Computing metric hulls in graphs

Kolja Knauer 1 Nicolas Nisse 2
2 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in the number of closed sets. This implies that there is a polynomial time algorithm to compute the convex hull-number of a graph, when all its convex subgraphs are given as input. We then show that deciding if the smallest preimage of a closed set is logarithmic in the size of the ground set is LOGSNP-complete if only the ground set is given. A special instance of this problem is computing the dimension of a poset given its linear extension graph, that was conjectured to be in P. The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices $S$. While for $|S|=2$ an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is NP-complete even if $|S|=3$. Finally, we consider the problem of computing the isometric hull-number of a graph and show that computing it is $\Sigma^P_2$ complete.
Type de document :
[Research Report] Inria - Sophia Antipolis. 2017
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Nisse <>
Soumis le : lundi 30 juillet 2018 - 13:11:54
Dernière modification le : lundi 5 novembre 2018 - 15:36:03
Document(s) archivé(s) le : mercredi 31 octobre 2018 - 13:47:53


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01612515, version 2


Kolja Knauer, Nicolas Nisse. Computing metric hulls in graphs. [Research Report] Inria - Sophia Antipolis. 2017. 〈hal-01612515v2〉



Consultations de la notice


Téléchargements de fichiers