅ 6= X ′ ⊆ X ⊆ A. Then f(Y ) := cl(Y ∪X) \X ′
is an increasing pseudo-closure that is not extensive.

Proof: To see that f is a pseudo-closure, we transform f(f(Y ) ∪ f(Z)) = cl(cl(Y ∪X) \X ′ ∪ cl(Z ∪
X) \X ′ ∪X) \X ′ which by X ′ ⊆ X equals cl(cl(Y ∪X) ∪ cl(Z ∪X) ∪X) \X ′ which since cl is
extensive equals cl(cl(Y ∪X) ∪ cl(Z ∪X)) \X ′. Now, since by Lemma 2.1 cl is a pseudo-closure, we
can transform to cl((Y ∪X) ∪ (Z ∪X)) \X ′ which equals cl(Y ∪ Z ∪X) \X ′ = f(Y ∪ Z).

It is easy to see that f is increasing and since X ′ 6⊆ f(X ′) it is not extensive. 2

We now turn our attention to the problem of generating images of a pseudo-closure. A set X ⊆ A
generates f(X), and X is minimum (for f ) if there is no set Y ⊆ A such that |Y | < |X| and f(X) =
f(Y ).

2.1 Generating with large input
In this section, we design a dynamic programming algorithm that computes a minimum generator of any
H ∈ Im(f) = {Y ⊆ A | ∃X ⊆ A, Y = f(X)}. We assume that, for any X ′ = X ∪ {w} ⊆ A
and given f(X), determining f(X ′) can be done in time cf . A similar algorithm has been published
previously in a different language and restricted to closure functions (NVRG05). Moreover, the approach
in (NVRG05) is incremental which leads to a time-complexity of O(cf |A||Im(f)|2) (while no runtime
analysis is presented there). We include our algorithm here to be self-contained but also because the
complexity O(cf |A||Im(f)|) of our algorithm is slightly better and we think that our presentation might
be more accessible to our community.

Let us describe the algorithm informally. Every set S ∈ Im(f) is assigned to one of its generators
stored in the variable label(S). Initially, label(S) may be any generator of S (for instance, S itself). The
algorithm considers the sets in Im(f) in non decreasing order of their size and aims at refining their labels.
More precisely, from a set Y ∈ Im(f) with generator label(Y ), the algorithm considers every set f(R)
generated by R = label(Y ) ∪ {z} for some z ∈ A. If R is smaller than label(f(R)) then R becomes the
new label of f(R).

Theorem 2.3 Algorithm MinGen(A, f) computes a minimum generator of any H ∈ Im(f) in time
O(cf (|A||Im(f)|)2).

Moreover, if f is size-increasing, its time-complexity is O(cf |A||Im(f)|).
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Algorithm 1 MinGen(A, f).

Require: A set A, a pseudo-closure f : 2A → 2A, and the set Im(f).
1: For any H ∈ Im(f) \ {f(∅)}, set label(H)← H and set label(f(∅))← ∅
2: Set Continue← True
3: while Continue do
4: Set Continue← False
5: for i = 1 to |A| do
6: for Y ∈ Im(f), |Y | = i do
7: for z ∈ A \ label(Y ) do
8: Set R← {z} ∪ label(Y )
9: Set H ← label(f(R))

10: if |R| < |H| then
11: label(f(R))← R and Continue← True
12: return {label(Y ) | Y ∈ Im(f)}

Proof: Let us first show that, at the end of the execution of the algorithm, label(Y ) is a minimum generator
for every Y ∈ Im(f).

Clearly, label(Y ) is initially a generator of Y (Line 1). Moreover, label(Y ) can only be modified when
it is replaced by R such that f(R) = Y (Line 11). Let us show that label(Y ) is minimum.

For purpose of contradiction, let Y ∈ Im(f) such that the value L of label(Y ) at the end of the
algorithm is not a minimum generator of Y . Let us furthermore assume that the size of a minimum
generator Z of Y is minimum among all counterexamples. Hence, there is Z ⊆ A with |Z| < |L| and
f(Z) = f(L) = Y and Z is a minimum generator for Y . By line 1, we know that Z 6= ∅. Hence, let
w ∈ Z and X = f(Z \ {w}). Any minimum generator of X has size at most |Z| − 1. Therefore, by
minimality of the size of a minimum generator of our counterexample, label(X) is a minimum generator
of X . In particular, f(label(X)) = X = f(Z \ {w}).

First, let us show that w /∈ label(X). Indeed, otherwise, X = f(label(X)) = f(label(X) ∪ {w}) =
f(f(label(X)) ∪ f(w)) = f(f(Z \ {w}) ∪ f(w)) = f(Z) = Y . Therefore, f(Z \ {w}) = X = Y ,
contradicting the fact that Z is a minimum generator for Y .

Consider the step when label(X) receives its final value. After this step, Continue must equal True.
Therefore, there is another iteration of the While-loop. During this next iteration, there must be an
iteration of the For-loop (Line 6) that considersX ∈ Im(f) and an iteration of the For-loop (Line 7) that
considers w /∈ label(X). At this iteration, we set H = f(label(X)∪ {w}) = f(f(label(X))∪ f(w)) =
f(f(Z \ {w}) ∪ f(w)) = f(Z) = Y . Because the size of the set label(Y ) is non increasing during
the execution, the value L′ of label(Y ) at this step is such that |L| ≤ |L′|. In particular, |label(X) ∪
{w}| ≤ |Z| < |L| ≤ |L′|. Therefore, during this execution (Line 11), label(Y ) should become equal to
label(X) ∪ {w}. Since, again, the size of the set label(Y ) is non increasing, it contradicts the fact that
label(Y ) = L at the end of the algorithm.

First, note that since f is idempotent and H ∈ Im(f) in Line 1 we can set label(H) ← H , i.e., this
can be done in constant time. Each iteration of the While-loop takes time O(cf |A||Im(f)|). Moreover,
each new iteration of this loop comes after a modification of some label in the previous iteration (Line
11, because Continue is set to True). Since there are |Im(f)| labels and each of them will receive at
most |A| values (because the size of a label is not increasing), the time-complexity of the algorithm is
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O(cf (|A||Im(f)|)2).
In case when f is size-increasing, we prove that each label contains its final value after the first iteration

of the While-loop. So, there are exactly 2 iterations of this loop in that case and the time-complexity is
O(cf |A||Im(f)|) when f is size-increasing.

More precisely, we show that the label of Y ∈ Im(f) contains its final value just before Y is considered
in the For-loop (line 6) of the first iteration. The proof is similar to the one of the correctness of the
algorithm.

For purpose of contradiction, let Y ∈ Im(f) such that the value L of label(Y ) just before Y is con-
sidered in the For-loop (line 6) of the first iteration is not a minimum generator of Y . Moreover, let us
consider such a counter example such that |Y | is minimum. Hence, there is Z ⊆ A with |Z| < |L| and
f(Z) = f(L) = Y . Let w ∈ Z and X = f(Z \ {w}). Any minimum generator of X has size at most
|Z| − 1. Moreover, because f is size-increasing, |X| = |f(Z \ {w})| < |f(Z)| = |Y | (because X 6= Y
since their minimum generators have different sizes). Therefore, by minimality of the counterexample,
label(X) is a minimum generator of X just before X is considered in the For-loop of the first iteration,
and moreover, X is considered before Y . In particular, f(label(X)) = X = f(Z \ {w}).

Similarly as before, w /∈ label(X). Hence, during the iteration (of the For-loops) that considers X
and w, either label(Y ) must become label(X) ∪ {w} or |label(Y )| ≤ |label(X) ∪ {w}| ≤ |Z|. In both
cases, it is a contradiction since X is considered before Y and |label(X) ∪ {w}| < |L|. 2

From Th. 2.3, Lemma 2.1, and the preceding discussion we immediately get:

Corollary 2.4 Let cl : 2A → 2A be a closure. MGS can be solved in O(ccl|A||Im(cl)|) time.

This confirms a conjecture of (AK16) (which could have probably also been extracted from (NVRG05))
and slightly improves the time-complexity of (NVRG05) in the case of a closure. Furthermore, it is well
known and easy to see that for a closure cl(X) =

⋂
X⊆Y ∈Im(cl) Y . Thus, ccl is in O(|Im(cl)|) yielding a

uniform bound of O(|A||Im(cl)|2).

2.2 Generating with small input
In this section we show that for an atomistic closure cl : 2A → 2A, the problem MGS is W[2]-hard with
respect to the size of the solution, when only A is the input. Furthermore, LOGMGS is LOGSNP-hard. We
then introduce the problem COORDINATE REVERSAL, show an equivalence with HITTING SET, and
finally relate it to the hull number problem in partial cubes.

First, recall that a set X ⊆ A is closed for a closure cl if cl(X) = X . For instance, the closed sets for
the closure conv are exactly the convex sets.

We will present a reduction from the HITTING SET Problem that takes a ground set U and a set
X ⊆ 2U of subsets of U and an integer k as inputs and aims at deciding if there exists K ⊆ U of size at
most k such that K ∩X 6= ∅ for every X ∈ X .

Proposition 2.5 HITTING SET is L-reducible to MGS, i.e., there is a polynomial time reduction that
preserves the size of optimal solutions.

Proof: Let (U,X ) be an instance of HITTING SET, where we assume without loss of generality that
for any two elements u, v ∈ U there is a set X ∈ X such that u ∈ X but v /∈ X . We now define the
following function cl : 2U → 2U by mapping S ⊆ U to the minimal set cl(S) that contains S and is the
intersection of complements of elements of X . Clearly, cl(S) can be computed in polynomial time, since
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it is formed by passing through all members of X and including their complement into the intersection if
necessary. Furthermore, it is easy to check, that cl indeed satisfies the axioms of a closure. Since for any
two u, v ∈ U there is a set X ∈ X such that u ∈ X but v /∈ X , we moreover get that cl is atomistic.
Finally, note that for a subset K ⊂ U we have that K hits every element of X if and only if for every
U \X with X ∈ X , there is an element u ∈ K with u /∈ U \X , which is equivalent with K not being
contained in any set U \X , i.e., cl(K) = U . This concludes the proof. 2

It was already known that the problem of determining the hull number is NP-complete in general
graphs (DGK+09). This result has been proved for bipartite graphs in (ACG+13) and in even partial
cubes in (AK16). However, all known reductions reduce variants of 3-SAT to the decision version of hull
number. Here, we have shown reduction from a a combinatorial optimization problems are equivalent
in the stronger sense of L-reductions, i.e., sizes of solutions are preserved. This has some immediate
consequences.

Since HITTING SET is W[2]-complete (DF12), Proposition 2.5 gives:

Corollary 2.6 MGS is W[2]-hard.

Using results of Dinur and Steurer (DS14), by Proposition 2.5 we get:

Corollary 2.7 MGS cannot be approximated to
(
1− o(1)

)
· lnn unless P=NP.

In (FG06, Theorem 15.59) it is shown that LOGHITTING SET is LOGSNP (aka LOG[2]) complete,
which with Proposition 2.5 gives:

Corollary 2.8 LOGMGS is LOGSNP-hard.

Concerning Proposition 2.5 we are not aware of a reduction the other way around and state here as an
open question the complexity status of LOGMGS.

Since the conv-operator for graphs – sending sets of vertices to their convex hull – is an atomistic
closure, we wonder if similar results can be proved for the hull number problem, or if this problem is
essentially easier. For instance in (AMS+16), a fixed parameter tractable algorithm to compute the hull
number of any graph was obtained. But there the parameter is the size of a vertex cover. How about the
complexity when parameterized by the size of a solution?

2.2.1 Lattices
Let us discuss the above from a lattice-theoretic point of view. A lattice is a poset L = (X,≤) such that
for any two elements x, y ∈ X there is a unique smallest element x ∨ y ∈ L such that x, y ≤ x ∨ y
(the join of x and y) and a unique largest element x ∧ y ∈ L such that x, y ≥ x ∧ y (the meet of x
and y). It is well known that closures correspond to lattices in the following way: Given a closure cl
define the inclusion order on the closed sets, i.e., Lcl(Im(cl),⊆). Indeed, since Lcl the unique maximal
element A and the intersection of closed sets is closed, it is easy to see that lattice Lcl where the meet of
two closed sets is their intersection and their join is the closure of their union. On the other hand given
a lattice L, an element j ∈ L is called join-irreducible if j = x1 ∨ . . . ∨ xk =⇒ j ∈ {x1, . . . , xk}
for all x1, . . . , xk ∈ L. If J is the set of join-irreducibles of L, we associate to every ` ∈ L the set
↓` = {j ∈ J | j ≤ `} of join-irreducibles below `. One can see that L is isomorphic to the inclusion
order ({↓` | ` ∈ L},⊆). The function cl : 2J → 2J with cl(J ′) =↓

∨
J ′, where

∨
J ′ ∈ L denotes the

join of J ′, is a closure and ({↓` | ` ∈ L},⊆) corresponds to the closed sets of cl .
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The above correspondence specializes to atomistic closures. Indeed, a lattice is atomistic if its join-
irreducibles are exactly its atoms, i.e., those elements directly above the minimum. The corresponding
class of closures are the atomistic closures. Now we can state the following :

Question 2.9 What are the atomistic lattices that come from the convex subgraphs of a graph?

Clearly, these lattices are quite special, in particular any such lattice is entirely determined by its first
two levels, since these correspond to vertices and edges of the graph. On the other hand, it is not clear
what other properties such lattices enjoy. For instance, the graph in Figure 1 shows that convexity lattices
of graphs are not ranked in general, i.e., not all maximal chains are of the same length.

Kn
a b

c d

Fig. 1: A family of graphs with lattice of convex subgraphs being arbitrary far from ranked.

For example, Ptolemaic graphs are exactly those graphs whose lattice of convex subgraphs is lower
locally distributive (FJ86). Also, in (AK16), the lattices of convex subgraphs of partial cubes were char-
acterized. However, we do not know how to make use of these characterizations.

Let us now approach the hull number problem in partial cubes via a different reduction. Given a vertex
x ∈ Qd of the hypercube of dimension d, let us consider x as a binary word with d bits (and two vertices
are adjacent if they differ by exactly one bit). Given a coordinate e ≤ d, let us denote by xe the eth bit of
x. We call COORDINATE REVERSAL the following problem:

Given a set X of vertices of the hypercube Qd and an integer k, is there a subset X ′ ⊆ X ,
with |X ′| ≤ k and such that for every coordinate e of Qd there are vertices x, y ∈ X ′ with
xe 6= ye.

Proposition 2.10 COORDINATE REVERSAL is L-equivalent to HITTING SET.

Proof: Let (U,X ) be an instance of hitting set with X = {X1, . . . , Xd}. Let us furthermore assume that
U ∈ X and that for any two distinct u, v ∈ U there is an X ∈ X such that u ∈ X but v /∈ X . Clearly,
these assumptions do not change the complexity of HITTING SET.

Now, define a new instance (U+,X+), where U+ = U ∪ {x} is U extended with one vertex x and
X+ = {Xi, U

+ \ Xi | 1 ≤ i ≤ d} is X together with the set of complements with respect to the new
ground set.

If H is a hitting set of size k of (U,X ), then H ∪ {x} is a hitting set of size k + 1 of (U+,X+).
Conversely, if I is a hitting set of size k + 1 of (U+,X+), then since U ∈ X we have {x} ∈ X+ and
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therefore x ∈ I . Hence I \ {x} is a hitting set of size k of (U,X ). Thus, the new instance (U+,X+) has
a hitting set of size k + 1 if and only if the old one has one of size k.

Let us now show how to interpret the hitting set instance (U+,X+) as an equivalent instance of
COORDINATE REVERSAL. We encode U+ as a subset of vertices of the hypercube of dimension d =

|X+|
2 by associating to every v ∈ U+ a vector v with coordinates vi =

{
1, v ∈ Xi,

−1, v ∈ U+ \Xi.
Note that

by the assumption that for any two distinct u, v ∈ U there is an X ∈ X such that u ∈ X but v /∈ X ,
the mapping v 7→ v is a bijection. Now, under this mapping a hitting set I of (U+,X+) corresponds to
a solution of COORDINATE REVERSAL, i.e., a subset I ⊆ U

+
such that each coordinate is reversed,

i.e., appears once positively and once negatively. Conversely, a solution to COORDINATE REVERSAL
corresponds to a subset of U+ that for any coordinate i contains an element v ∈ Xi and an element
w ∈ (U+ \Xi). Thus, it is a hitting set of (U+,X+).

Now, take conversely an instance (X, k) of COORDINATE REVERSAL in Qd. We construct an in-
stance (X,X ) of HITTING SET. Define for 1 ≤ i ≤ d the set Xi := {x ∈ X | xi = +} and let
X = {Xi, X \ Xi | 1 ≤ i ≤ d}. As in the previous paragraph solution of size k of COORDINATE
REVERSAL are in bijection to solutions of size k of HITTING SET in (X,X ). 2

Now, in (AK16), it is shown that, in a partial cube G = (V,E) ⊆ Qd, HULL NUMBER coincides with
COORDINATE REVERSAL for V and Qd, therefore, HULL NUMBER in partial cubes is a special case of
COORDINATE REVERSAL. In order to L-reduce COORDINATE REVERSAL to partial cube hull num-
ber along the lines of Proposition 2.10, it would be interesting to check if, given a subset V ′ ⊆ Qd, a
smallest partial cube containing V ′ has to be polynomial in |V ′| + d. Moreover it is important to main-
tain the same solution size with respect to COORDINATE REVERSAL. In (FG06, Theorem 15.59) it is
shown that LOGHITTING SET is LOGSNP (aka LOG[2]) complete. Hence, this would show LOGSNP-
completeness of LOGHULL NUMBER for partial cubes, one instance of which is calculating the dimension
of a poset given its linear extensions, see (AK16). So as a first step we wonder:

Question 2.11 Let X be a set of vertices of the hypercube Qd, does there exist an isometric subgraph G
of Qd, containing X , such that |G| is polynomial in |X|+ d?

Let Mk be a (0, 1)-matrix whose columns are all the (0, 1)-vectors of length k. Now, Xk ⊆ Q2k is
defined as the set of rows of Mk. We do not know the answer to Question 2.11 for the set Xk.

These questions lead to the problem of computing a small isometric subgraph containing a given set of
vertices, which is the subject of the next section.

3 Isometric hull
We recall the definitions related to the isometric hull from the introduction. Let G = (V,E) be a graph.
For any v, u ∈ V , let distG(u, v) denote the distance between u and v, i.e., the minimum number of edges
of a path between u and v in G. A subgraph H = (V ′, E′) (i.e., V ′ ⊆ V and E′ ⊆ (V ′ × V ′) ∩ E))
of G is isometric if distG(u, v) = distH(u, v) for any u, v ∈ V ′. Given S ⊆ V , an isometric hull
of S is any subgraph H = (V ′, E′) of G such that S ⊆ V ′ and H is isometric. An isometric hull
H = (V ′, E′) of S is minimum if |V ′| is minimum, i.e., there are no isometric hulls of S with strictly less
vertices. Note that a set S may have several minimum isometric hulls. As an example, consider the 4-node
cycle C4 = (a, b, c, d): the subgraphs induced by {a, b, c} and {a, d, c} are minimum isometric hulls of
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S = {a, c}. More generally, for any S = {u, v}, inclusion-minimal isometric hulls of S are any shortest
path between u and v. So, if |S| = 2, all minimal isometric supergraphs of S are of the same size and
computing a minimum isometric hull of S is easy. For |S| > 2 it is easy to find examples with minimal
isometric supergraphs that are not minimum. We show below that computing a minimum isometric hull
is NP-complete if |S| > 2. An isometric hull set S ⊆ V of G is any subset of the vertices such that G is
the (unique) minimum isometric hull of S.

This section is devoted to prove the following theorems.

Theorem 3.1 Given an n-node bipartite graph G = (V,E), S ⊆ V and k ∈ N, deciding whether there
exists an isometric hull H of S with |V (H)| ≤ k is NP-complete, even if |S| = 3 and k = n − 1. In
particular, deciding whether a set S of vertices is an isometric hull set of a graph is co-NP-complete.

Theorem 3.2 Given a graph G and k ∈ N, the problem of deciding whether G admits an isometric hull
set of size at most k is ΣP2 -complete.

Let us start with an easier result where neither the size of the input set S nor the size k of the isometric
hull are constrained, but where the class of bipartite graphs is restricted to have diameter 3.

Lemma 3.3 Given G = (V,E) bipartite with diameter 3, S ⊆ V and k ∈ N, deciding if there exists an
isometric hull I of S with |V (I)| ≤ k is NP-complete.

Proof: The problem is clearly in NP since testing whether a subgraph is isometric can be done in
polynomial-time.

To prove that the problem is NP-hard, let us present a reduction from the HITTING SET Problem that
takes a ground set U = {u1, · · · , un} and a set X = {X1, · · · , Xm} ⊆ 2U of subsets of U and an integer
k as inputs and aims at deciding if there exists K ⊆ U of size at most k such that K ∩Xj 6= ∅ for every
j ≤ m. Note that we may assume that at least two sets of S are disjoint (up to adding a dummy vertex in
U and a set restricted to this vertex).

Let us build the graph G as follows. We start with the incidence graph of (U,X ), i.e., the graph with
vertices U ∪ X = {u1, · · · , un, X1, · · · , Xm} and edges {ui, Xj} for every i ≤ n, j ≤ m such that
ui ∈ Xj . Then add a vertex x adjacent to every vertex in U and a vertex y adjacent to every vertex in X .
Note that G has diameter 3. Finally, let S = {x} ∪ X .

We show that (U,X ) admits a hitting set of size k if and only if S has an isometric hull of size k+m+2.
Note that, because at least two sets are disjoint, y must be in any isometric hull of S (to ensure that these
sets are at distance two). Moreover, for every set containing (at least) x, y and X , all distances are
preserved but possibly the ones between x and some vertices of X ∪ {y} . We show that I is an isometric
hull of S if and only if K = V (I) \ (S ∪ {y}) is a hitting set of (U,X ). Indeed, for every j ≤ m,
the distance between Xj and x equals 2 in I if and only if K contains a vertex ui adjacent to Xj , i.e.,
K ∩Xj 6= ∅ for every j ≤ m. 2

Now, let us consider a restriction of Theorem 3.1 in the case k = n− 1 (without constraint on |S|). For
this purpose, we present a reduction from 3-SAT.

Preliminaries: the triangle gadget Tγ . Let us first describe a gadget subgraph, parameterized by an
odd integer γ (iii), for which only 3 vertices generate the whole graph. That is, we describe a graph Tγ with

(iii) γ is set odd only to avoid parity technicality in the computation of the distances.
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Fig. 2: Example of T7. Edges are bold only to better distinguish the different “levels”.

size Θ(γ2) such that there are 3 vertices (called the corners) whose minimum isometric hull is the whole
graph. Moreover, some vertex (called the center) of Tγ is “far” (at distance Θ(γ2)) from the corners.

Let γ ∈ N∗ be any odd integer. Let us define recursively a γ-triangle with corners {xγ , yγ , zγ} and
center cγ as follows.

A 3-triangle T3 is a K1,3 where the big bipartition class {x3, y3, z3} are the corners and the center is
the remaining vertex c3.

Let γ > 3 be an odd integer and let Tγ−2 be a (γ − 2)-triangle with corners {xγ−2, yγ−2, zγ−2} and
center cγ−2. The γ-triangle Tγ is obtained as follows. First, let Uγ be the cycle of length 3(γ − 1)
with vertices xγ , yγ , zγ that are pairwise at distance γ − 1. For any u, v ∈ {xγ , yγ , zγ}, let auv be the
vertex at distance bγ/2c from u and v in Uγ . The graph Tγ is obtained from Uγ and Tγ−2 by identifying
xγ−2, yγ−2, zγ−2 with axγ ,yγ , ayγ ,zγ and azγ ,xγ , respectively. The corners of Tγ are xγ , yγ and zγ , and
the center cγ of Tγ is the center cγ−2 of Tγ−2. Note that the center cγ of Tγ is the center c3 of the “initial
triangle” T3. An example is depicted on Figure 2.

The following claim can be easily proved by induction on γ. The second statement also comes from
the fact that Tγ−2 is an isometric subgraph of Tγ .

Claim 1 For any odd integer γ > 3, let Tγ with corners S = {xγ , yγ , zγ}

• |V (Tγ)| = |V (Tγ−2)|+ 3(γ − 2) = Θ(γ2);

• the (unique) isometric hull of S is Tγ;

• the distance between any two corners in Tγ is γ − 1;

• the distance between the center and any corner in Tγ is
∑d γ2 e
i=1 i = Θ(γ2);

• since Tγ is planar and all faces are even, Tγ is bipartite.

Lemma 3.4 Given a bipartite n-node graph G = (V,E), X ⊆ V , deciding whether there exists an
isometric hull I of X with |V (I)| < n is NP-complete.
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Proof: The problem is clearly in NP since testing whether a subgraph is isometric can be done in polyno-
mial time. To prove that the problem is NP-hard, let us present a reduction from 3-SAT.

We first present a reduction proving that the problem of deciding whether there exists an isometric hull
with size at most k (given as input) is NP-complete. Then, in the last paragraph, we prove the lemma (i.e.,
for k = n− 1).

Let Φ be a CNF formula with n variables v1, · · · , vn and m clauses C1, · · · , Cm. Let us describe a
graph G0 = (V,E), S ⊆ V and k ∈ N such that an isometric hull of S has size at most k if and only if Φ
is satisfiable.
Let α, β and γ be three integers satisfying: α and β are even and γ is odd and

m << 2α < 2β < γ < 2(α+ β).

The graph G0 is built by combining some variable gadgets, clause-gadgets and adding some paths
connecting the variable gadgets with some particular vertex r.
Variable gadget. For any 1 ≤ i ≤ n, the variable gadget V i consists of a cycle of length 4α with four
particular vertices di, ni, pi, gi such that di and gi are antipodal, i.e., at distance 2α of each other, ni and
pi are antipodal, and distV i(di, ni) = distV i(di, pi) = distV i(gi, ni) = distV i(gi, pi) = α. Let P i and
N i be the shortest path between di and gi in V i passing through pi and ni, respectively.
Clause gadget. For any 1 ≤ j ≤ m and clauseCj = (`i∧`k∨`h) (where `i is the literal corresponding to
variable vi in clause Cj), the clause gadget Cj is a γ-triangle with corners denoted by `i, `k, `h (abusing
the notation, we identify the corner-vertices and the literals they correspond to) and center denoted by cj .
The graph G0. The graph G0 is obtained as follows. First, let us start with disjoint copies of V i, for
1 ≤ i ≤ n, and of Cj , for 1 ≤ j ≤ m. Then, add one vertex r and, for any 1 ≤ i ≤ n, add a path
P (r, di) of length β between r and di and a path P (r, gi) of length β between r and gi (these 2n paths are
vertex-disjoint except in r). Finally, for any 1 ≤ j ≤ m and any literal `i in the clause Cj , let us identify
the corner `i of Cj with vertex pi (in the variable gadget V i) if variable vi appears negatively in Cj (i.e.,
if `i = v̄i) and identify the corner `i of Cj with vertex ni if variable vi appears positively in Cj (i.e., if
`i = vi). Let us emphasize that, if variable vi appears positively (negatively) in Cj , then a corner of Cj

is identified with a vertex of the path N i (P i). By the parity of α, β and γ, G0 is clearly bipartite. An
example is depicted in Figure 3.
The set S. Finally, let S = {r} ∪ {di, gi | 1 ≤ i ≤ n}.

We first show that S has an isometric hull of size at most k := n(α+ 2β) +mγ in G0 if and only if Φ
is satisfiable.

Claim 2 S has an isometric hull of size at most k := n(α+2β)+mγ inG0 if and only if Φ is satisfiable.

Proof of the claim.
Let us start with some simple observations (following from the constraints on α, β and γ):

1. For any 1 ≤ i ≤ n, distG0
(di, gi) = distG0

(pi, ni) = 2α and there are exactly two shortest paths P i

and N i between di and gi. Intuitively, choosing P i (resp., N i) in the isometric hull will correspond
to a positive (resp., negative) assignment of variable vi.

2. For any 1 ≤ i ≤ n, distG0(r, di) = distG0(r, gi) = β and P (r, di) (resp., P (r, gi)) is the unique
shortest path between r and di (resp., between r and gi). In particular, each of these paths has to be
in any isometric hull of S.
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Fig. 3: An example for the graphG0 of the reduction of Lemma 3.3 for Φ with variables v1, v2, v3, v4 and two clauses
C1 = v1∨v̄2∨v̄3 andC2 = v2∨v̄3∨v̄4. The solid bold lines represent the clause gadgetC1 which is a γ-triangle (only
few “levels” are depicted), and the dotted bold lines represent the clause gadget C2. The vertices c1 and c2 denote the
centers of C1 and C2 respectively. Red vertices are the ones of the set S = {r, d1, g1, d2, g2, d3, g3, d4, g4}. Finally,
the red subgraph is the isometric hull of S corresponding to the truth assignment (v1, v2, v3, v4) = (1, 0, 1, 0). The
graph G is obtained from G0 by adding a vertex q adjacent to c1 and c2.

3. For any 1 ≤ i < j ≤ n, distG0
(dj , di) = distG0

(dj , gi) = 2β and the unique shortest path between
them is the one going through r (because 2β < γ).

4. For any 1 ≤ j ≤ m and clauseCj = (`i∨`k∨`h), distG0
(¯̀
i, ¯̀

h) = distG0
(¯̀
h, ¯̀

k) = distG0
(¯̀
i, ¯̀

k) =
γ−1 (where ¯̀

i denotes ni if vi appears positively inCj and it denotes pi otherwise). This is because
γ < 2(α+ β) and the unique shortest path between these vertices is the one in Cj .

5. For any 1 ≤ h < k ≤ n, `h ∈ {nh, ph} and `k ∈ {nk, pk} such that literals ¯̀
h and ¯̀

k do not appear
in a same clause, then distG0

(`h, `k) = 2(α + β) (because 2β < γ). In particular, every shortest
path between `h and `k does not cross any clause gadget.

6. Let 1 ≤ h < k ≤ n, `h ∈ {nh, ph} and `k ∈ {nk, pk} appearing in a clause Cj . For any vertex u
in the shortest path between `h and `k in the clause gadget Cj , and for any v ∈ {di, gi} for some
i /∈ {h, k}, distG0

(u, v) ≤ γ/2 +α+ 2β. In particular, any shortest path between u and v does not
pass through the third corner (different from `h and `k) of Cj . This is because γ > 2β.

• First, let us show that, if Φ is satisfiable, there is an isometric hull of S with size at most n(α +
2β) + mγ in G0. Indeed, consider a truth assignment of Φ and let H be the subgraph defined as
follows. For any 1 ≤ i ≤ n, the paths P (r, di) and P (r, gi) belong to H . For any 1 ≤ i ≤ n, if
vi is assigned to True, add P i in H , and add N i otherwise. Finally, for any 1 ≤ j ≤ m, for any
two corners of the clause gadget Cj , if these two corners are in H , then add to H the path of length
γ − 1 between them in Cj .
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Clearly, H contains all vertices in S. To show that H is isometric, let us first show that any clause
gadget has at most two corners in H . Let x ∈ {ni, pi} be a corner of a clause gadget Cj which is
in H . If x = ni (resp., x = pi) is in H , it implies that the path N i (resp., P i) has been added in
H . Therefore, the variable vi is assigned to False (resp., to True) in the assignment. On the other
hand, if x = ni (resp., x = pi) is a corner of Cj , it means that the variable vi appears positively
(resp., negatively) in clause Cj . Altogether, this implies that, in the assignment, Variable vi cannot
satisfy clause Cj . Since the assignment satisfies Φ, each clause must be satisfied by at least one of
its variables, which implies that at least one of its corners is not in H .

To sum-up H consists of the 2n paths from r to the vertices di, gi, 1 ≤ i ≤ n, of exactly on path P i

or N i, 1 ≤ i ≤ n, and of at most one path between two corners of Cj , 1 ≤ j ≤ m. Hence, H has
at most n(α+ 2β) +mγ vertices. The fact that H is isometric comes from the above observations
on the shortest paths in G0.

• To conclude, let us show that, if Φ is not satisfiable, then any isometric hull of S, in G0, has size at
least n(α+ 2β) + Ω(γ2), i.e., strictly larger than n(α+ 2β) +mγ (since γ >> m).

As already mentioned, any isometric hull of S has to contain each of the paths P (r, di) and P (r, gi)
and at least one of the paths P i and N i, 1 ≤ i ≤ n. This consists of at least n(α+ 2β) vertices. It
remains to show that, for any isometric hull H of S, there exists j ≤ m such that the entire clause
gadget Cj belongs to H . This will consist of Ω(γ2) additional vertices.

Let H be an isometric hull of S. For any 1 ≤ i ≤ n, at least P i or N i belongs to H . If P i belongs
to H , assign variable vi to True and assign it to False otherwise. Since Φ is not satisfiable, there is
a clause Cj = (`i ∨ `k ∨ `h) that is not satisfied. Let u ∈ {i, h, k}. If vu appears positively (resp.,
negatively) in Cj , then vu is assigned to False (resp., to True) since Cj is not satisfied. Moreover,
it implies that Pu (resp., Nu) belongs to H . By construction, the corner `u of Cj belongs to Pu

(resp., Nu) and so, `u belongs to H . Hence, all the three corners of Cj belong to H and it is easy
to see that the entire Cj must belong to H since, recursively, all paths in Cj have to be added to
preserve the fact that H is isometric.

�

To prove Lemma 3.4, from G0, let us build a graph G such that S (which remains unchanged) has an
isometric hull of size at most |V (G)| − 1 if and only if Φ is satisfiable. The graph G is obtained from G0

by adding to it a gadget (one vertex) that will ensure that if the center of one clause gadget belongs to an
isometric hull (recall that, in the first part of the proof, this is the case if and only if Φ is not satisfiable),
then all vertices of the graph will have to be in the isometric hull.

Let us add to G0 one vertex q adjacent to all the centers of the clause gadgets in G0. Note that the
obtained graph G is bipartite.

• If Φ is satisfiable, consider any truth assignment and let H be the subgraph (as defined in the
previous proof) that consists of the 2n paths from r to the vertices di, gi, 1 ≤ i ≤ n, of exactly on
path P i orN i, 1 ≤ i ≤ n, and of at most one path between two corners ofCj , 1 ≤ j ≤ m. Because
each center of a clause gadget is at distance Ω(γ2) from any vertex of H , the addition of vertex q
in the graph has not modified the distances between vertices in H . Therefore, H is isometric (as in
the first part of the proof) and S is not an isometric hull set of G.
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• If Φ is not satisfiable, then we prove that S is an isometric hull set of G.

If Φ is not satisfiable, then it can be shown as previously that any isometric hull H of S contains at
least one of the paths P i or N i for any 1 ≤ i ≤ n, and an entire clause gadget Cj for some j ≤ m.
In particular, the center c of Cj belongs to H . Now, let 1 ≤ i ≤ n and let us assume that N i is
not in H . Note that, in this case, P i must be in H . Therefore pi ∈ V (H) and ni /∈ V (H). By
assumption, there is a clause Cz that contains vi positively and does not contain vi negatively. By
construction, the clause gadget Cz has ni as a corner and pi is not a corner of Cz . Note that z 6= j
since all corners of Cj belong to H . Now, any shortest path between c and di must go from c to q
then to the center of the clause gadget Cz and then through ni to di. In particular, ni must be added
to the isometric hull. It can be proved similarly that if P i does not belong to H , then pi has to be
included into H .

Altogether, we just proved that, for any 1 ≤ i ≤ n, both ni and pi belong to H . It is easy to
conclude that H = G. Indeed, in particular, any clause gadget has all its corner in H and therefore,
the entire clause gadget must be included in H .

2

Finally, to prove Th. 3.1, we will reduce the problems that we proved NP-complete in Lemma 3.4 to
the same problems in the case |S| = 3. Note that, in both reductions of Lemmas 3.3 and 3.4, the distance
between any pair of vertices of S is even, so both problems are NP-complete with this extra constraint.

Proof: of Th. 3.1. Let G,S, k be an instance of the problem of finding an isometric hull of S with size at
most k. Let n = |V (G)| and let S = {u1, · · · , us}. Moreover, let us assume that the distance between
any pair of vertices of S is even.

Let G′ be obtained as follows. Start with a copy of G, a path P = (x = v0, v1, w1, v2, w2, · · ·
, ws−1, vs, vs+1 = y} and a vertex z. Let n′ = n if n even and n′ = n+ 1 otherwise. For any 1 ≤ i ≤ s,
add a path of length n′ between vi and ui and add a path of length n′ between z and ui. Note that G is an
isometric subgraph of G′ and that G′ is bipartite. Finally, let S′ = {x, y, z}.

Any isometric hullH of S′ has to contain the (unique) shortest path P between x and y. Hence, for any
1 ≤ i ≤ s, H contains vi and therefore must contain the (unique) shortest path Pi between vi and z (of
length 2n′). In particular H contains ui for any 1 ≤ i ≤ s. Since G is isometric in G′, then the subgraph
induced by the vertices in V (G) ∩ V (H) is an isometric hull of S in G.

Therefore, S admits an isometric hull of size at most k in G if and only if S′ admits an isometric hull
of size k + |V (G′) \ V (G)| = k + 2sn′ + s + 1. In particular, if k = n − 1, then the formula gives
|V (G′)| − 1. 2

Note that deciding whether a set S of vertices is not an isometric hull set of an n-node graph is equiva-
lent to decide whether S has an isometric hull of size < n. Therefore:

Corollary 3.5 Deciding whether a set of vertices is an isometric hull set is co-NP-complete.

Finally, to prove Theorem 3.2, we present a reduction from the problem of satisfiability for quantified
Boolean formulas with 2 alternations of quantifiersQSAT2 which is well known to be ΣP2 -complete (Pap07).
The reduction is an adaptation of the one presented in the proof of Theorem 3.1.

In the proof below, we will use the following easy claim to force some vertices to belong to any iso-
metric hull set.
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Claim 3 For any graph G = (V,E) and any vertex v ∈ V such that G \ v is isometric, we have that v
has to belong to any isometric hull set of G. In particular, any one-degree vertex of G has to belong to
any isometric hull set of G.

Proof: of Theorem 3.2. First, the problem is in ΣP2 . Indeed, by Theorem 3.1, a certificate S (i.e., a set of
vertices which is supposed to be an isometric hull set of G) can be checked using an NP oracle.

To prove that it is hard for ΣP2 , let us give a reduction fromQSAT2 where the input is a Boolean formula
Φ on two sets X = {x1, · · · , xnx} and Y = {y1, · · · , yny} of variables and the question is to decide
whether ∃X,∀Y,Φ(X,Y ). We moreover may assume that Φ is 3-DNF formula, i.e., the disjunction of
conjunctive clauses C1, · · · , Cm with 3 variables each. We also assume that, for each variable, some
clause contains it positively and some clause contains it negatively, and that no variable appears positively
and negatively in some clause.

Let us describe a graph G = (V,E) and k ∈ N such that there exists an isometric hull set S of size at
most k if and only if ∃X,∀Y,Φ(X,Y ).

Let α, β and γ be three integers satisfying: α and β are even and γ is odd and

m << 2α < 2β < γ < 2(α+ β).

The graph G is built by combining some variable gadgets, clause gadgets and adding some paths con-
necting the variable gadgets with some particular vertex r. We emphasize the differences with the graph
proposed in previous subsection.

Variable gadget. For any 1 ≤ i ≤ ny , the variable gadget Y i consists of a cycle of length 4α with
four particular vertices dyi , n

y
i , p

y
i , g

y
i such that dyi and gyi are antipodal, i.e., at distance 2α, nyi and pyi are

antipodal, and distY i(d
y
i , n

y
i ) = distY i(d

y
i , p

y
i ) = distY i(g

y
i , n

y
i ) = distY i(g

y
i , p

y
i ) = α. Let P iy (resp.,

N i
y) be the shortest path between dyi and gyi in Y i passing through pyi and nyi , respectively.
Moreover, let us add a one-degree vertex ddyi adjacent to dyi and a one-degree vertex ggyi adjacent to gyi

(This is the first difference with the previous section). By the above claim both vertices ddyi and ggyi have
to belong to any isometric hull set of G.

For any 1 ≤ i ≤ nx, the variable gadget Xi, the vertices dxi , n
x
i , p

x
i , g

x
i , dd

x
i , gg

x
i and the paths P ix and

N i
x are defined similarly.

Clause gadget. For any 1 ≤ j ≤ m and clause Cj = (`i ∧ `k ∧ `h), the clause gadget Cj is a γ-triangle
with corners denoted by `i, `k, `h (abusing the notation, we identify the corner-vertices and the literals
they correspond to) and center denoted by cj .
The graph G. The graph G is obtained as follows. First, let us start with disjoint copies of Xi, for
1 ≤ i ≤ nx, of Y i for 1 ≤ i ≤ ny , and of Cj , for 1 ≤ j ≤ m. Then, add one vertex r and, for any
1 ≤ i ≤ nx, add a path P (r, dxi ) of length β between r and dxi and a path P (r, gxi ) of length β between
r and gxi (these 2nx paths are vertex-disjoint except in r). Similarly, for any 1 ≤ i ≤ ny , add a path
P (r, dyi ) of length β between r and dyi and a path P (r, gyi ) of length β between r and gyi (these 2ny paths
are vertex-disjoint except in r).

Then, add a one-degree vertex r′ adjacent to r (This is another difference with the previous section).
Again, by the above claim, vertex r′ has to belong to any isometric hull set of G.

A main difference with the construction in the previous section is the way the clause gadgets are con-
nected to the variable gadgets. Intuitively, this is because we consider now a DNF formula while previ-
ously it was a CNF formula.
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For any 1 ≤ j ≤ m and any literal `i in the clause Cj (corresponding to some variable vi ∈ X ∪Y ), let
us identify the corner `i of Cj with vertex pi (in the variable gadget of variable vi) if variable vi appears
positively in Cj and identify the corner `i of Cj with vertex ni if variable vi appears negatively in Cj .
Let us emphasis that, contrary to the previous section, if variable vi appears positively (resp., negatively)
in Cj , then a corner of Cj is identified with a vertex of the path P i (resp., N i).

Finally, add a vertex q adjacent to all centers of the clause gadgets.
The last touch. Let δ be any odd integer larger than the diameter of the graph built so far. For any
1 ≤ i ≤ nx, let us add a path Hi of length δ between pxi and nxi .

The key point is that any isometric hull set of G has to contain at least one internal vertex of each path
Hi. Indeed, by the choice of δ, for any 1 ≤ i ≤ nx, the graph obtained from G by removing the internal
vertices of Hi is isometric in G.

Another important remark is that, since δ is odd, each vertex in Hi is either closer to pxi than to nxi or
vice-versa (no vertex is at equal distance from both). For any 1 ≤ i ≤ nx, let {hpi , hni } be the middle
edge of Hi where hpi is closer than pxi and hni is closer than nxi

As we have already said, any isometric hull set ofGmust contain all vertices in I = {ddxi , ggxi dd
y
j , gg

y
j |

1 ≤ i ≤ nx, 1 ≤ j ≤ ny} ∪ {r′} and at least one internal vertex in Hi for each 1 ≤ i ≤ nx. That is, any
isometric hull set of G has at least 3nx + 2ny + 1 vertices.

We show that G has an isometric hull set of size 3nx + 2ny + 1 if and only if ∃X,∀Y,Φ(X,Y ).

• First, assume that there exists an assignment X∗ of X such that every assignment of Y satisfies
Φ(X,Y ). For any 1 ≤ i ≤ nx, let si denote the vertex hpi if variable xi is set to True, and si denote
hni otherwise.

We prove that S = I ∪ {s1, · · · , snx} is an isometric hull set of G, i.e., G is the unique isometric
hull of S.

If si = hpi then the path P ix and the shortest path from pxi to hpi (i.e., the subpath ofHi) must belong
to any isometric hull of S. Symmetrically, if si = npi then the path N i

x and the shortest path from
nxi to hni (i.e., the subpath of Hi) must belong to any isometric hull of S.

Moreover, for any 1 ≤ i ≤ ny , any isometric hull of S must contain either P iy or N i
y .

Let us consider any isometric hull H of S and, for any 1 ≤ i ≤ ny , let Li ∈ {P iy, N i
y} be a path

contained in H .

Consider the assignment Y ∗ of Y defined byH as follows: if Li = P iy then variable yi is set to true,
and it is set to False otherwise (i.e., if Li = N i

y). Since the formula is true for any assignment of Y ,
then Φ(X∗, Y ∗) is true. In particular, there is a clause Cj satisfied by all its variables (recall that Φ
is disjunctive). By definition of X∗, Y ∗ and H , this implies that all its three corners belong to H
and, as in the proof of Lemma 3.4, this implies that the entire clause gadget Cj is in H . Therefore,
using vertex q as in proof of Lemma 3.4, this implies that all vertices pix, n

i
x for 1 ≤ i ≤ nx

compared and all vertices piy, n
i
y for 1 ≤ i ≤ ny belong to H . From there, it is easy to conclude

that all vertices of G belong to H . Therefore, G is the unique isometric hull of S and S is an
isometric hull set of the desired size.

• To conclude, we prove that, if for any assignmentX∗ ofX there exists an assignment Y ∗ of Y such
that Φ(X∗, Y ∗) is False, then no set of at most 3nx + 2ny + 1 vertices is an isometric hull set of G.
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Let S be a set of at most 3nx + 2ny + 1 vertices. As already said, to be an isometric hull set, S
must be equal to I ∪{s1, · · · , snx} where, for any 1 ≤ i ≤ nx, vertex si is an internal vertex of the
path Hi.

Let X∗ be the assignment of X defined as follows: for any 1 ≤ i ≤ nx, variable xi is set to True if
si is closer to hpi and xi is set to False otherwise.

By assumption, there is an assignment Y ∗ of Y such that Φ(X∗, Y ∗) is False.

LetH be the subgraph ofG built as follows. First,H contains S and all paths P (r, dxi ) and P (r, gix)
for 1 ≤ i ≤ nx andH contains all paths P (r, dyi ) and P (r, giy) for 1 ≤ i ≤ ny . For any 1 ≤ i ≤ nx,
H contains P ix and the shortest path between si and pix if xi is assigned to True, and H contains N i

x

and the shortest path between si and nix if xi is assigned to False. For any 1 ≤ i ≤ ny , H contains
P iy if yi is assigned to True, and H contains N i

y if yi is assigned to False.

As in the proof of Lemma 3.4, because no clause is satisfied by X∗ ∪Y ∗, it can be proved that each
clause gadget has at most two corners in the current graph H .

Finally, for any clause gadget Cj that has exactly two corners in H , add to H the shortest path (in
Cj) between these two corners.

Similar arguments as those in the proof of Lemma 3.4 give that H is a proper isometric subgraph
of G and contains S. Therefore, S is not an isometric hull set of G.

2

4 Further work
We have devised a polynomial time algorithm for MGS when all images of a pseudo-closure are given
as an input. While pseudo-closures generalize closures, they do not capture other generalizations from
the literature such as preclosures (APG90) (since they are not idempotent) or closure functions of gree-
doids (BZ92) (since they are extensive). Can similar algorithms be provided for these classes?

An open problem with respect to closures is Question 2.9, i.e., find a characterization of those closures
coming from the convex subgraphs of a graph. The corresponding question for (finite) metric spaces is
also open, see (Her94). Moreover, we wonder about the complexity of LOGMGS and LOGHULL NUMBER,
where the latter even for partial cubes is interesting. A particular question arising in this context is,
whether HULL NUMBER admits an FPT algorithm parameterized by solution size k. Finally, we would
like to recall Question 2.11, i.e., is there a subset X of the hypercube Qd such that a smallest partial cube
in Qd containing X is not of polynomial size in d+ |X|?
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[NVRG05] K. Nehmé, P. Valtchev, M. H. Rouane, and R. Godin. On computing the minimal gener-
ator family for concept lattices and icebergs. In 3rd int. conf. on Formal concept analysis
(ICFCA’05), pages 192–207. Berlin: Springer, 2005.

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.

[PY96] C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the complexity of
the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996.

[SO96] L.N. Shevrin and A.Ya. Ovsyannikov. Semigroups and their subsemigroup lattices. Dor-
drecht: Kluwer Academic Publishers, 1996.


	Introduction
	Minimum generators of pseudo-closures
	Generating with large input
	Generating with small input
	Lattices


	Isometric hull
	Further work

