
HAL Id: hal-01612689
https://inria.hal.science/hal-01612689

Submitted on 7 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scraping HTML with XPath
Stéphane Ducasse, Peter Kenny

To cite this version:
Stéphane Ducasse, Peter Kenny. Scraping HTML with XPath. published by the authors, pp.26, 2017.
�hal-01612689�

https://inria.hal.science/hal-01612689
https://hal.archives-ouvertes.fr

Scraping HTML with

XPath

Stéphane Ducasse and Peter Kenny

Square Bracket tutorials

September 28, 2017

master@a0267b2

Copyright 2017 by Stéphane Ducasse and Peter Kenny.

The contents of this book are protected under the Creative Commons Attribution-ShareAlike 3.0 Unported
license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to
do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this
license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of
the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Little Journey into XPath 3

1.1 Getting started . 3

1.2 An example . 3

1.3 Accessing a tree object . 4

1.4 Nodes and atomic values . 5

1.5 Basic tree relationships . 5

1.6 A large example . 6

1.7 Node selection . 6

1.8 Predicates . 8

1.9 Selecting Unknown Nodes . 10

1.10 Handling multiple queries . 10

1.11 XPath axes . 10

1.12 Conclusion . 11

2 Scraping HTML 13

2.1 Getting started . 13

2.2 Define the Problem . 13

2.3 First find the required data . 15

2.4 Going back to our problem . 16

2.5 Turning the pages . 18

2.6 Conclusion . 19

3 Scraping Magic 21

3.1 Getting a tree . 21

3.2 First the card visual . 21

3.3 Revisiting it . 23

3.4 Getting data . 24

3.5 Conclusion . 26

i

Illustrations

1-1 http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430. 4

1-2 Grabbing and playing with a tree. 5

1-3 Select the raw tab and click on self in the inspector. 7

2-1 Food list. 14

2-2 Food details - Salted Butter. 15

2-3 Navigating the XML document inside the inspector. 16

2-4 Sample of JSON output. 18

3-1 http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430. 22

3-2 Exploring images. 22

3-3 Exploring images. 23

3-4 Narrowing the node. 23

3-5 Exploring the class API on the spot: looking to see if there is a attribute something method. 24

3-6 Getting the card visual inside Pharo. 24

3-7 Getting the card information. 25

ii

Illustrations

I came with the idea of this booklet thank to Peter that kindly answered a question on the Pharo
mailing-list. To help Peter showed to a Pharoer how to scrap the web site mentioned in Chapter 2
using XPath. In addition, some years ago I was maintaining Soup a scraping framework because I
want to write an application to manage my magic cards. Since then I always wanted to try XPath
and in addition I wanted to offer this booklet to Peter. Why because I asked Peter if he would like
to write something and he told that he was at a great age where he would not take any commit-
ment. I realised that I would like to get as old as him and be able to hack like a mad in Pharo with
new technology. So this booklet is a gift to Peter, a great and gentle Pharoer.

Stef

1

CHA P T E R 1
Little Journey into XPath

XPath is the de factor standard language to represent queries to identify nodes in an xml struc-
ture. In this chapter we will go through the main concepts and show some of the way we can ac-
cess nodes in a xml document. All the expressions can be executed on the spot so do not hesitate
to experiment with them.

1.1 Getting started

You should load the XML parser and XPath library as follows:

Gofer it
smalltalkhubUser: 'PharoExtras' project: 'XMLParserHTML';
configurationOf: 'XMLParserHTML';
loadStable.

Gofer it
smalltalkhubUser: 'PharoExtras' project: 'XPath';
configurationOf: 'XPath';
loadStable.

1.2 An example

As an example we will take the possible representation of Magic cards. Here is for example how we
can represent Arcane Lighthouse that you can see at http://gatherer.wizards.com/Pages/Card/Details.

aspx?multiverseid=389430 and is shown in Figure 1-1.

<?xml version="1.0" encoding="UTF-8"?>

<cardset>
<card>

<cardname lang="en">Arcane Lighthouse</cardname>
<types>Land</types>
<year>2014</year>

<rarity>Uncommon</rarity>
<expansion>Commander 2014</expansion>

<cardtext>Tap: Add 1 uncolor to you mana pool.
1 uncolor + Tap: Until end of turn, creatures your opponents
control lose hexproof and shroud and can't have
hexproof or shroud.</cardtext>

</card>
</cardset>

3

http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430

Little Journey into XPath

Figure 1-1 http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430.

1.3 Accessing a tree object

In Pharo it is always powerful to get an object and interact with it. So let us do that now using the
XMLDOMParser. Note that the escaped the ' with an extra quote as in can''t.

| tree |
tree := (XMLDOMParser on:
'<?xml version="1.0" encoding="UTF-8"?>

<cardset>
<card>

<cardname lang="en">Arcane Lighthouse</cardname>
<types>Land</types>
<year>2014</year>
<rarity>Uncommon</rarity>
<expansion>Commander 2014</expansion>
<cardtext>Tap: Add 1 uncolor to you mana pool.

1 uncolor + Tap: Until end of turn, creatures your opponents
control lose hexproof and shroud and can''t have

4

1.4 Nodes and atomic values

Figure 1-2 Grabbing and playing with a tree.

hexproof or shroud.</cardtext>
</card>

</cardset>') parseDocument

1.4 Nodes and atomic values

The following elements are nodes:

<cardset> (root element node)

<cardname lang="en">Arcane Lighthouse</cardname> (element node)

lang="en" (attribute node)

Atomic values are nodes with no children or parent. Here are some examples of atomic values:

Arcane Lighthouse

"en"

1.5 Basic tree relationships

Since we are talking about trees, nodes can have multiple relationships with each other: parent,
child and siblings. Let us set some simple vocabulary.

• Parent. Each element and attribute has one parent. In the Arcane Lighthouse example, the
card element is the parent of the cardname, types, year, rarity, expansion and cardtext.

• Children. Element nodes may have zero, one or more children. cardname, types, year, rar-
ity, expansion and cardtext nodes are all children of the card element

5

Little Journey into XPath

• Siblings. Siblings are nodes that have the same parent. cardname, types, year, rarity, expan-
sion and cardtext nodes are all siblings.

• Ancestors. A node’s parent, parent’s parent, etc. Ancestors of the cardname element are the
card element and the cardset nodes.

• Descendants A node’s children, children’s children, etc. Descendants of the cardset element
are the card,cardname, types, year, rarity, expansion and cardtext elements.

1.6 A large example

Let us expand our example to have cover more cases.

| tree |
tree := (XMLDOMParser on:
'<?xml version="1.0" encoding="UTF-8"?>

<cardset>
<card>

<cardname lang="en">Arcane Lighthouse</cardname>
<types>Land</types>
<year>2014</year>
<rarity>Uncommon</rarity>
<expansion>Commander 2014</expansion>
<cardtext>Tap: Add 1 uncolor to you mana pool.

1 uncolor + Tap: Until end of turn, creatures your opponents
control lose hexproof and shroud and can''t have
hexproof or shroud.</cardtext>

</card>
<card>

<cardname lang="en">Desolate Lighthouse</cardname>
<types>Land</types>
<year>2013</year>
<rarity>Rare</rarity>
<expansion>Avacyn Restored</expansion>
<cardtext>Tap: Add Colorless to your mana pool.

1BlueRed, Tap: Draw a card, then discard a card.</cardtext>
</card>

</cardset>') parseDocument

Select the raw tab and click on self in the inspector (as shown in Figure 1-3). Now we are ready to
learn XPath.

1.7 Node selection

The following table shows the XPath expressions.

Expression Description
nodename Selects all nodes with the name ”nodename”
/ Selects from the root node
// Selects any node from the current node that match the selection
. Selects the current node
.. Selects the parent of the current node
@ Selects attributes

In the following we expect that the variable tree is bound the full document tree we previously
created parsing the xml string. In Pharo expressions selecting nodes returns set of nodes. Now let
us play with the system to really see how it works.

6

1.7 Node selection

Figure 1-3 Select the raw tab and click on self in the inspector.

Node tag name

nodename Selects all nodes with the name ”nodename”
card Selects all nodes with the name ”card”

Current and parent

. Selects the current node

.. Selects the parent of the current node

The following expression shows that . (period) selects the current node.

(tree xpath: '.') first == tree
>>> true

Matching path based children nodes

The operator / selects from the root node.

/ Selects from the root node
/cardset Selects the root element cardset
cardset/card Selects all the card nodes that are children of cardset

The following expression selects all the card nodes under cardset node.

7

Little Journey into XPath

path := XPath for: '/cardset/card'.
path in: tree.

It is equivalent to the following expression using the xpath: message

tree xpath: '/cardset/card'

Matching deep nodes

The // operation selects all the nodes matching the selection.

// Selects any node from the current node
//year Selects all year nodes in all the children of the current node
cardset//year Selects all year nodes that are descendant of cardset

Let us try with another element such as the expansion of a card.

tree xpath: '//expansion'
>>>
a XPathNodeSet(<expansion>Commander 2014</expansion> <expansion>Avacyn

Restored</expansion>)

In Pharo you can also send message to the node. So the previous expression can be expressed as
follows using the message //:

tree // 'expansion'
>>>
a XPathNodeSet(<expansion>Commander 2014</expansion> <expansion>Avacyn

Restored</expansion>)

Identifying attributes

@matches attributes.

Expression Description
@ Selects attributes
//@lang Selects all attributes that are named lang

The following expression returns all the attributes whose name is lang.

(tree xpath: '//@lang')
>>> a XPathNodeSet(lang=""en"" lang=""en"")

1.8 Predicates

Predicates are used to find a specific node or a node that contains a specific value. Predicates are
always embedded in square brackets.

Let us study some examples:

First element

The following expression selects the first card child of the cardset element.

tree xpath: '/cardset/card[1]'
>>>
a XPathNodeSet(<card>

<cardname lang=""en"">Arcane Lighthouse</cardname>
<types>Land</types>
<year>2014</year>
<rarity>Uncommon</rarity>

8

1.8 Predicates

<expansion>Commander 2014</expansion>
<cardtext>Tap: Add 1 uncolor to you mana pool.

1 uncolor + Tap: Until end of turn, creatures your opponents
control lose hexproof and shroud and can't have
hexproof or shroud.</cardtext>

</card>)

In the XPath Pharo implementation the message ?? can be used for position or block predicates.

the previous expression is equivalent to the following one

tree / 'cardset' /'card' ?? 1 .

Block or position predicates can be applied with ?? to axis node test arguments or to result node
sets.

The following expression returns the first element of each ’card’ descendant:

tree // 'card' / ('*' ?? 1)
>>> "a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname> <cardname

lang=""en"">Desolate Lighthouse</cardname>)"

Other position functions

The following expression selects the last card node that is the child of the cardset node.

tree xpath: '/cardset/card[last()]'.

The following selects the last but one node, in our case since we only have two elements we get the
first.

tree xpath: '/cardset/card[last()-1]'.
>>>
a XPathNodeSet(<card>

<cardname lang=""en"">Arcane Lighthouse</cardname>
<types>Land</types>
<year>2014</year>
<rarity>Uncommon</rarity>
<expansion>Commander 2014</expansion>
<cardtext>Tap: Add 1 uncolor to you mana pool.

1 uncolor + Tap: Until end of turn, creatures your opponents
control lose hexproof and shroud and can't have
hexproof or shroud.</cardtext>

</card>)

We can also use the position function and use it to identify nodes. The following selects the first
two card nodes that are children of the cardset node.

(tree xpath: '/cardset/card[position()<3]') size = 2
>>> true

Selecting based on node value

In addition we can select nodes based on a value of a node. The following query selects all the card
nodes (of the cardset) that have a year greater than 2014.

tree xpath: '/cardset/card[year>2013]'.

The following query selects all the cardname nodes of the card children of cardset that have a year
greater than 2014.

/cardset/card[year>2013]/cardname
>>> a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname>)

9

Little Journey into XPath

Selecting nodes based on attribute value

We can also select nodes based on the existence or value of an attribute. The following expression
returns the cardname that have the lang attribute and whose value is ’en’.

tree xpath: '//cardname[@lang]
>>> a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname> <cardname

lang=""en"">Desolate Lighthouse</cardname>)
tree xpath: '//cardname[@lang='en']

Note that we can simply get the card from the name using ’..’.

tree xpath: '//cardname[@lang='en']/..
>>>

1.9 Selecting Unknown Nodes

In addition we can use wildcard to select any node.

Wildcard Description
Matches any element node

@* Matches any attribute node
node() Matches any node of any kind

For example //* selects all elements in a document.

(tree xpath: '//*') size
>>> 15

While //@* selects all the attributes of any node.

tree xpath: '//@*'
>>> a XPathNodeSet(lang=""en"" lang=""en"")

For example //cardname[@*] selects all cardname elements which have at least one attribute of
any kind.

tree xpath: '//cardname[@*]'
>>> a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname> <cardname

lang=""en"">Desolate Lighthouse</cardname>)

The following expression selects all child nodes of cardset.

tree xpath: '/cardset/*'.

The following expression selects all the cardname of all the child nodes of cardset.

tree xpath: '/cardset/*/cardname'.

1.10 Handling multiple queries

By using the | operator in an XPath expression you can select several paths. The following expres-
sion selects both the cardname and year of card nodes located anywhere in the document.

tree xpath: '//card/cardname | //card//year'
>>> a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname> <year>2014</year>
<cardname lang=""en"">Desolate Lighthouse</cardname> <year>2013</year>)"

1.11 XPath axes

Xpath introduces another way to select nodes using location step following the syntax: axisname::node-
test[predicate]. Such expressions can be used in the steps of location paths (see below).

10

1.12 Conclusion

An axis defines a node-set relative to the current node. Here is a table of the available axes.

AxisName Result
ancestor Selects all current node ancestors
ancestor-or-self ... and the current node itself
attribute Selects all current node attributes
child Selects all current node children
descendant Selects all current node descendants
descendant-or-self ... and the current node itself
following Selects everything after the current node closing tag
following-sibling Selects all siblings after the current node
namespace Selects all current node namespace nodes
parent Selects current node parent
preceding Selects all nodes that appear before the current node

except ancestors, attribute nodes and namespace nodes
preceding-sibling Selects all siblings before the current node
self Selects the current node

Paths

A location path can be absolute or relative. An absolute location path starts with a slash (/) (/step/step/...)
and a relative location path does not (step/step/...). In both cases the location path consists of one
or more location steps, each separated by a slash.

Each step is evaluated against the nodes in the current node-set. A location step, axisname::node-
test[predicate], consists of:

• an axis (defines the tree-relationship between the selected nodes and the current node)

• a node-test (identifies a node within an axis)

• zero or more predicates (to further refine the selected node-set)

The following example access the year node of all the children of the cardset.

tree xpath: '/cardset/child::node()/year').
>>>a XPathNodeSet(<year>2014</year> <year>2013</year>)

The following expression gets the ancestor of the year node and selects the cardname.

(tree xpath: '/cardset/card/year') first xpath: 'ancestor::card/cardname'
>>> "a XPathNodeSet(<cardname lang=""en"">Arcane Lighthouse</cardname>)"

1.12 Conclusion

XPath is a powerful language and the Pharo XPath library developed and maintained by Monty Ka-
math is implementing the full standard 1.0. In addition coupled with life programming capabilities
of Pharo it gives a really powerful to explore structured data.

11

CHA P T E R2
Scraping HTML

Internet pages provide a lot of information and often you would like to be able to access and ma-
nipulate it in another form than HTML: HTML is just plain verbose. What you would like is to get
access to only the information you are interested in and get the results in a form that you can eas-
ily build more software. This is the objective of HTML scraping. In Pharo you can scrape web pages
using different libraries such as XMLParser and SOUP. In this chapter we will show you how we can
do that using XMLParser to locate and collect the data we need and JSON to format and output the
information.

This chapter has been originally written by Peter Kenny and we thank him for sharing with the
community this little tutorial.

2.1 Getting started

You can use the Catalog browser to load XMLParserHTML and NeoJSON just execute the following
expressions:

Gofer it
smalltalkhubUser: 'PharoExtras' project: 'XMLParserHTML';
configurationOf: 'XMLParserHTML';
loadStable.

Gofer it
smalltalkhubUser: 'PharoExtras' project: 'XPath';
configurationOf: 'XPath';
loadStable.

Gofer it
smalltalkhubUser: 'SvenVanCaekenberghe' project: 'Neo';
configurationOf: 'NeoJSON';
loadStable.

2.2 Define the Problem

This tutorial is based on a real life problem. We need to consult a database published by the US
Department of Agriculture, extract data for over 8000 food ingredients and their nutrient contents
and output the results as a JSON file. The main list of ingredients can be found at the following url:
https://ndb.nal.usda.gov/ndb/search/list?sort=ndb&ds=Standard+Reference (as shown in Figure 2-1).
You can also find the HTML version of the file in the github repository of this book https://github.

com/SquareBracketAssociates/Booklet-Scraping/resources.

13

https://ndb.nal.usda.gov/ndb/search/list?sort=ndb&ds=Standard+Reference
https://github.com/SquareBracketAssociates/Booklet-Scraping/resources
https://github.com/SquareBracketAssociates/Booklet-Scraping/resources

Scraping HTML

Figure 2-1 Food list.

This table shows the first 50 rows, each corresponding to an ingredient. The table shows the NDB
number, description and food group for each ingredient. Clicking on the number or description
leads to a detailed table for the ingredient. This table comes in two forms, basic details and full
details, and the information we want is in the full details. The full detailed table for the first ingre-
dient can be found at the url: https://ndb.nal.usda.gov/ndb/foods/show/1?format=Full (as shown in
Figure 2-2).

There are two areas of information that need to be extracted from this detailed table:

• There is a row of special factors, in this case beginning with ’Carbohydrate Factor: 3.87’. This
is to be extracted as a set of (name, value) pairs. The number of factors can vary; some ingre-
dients do not have any.

• There is a table of data for various nutrients, which are arranged in groups - proximates, vi-
tamins, lipids etc. The number of columns in the table varies from one ingredient to another,
but in every case the first three columns are nutrient name, unit of measurement and quan-
tity; we have to extract these columns for every listed nutrient.

The requirement is to extract all this information for each ingredient, and then output it as a JSON
file:

• NBD number, description and food group from the main list;

• Factor names and values from the detailed table;

• Nutrient details from the detailed table.

14

https://ndb.nal.usda.gov/ndb/foods/show/1?format=Full

2.3 First find the required data

Figure 2-2 Food details - Salted Butter.

2.3 First find the required data

To start, we have to find where the required data are to be found in the HTML file. The general
rule about this is that there are no rules. Web site designers are concerned only with the visual ef-
fect of the page, and they can use any of the many tricks of HTML to produce the desired effects.
We use the XML HTML parser to convert text into an XML tree (a tree whose nodes are XML ob-
jects). We then explore this tree to find the elements we want, and for each one we have to find
signposts showing a route through the tree to uniquely locate the element, using a combination of
XPath and Smalltalk programming as required. We may use the names or attributes of the HTML
tags, each of which becomes an instance of XMLElement in the tree, or we may match against the
text content of a node.

First read in the table of ingredients (first 50 rows only) as in the url.

| ingredientsXML |
ingredientsXML := XMLHTMLParser parseURL:

'https://ndb.nal.usda.gov/ndb/search/list?sort=ndb&ds=Standard+Reference'.
ingredientsXML inspect

You can execute the expression and inspect its result. You will obtain an inspector on the tree and
you can navigate this tree as shown in Figure 2-3.

Since you may want to work on files that you saved on your disc you can also parse a file and get
an XML tree as follows:

| ingredientsXML |
ingredientsXML := (XMLHTMLParser onFileNamed: 'FoodsList.html') parseDocument.

The simplest way to explore the tree is starting from the top, i.e. by opening up the <body> node,
but this can be tedious and confusing; we often find that there are many levels of nested <div>
nodes before finding what we want. Alternatively, we can use XPath speculatively to look for in-

15

Scraping HTML

Figure 2-3 Navigating the XML document inside the inspector.

teresting nodes. In the case of the foods list, we might guess that the list of ingredients will be
stored in a <table> node. Having parsed the web page as shown above in a playground, we can
then enter:

ingredientsXML xPath: '//table'

and select ’do it and go’, which shows an XMLNodeList of all the table nodes - only one in this case.
If there were several, we could use the attributes of the node or any of its ancestors to locate the
one we want. We find by searching up several generations a node <div class="wbox"> which
is unique, so we could use this as a signpost. The table body contains a row for each ingredient;
the first cell in the row is a ”badge” which is of no interest, but the remaining three cells in the
row are the number, description and group name that we want. The second and third cells both
contain an emebedded node showing the relative url of the associated detail
table.

The exploration of the detail table proceeds in a similar way; we search for text nodes which con-
tain the word ”Factor”, and then for a table containing the nutrient details. More of this below.

2.4 Going back to our problem

Here we present the essential points of the data scraping and JSON output for one item, in a logi-
cal order. The code is presented as it could be entered in a playground. There are brief comments
on the format of the data and the signposts used to locate it. First read in the table of ingredients
(first 50 rows only) as before.

ingredientsXML := XMLHTMLParser parseURL:
'https://ndb.nal.usda.gov/ndb/search/list?sort=ndb&ds=Standard+Reference'.

The detail rows are in the body of the table in the div node whose class is ’wbox’.

ingredientRows := (ingredientsXML xPath: '//div[@class=''wbox'']//tbody/tr').

Note that the signposts do not need to show every step of the way, provided the route is unique;
we do not need to mention the <table> node, because there is only one <tbody>. Now extract the

16

2.4 Going back to our problem

text content of the four cells in each row; ’strings first’ is a convenient way of finding the text in a
node while ignoring any descendent nodes, and we routinely trim redundant spaces.

ingredientCells := ingredientRows collect:
[:row| (row xPath: 'td') collect:

[:cell| cell strings first trim]].

To prepare for export to JSON, it is handy to put the three required fields (ignoring the first) in a
Dictionary indexed by their field names. Using an OrderedDictionary is not strictly necessary, but
it does mean that the JSON output is easier for a human to understand.

ingredientsJSON := ingredientCells collect:
[:row| { 'nbd_no' -> (row at: 2).

'full-name' -> (row at: 3).
'food-group' -> (row at: 4)}

asOrderedDictionary].

If we ’do it and go’ the next line, we can see the JSON layout. For this demo, we do not need to ex-
port to a JSON file; it is easier to look at it as text in the playground.

NeoJSONWriter toStringPretty: ingredientsJSON first.

We can find the relative url address of the ingredient details from the href in the second cell. Be-
cause this is the address of the basic details table, we edit it to discard all the parameters, so that
we can edit in the parameters for the full table.

ingredientAddress := ingredientRows collect:
[:row| (row xPath:'td[2]/a/@href') first value copyUpTo: $?].

Up to this point, we have been constructing lists with data for all 50 ingredients in the table. To
show how to process the ingredient details, we just process the first ingredient in the file. The pro-
duction version would have to run through all the rows in the ingredientAddress collection. We
read and parse the detail file, after editing the url.

ingredientDetailsXML := XMLHTMLParser parseURL: 'https://ndb.nal.usda.gov',
ingredientAddress first, '?format=Full'.

The data for the factors are contained in nodes within <div class="row"> nodes. This
does not identify them uniquely, so we extract all such nodes with XPath and then use ordinary
Smalltalk to find the ones mentioning the word ’Factor’.

factorCells := (ingredientDetailsXML xPath: '//div[@class=''row'']//span')
collect: [:each| each strings first trim].

factors := OrderedCollection new.
1 to: factorCells size by: 2 do: [:index|

((factorCells at: index) matches: 'Factor') ifTrue: [factors addLast:
{'factor' -> (factorCells at: index).
'amt' -> ((factorCells at: index + 1) trimRight:[:c|c asInteger = 160])}
asOrderedDictionary]].

Note: it appears that the web designers have used no-break space characters to control the format-
ting, and these are not removed by ’trim’, so we use the ’trimRight:’ clause above to remove them.

The layout of the nutrients table is messy, presumably to achieve the effect of the inserted row
with the nutrient group name. This means that we cannot locate the nutrient rows using <tr>
nodes, as we did for the main list. Instead we have to get at all the individual table cells in <td>
nodes, and then count them in groups equal to the row length. Since the row length is not a con-
stant, we have to determine it by examining the data for one row that in a <tr> node.

nutrientCells := (ingredientDetailsXML xPath: '//table//td') collect: [:each|each
strings first trim].

nutRowLength := (ingredientDetailsXML xPath: '//table/tbody/tr') first elements size.

17

Scraping HTML

Figure 2-4 Sample of JSON output.

nutrients := OrderedCollection new.
1 to: nutrientCells size by: nutRowLength do:
[:index|nutrients addLast:

{ 'group' -> (nutrientCells at: index).
'nutrient' -> (nutrientCells at: index + 1).
'unit' -> (nutrientCells at: index + 2).
'per100g' -> (nutrientCells at: index + 3) }
asOrderedDictionary].

Finally assemble all the information for the first ingredient as a JSON file. NeoJSON automatically
takes care of embedding dictionaries within a collection within a dictionary. (See specimen in Fig-
ure 2-4)

NeoJSONWriter toStringPretty:
((ingredientsJSON first)
at: 'factors' put: factors asArray;
at: 'nutrients' put: nutrients asArray;
yourself).

2.5 Turning the pages

The code above will extract the data for one ingredient, and could obviously be repeated for all the
50 items in one page of data. However, the entire database contains 8789 ingredients at the time of

18

2.6 Conclusion

writing, which amounts to 176 pages. The database seems to impose a limit of 50 ingredients per
page, so to process the entire database we need to read the pages in succession. Each page contains
a link which, if clicked, will load the next page. We can do this programmatically, by finding the
link after processing the page. The link is contained in node <div class="paginateButtons">,
so we can use the code:

nextButtons := (ingredientsXML xPath: '//div[@class=''paginateButtons'']//a')
select:[:node| node strings first = 'Next'].

nextURL := (nextButtons size > 0)
ifTrue:['https://ndb.nal.usda.gov', (nextButtons first attributeAt: 'href')]
ifFalse: [nil].

This is a common requirement in processing large databases on the web, and so we can use a stan-
dard pattern:

<code to initialise results>
nextURL := <url for first page of database>
[nextURL isNil] whileFalse:
[pageXML := XMLHTMLParser parseURL: nextURL.
<code to extract data from pageXML to results>
<code to determine nextURL from pageXML; should yield 'nil' for last page>
]

2.6 Conclusion

We have presented a way to extract information from a structured document. The methods used
are of course particular to the layout of the USDA database, but the general principles should be
clear. A mixture of XPath and Smalltalk can be used in order to locate the required data.

One problem which can arise, if we need to repeat the extraction with updated data, is that the
web designers can change the layout of the pages; this did in fact happen with the USDA table in
the 15 months between originally tackling the problem and writing this article. The usual result is
that the signposts no longer work, and the XPath results are empty. If the update is being run au-
tomatically, say on a daily basis, it may be worth while inserting defensive code in the processing,
which will raise an exception if the results are not as expected. How to do this will depend on the
particular application.

19

CHA P T E R3
Scraping Magic

In this chapter we will scrap the web site of Magic the gathering and in particular the card database.
(Yes I play Magic not super good but well I have fun). Here is one example http://gatherer.wizards.
com/Pages/Card/Details.aspx?multiverseid=389430 as shown in Figure 3-1. Now we will try to show
you how we explore the HTML page using the excellent Pharo inspector: diving in the tree nodes
and checking live their attributes or children is simply super cool.

3.1 Getting a tree

The first thing was to make sure that we can get a tree from the web page. For this task we used
the XMLHTMLParser class and sends it the message parseURL:. How did we find this message...
Simply looking on the class side methods of the class. How did we find the class, well looking at the
subclass of XMLDOMParser because HTML is close to XML or the inverse :).

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430')

3.2 First the card visual

First we would like to grab the card visual because this is fun and cool. When we open the card
visual in a separate window we see that the url is http://gatherer.wizards.com/Handlers/Image.ashx?

multiverseid=389430&type=card. Therefore we started to look for Handlers in the nodes as shown in
Figure 3-2.

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
tree xpath: '//img'

No so cool but working...

Toying with the inspector, we come up with the following ugly expression to get the name of the
JPEG

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
((tree xpath: '//img') third @ 'src') first value allButFirst: 5
>>> 'Handlers/Image.ashx?multiverseid=389430&type=card'

21

http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430
http://gatherer.wizards.com/Handlers/Image.ashx?multiverseid=389430&type=card
http://gatherer.wizards.com/Handlers/Image.ashx?multiverseid=389430&type=card

Figure 3-1 http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430.

Figure 3-2 Exploring images.

3.3 Revisiting it

Figure 3-3 Exploring images.

Figure 3-4 Narrowing the node.

Ugly isn’t it? This happens often when scraping HTML, but we can do better. By the way note also
that we start to enter directly XPath command using the XPath pane and using the doit and go
facilities of the inspector. This way we do not have to get the page from internet all the time.

3.3 Revisiting it

We could not really show you such ugly expressions so we had to find a better one.

So first we look at the img that has src as atttribute as shown below and in Figure 3-3.

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
(tree xpath: '//img[@src]')

Then as shown in Figure 3-4 we inspected the right node.

Finally since we were on this exact node, we looked in its class to see if we could get an API to get
the attribute in a nice way as shown in Figure 3-5.

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
(tree xpath: '//img[@src]') third attributeAt: 'src'

Now that we have the visual path, we can use the HTTP client of Pharo to get the image as shown
in Figure 3-6.

| tree path |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').

23

Scraping Magic

Figure 3-5 Exploring the class API on the spot: looking to see if there is a attribute something method.

Figure 3-6 Getting the card visual inside Pharo.

path := ((tree xpath: '//img[@src]') third attributeAt: 'src') allButFirst: 5.
(ZnEasy getJpeg: 'http://gatherer.wizards.com/',path) asMorph openInWorld

3.4 Getting data

Since this web page is probably generated, we look for example for the artist string in the source
and we found the following matches:

ClientIDs.artistRow = 'ctl00_ctl00_ctl00_MainContent_SubContent_SubContent_artistRow';

This one is more interesting:

<div id="ctl00_ctl00_ctl00_MainContent_SubContent_SubContent_artistRow" class="row">
<div class="label">

Artist:</div>
<div id="ctl00_ctl00_ctl00_MainContent_SubContent_SubContent_ArtistCredit"
class="value">

24

3.4 Getting data

Figure 3-7 Getting the card information.

<a href="/Pages/Search/Default.aspx?action=advanced&artist=[%22Igor
Kieryluk%22]">Igor Kieryluk</div>

We can build queries to identify node elements having this id. To avoid to perform an internet re-
quest each time, we typed directly XPath path in the XPath pane of the inspector as shown in Fig-
ure 3-7. Now trying to get faster we looked at all the class=”row” as shown in Figure 3-7

//div[@class='row']

The following expression returns the pair label and value for example for the card name label and
its value.

//div[@class='row']/div[@class='label']| //div[@class='row']/div[@class='value']

So we can now query all the fields

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
container := tree xpath: '//div[@class=''row'']/div[@class=''label'']|

//div[@class=''row'']/div[@class=''value'']'.
container collect: [:each | each contentString trimBoth].
>>> a XMLOrderedList('Card Name:' 'Arcane Lighthouse' 'Types:' 'Land' 'Card Text:'
': Add to your mana pool. , : Until end of turn, creatures your opponents control
lose hexproof and shroud and can''t have hexproof or shroud.'
'Expansion:' 'Commander 2014' 'Rarity:' 'Uncommon' 'Card Number:' '59' 'Artist:' 'Igor

Kieryluk')

Now we can convert this into a dictionary

| tree |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
container := tree xpath: '//div[@class=''row'']/div[@class=''label'']|

//div[@class=''row'']/div[@class=''value'']'.
((container collect: [:each | each contentString trimBoth])

asOrderedCollection groupsOf: 2 atATimeCollect: [:x :y | x -> y]) asDictionary

And convert it into JSON for fun

| tree dict |
tree := (XMLHTMLParser parseURL:

'http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=389430').
container := tree xpath: '//div[@class=''row'']/div[@class=''label'']|

//div[@class=''row'']/div[@class=''value'']'.
dict := ((container collect: [:each | each contentString trimBoth])

asOrderedCollection groupsOf: 2 atATimeCollect: [:x :y | x -> y]) asDictionary.

NeoJSONWriter toStringPretty:dict
>>>

'{

25

Scraping Magic

"Card Number:" : "59",
"Card Name:" : "Arcane Lighthouse",
"Artist:" : "Igor Kieryluk",
"Types:" : "Land",
"Card Text:" : ": Add to your mana pool. , : Until end of turn, creatures your

opponents control lose
hexproof and shroud and can''t have hexproof or shroud.",

"Expansion:" : "Commander 2014",
"Rarity:" : "Uncommon"

}'

Now we can apply the same technique to access all the cards and also different pages to extract all
the card unique id and query the database. But this is left as an exercise.

3.5 Conclusion

We show you how we could access the page and navigate interactively through it using XPath and
live programming feature of Pharo. This chapter should show the great value to be able to tweak
you live a document and navigate to find the information you really want.

26

	Illustrations
	Little Journey into XPath
	Getting started
	An example
	Accessing a tree object
	Nodes and atomic values
	Basic tree relationships
	A large example
	Node selection
	Node tag name
	Current and parent
	Matching path based children nodes
	Matching deep nodes
	Identifying attributes

	Predicates
	First element
	Other position functions
	Selecting based on node value
	Selecting nodes based on attribute value

	Selecting Unknown Nodes
	Handling multiple queries
	XPath axes
	Paths

	Conclusion

	Scraping HTML
	Getting started
	Define the Problem
	First find the required data
	Going back to our problem
	Turning the pages
	Conclusion

	Scraping Magic
	Getting a tree
	First the card visual
	No so cool but working...

	Revisiting it
	Getting data
	Conclusion

