
HAL Id: hal-01612821
https://inria.hal.science/hal-01612821

Submitted on 8 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object-Relational Persistence with Glorp
E Maringolo, N Pratt, R Withney

To cite this version:
E Maringolo, N Pratt, R Withney. Object-Relational Persistence with Glorp. 2017, Stéphane Ducasse.
�hal-01612821�

https://inria.hal.science/hal-01612821
https://hal.archives-ouvertes.fr

Object-Relational Persistence

with Glorp

E. Maringolo, N. Pratt and R. Withney

The Pharo Booklet Collection

edited by S. Ducasse

May 1, 2017

master@437e0df*

Copyright 2017 by E. Maringolo, N. Pratt and R. Withney.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 What is Glorp? 3

2 Installation 5

2.1 Database server . 5

2.2 Database drivers . 5

3 Person: Our First Example Class 9

3.1 Class definition . 9

3.2 Instance methods . 9

4 Defining a DescriptorSystem 11

4.1 Defining a DescriptorSystem subclass . 11

4.2 Creating tables . 13

4.3 Database Accessor . 14

4.4 Login . 14

4.5 Session object . 15

4.6 Saving/Updating/Deleting Objects . 16

5 Unit of Work and Transactions 17

5.1 Saving New Instances . 17

5.2 Reading instances . 18

5.3 About blocks . 18

5.4 Object update . 19

5.5 Object deletion . 19

5.6 Transactions . 20

6 Glorp Configurations and Additional Concepts 23

6.1 Class models . 23

6.2 Attribute properties . 24

6.3 Table model . 24

6.4 Mappings (aka Descriptor) . 26

6.5 Common properties of relationship mappings 28

6.6 A Word about Proxies. 29

i

Contents

7 Extending our Basic Example 31

7.1 Domain classes . 31

7.2 Class Model Declarations . 32

7.3 Mapping declarations . 35

7.4 Sample data . 37

8 The Query object 41

8.1 The read: message . 41

8.2 SimpleQuery . 41

8.3 Attributes of queries . 42

8.4 Fetching referenced objects . 44

8.5 Ensuring fresh data . 44

8.6 Set operations . 45

8.7 Conclusion . 45

9 Handling inheritance 47

9.1 A table for each concrete class . 47

9.2 Handling inheritance . 49

9.3 Playing with instances . 50

9.4 One table for all classes . 51

10 Under the hood 55

10.1 How Glorp expressions work . 55

10.2 About special selectors . 56

10.3 Function expressions . 56

10.4 Glorp class model diagram . 57

11 Appendix A: Basic Relational Databases Concepts 59

11.1 Tables . 59

11.2 Rows . 59

11.3 Columns . 60

11.4 Constraints . 60

11.5 Indexes . 61

11.6 Relations . 61

11.7 Data manipulation language (DML) queries 62

ii

Illustrations

2-1 Connectivity parts . 7

7-1 Class descriptors . 37

10-1 Glorp objects UML Diagram . 57

iii

Illustrations

This document describes the Glorp object-relational mapper. By reading it,
you will learn how to map your objects to a relational database. It presents
step by step how to use Glorp and its basic and advanced concepts in a tu-
torial. At the end we include an Appendix that revisits relational database
concepts. We thank the authors of the previous Glorp tutorials R. Withney
and N. Pratt for having granted us the right to use some of their material.
This document has been written by E. Maringolo and edited by S. Ducasse.

1

CHA P T E R 1
What is Glorp?

Working in a live object environment such as Pharo is great. You can freely
create your domain objects and compose them as you like. Sometimes those
objects can be stored in a way that preserves the original design but in other
cases you have to store your objects in a Relational Database Management
System (a.k.a. RDBMS). This requires you to flatten your object graph into
relational tables managed by the RDBMS.

This process of mapping object to tables is called Object-Relational Mapping
(ORM). It imposes certain constraints on the design of your object model
to support persisting it in tables. Some models are easier to map onto ta-
bles than others, the difficulty lies in what is known as the Object-Relational
Impedance Mismatch1.

To work with relational databases, Pharo provides a battle-tested ORM cre-
ated at CampSmalltalk a decade ago and maintained since then. Its name is
Glorp for Generic Lightweight Object-Relational Persistence. It is usually called
both GLORP (all caps, as an acronym), or Glorp (as a proper name).

Glorp is a full-featured ORM which offers a number of features to reduce the
impedance as much as possible. Amongst those features, you’ll find some fea-
tures saving you from writing SQL queries by hand, managing transactions
that rollback the changes to the objects in your image or commit them to
the database, writing simple and complex queries using plain Pharo syntax,
and other features that we will cover in this introduction chapter and in the
advanced topics chapter.

1https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

3

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

CHA P T E R2
Installation

2.1 Database server

Before installing Glorp you should already have installed the RDBMS of your
choice on your machine or a reacheable server, it could be PostgreSQL (http://-
postgresql.org)1, MySQL (http://dev.mysql.com/)2, SQLite (http://sqlite.org)3,
or any other of your preference (as long it is supported). Hereafter we will
refer to this RDBMS of your choice as the Platform.

2.2 Database drivers

Along with your working installation of your RDBMS you should have in-
stalled in your image the database drivers required to connect to the server.

Native drivers

With Native drivers the raw protocol is written in Smalltalk and it uses Pharo
sockets to write and read the data from the wire. This has the advantage of
being self contained, because you don’t depend on an external file or setup
to connect to a server. Also, because everything is written in Smalltalk it is
debuggable using Pharo tools down to a very low-level.

1http://postgresql.org
2http://dev.mysql.com/
3http://sqlite.org

5

http://postgresql.org
http://postgresql.org
http://dev.mysql.com/
http://sqlite.org
http://postgresql.org
http://dev.mysql.com/
http://sqlite.org

Installation

Library wrapper drivers (FFI)

Library Wrappers, as its name implies, wrap an underlying Operative Sys-
tem shared library like a .dll or .so, these wrappers will access the shared
library functions by means of FFI (Foreign Function Interface) calls and data
structures.

Using an external library enables you to use an official client implementation
of a proprietary protocol like Oracle, or you can be sure that even if the pro-
tocol spec is open you can use the official version of it. In order to use it in
Pharo you need to implement the wrapper classes and methods.

A common driver API

There are plenty of drivers available in Pharo, however those drivers have
different API’s making their use not directly interchangeable. Making it
hard to migrate to a different driver or to simultaneously support different
RDBMS.

To solve that there is Garage (aka Garage Drivers), that provides a common
API for the different driver implementations. Garage is Pharo’s analogous to
ODBC, JDBC or ADO.NET drivers.

Using this common API your code won’t need to change if, for example, you
decide to move from MySQL to PostgreSQL, as long as you don’t use exclusive
features, because all the implemented drivers will conform to the common
Garage API.

Available drivers

There are many drivers available drivers in different versions of Pharo, as
the time of writing this, these are the currently supported drivers are:

• Garage

– PostgreSQL (Native)

– MySQL (Native)

• UDBC SQLite3

Glorp packages

Glorp provides a Metacello configuration configured to load the core classes
and/or its tests.

Metacello new
smalltalkhubUser: 'DBXTalk' project: 'Garage';
configuration: 'GarageGlorp';
version: #stable;
load.

6

2.2 Database drivers

Figure 2-1 Connectivity parts

It may be the case that you want to load Garage in an alpha version, in such
case, you should load the most recent version instead of a stable version that
may be not defined for a alpha stream.

One package is the Glorp-Core and there is also a Glorp-Tests package.

Glorp with UDBC / SQLite3

Glorp may also be configured to work directly with the UDBC SQLite3 driver
in Pharo 5 (instead of the Garage drivers):

Gofer it
smalltalkhubUser: 'TorstenBergmann' project: 'UDBC';
configuration;
load.
(Smalltalk at: #ConfigurationOfUDBC) loadBleedingEdge.

Gofer it
smalltalkhubUser: 'DBXTalk' project: 'Garage';
configurationOf: 'GarageGlorp';
load.
(Smalltalk at: #ConfigurationOfGarageGlorp) project stableVersion

load.

Gofer it
smalltalkhubUser: 'DBXTalk' project: 'Glorp';
package: 'Glorp-SQLite3';
load.

7

Installation

GlorpSQLite3CIConfiguration new configureSqlite3.
GlorpDemoTablePopulatorResource invalidateSetup.

Running the tests

Having loaded the database drivers and the Glorp packages, it is recom-
mended to run the unit tests of Glorp, to ensure everything was loaded cor-
rectly and it is working properly.

8

CHA P T E R3
Person: Our First Example Class

To put some of the concepts described previously into practice we will create
a Person class and store it into a PERSON database table, all from within the
Pharo environment.

3.1 Class definition

Let us define a simple class.

Object subclass: #Person
instanceVariableNames: 'id firstName lastName birthDate'
classVariableNames: ''
package: 'Glorp-Book'

3.2 Instance methods

Let us define some stupid methods.

Person >> firstName: aString
firstName := aString

Person >> firstName
^ firstName

Person >> lastName: aString
lastName := aString

Person >> lastName
^lastName

9

Person: Our First Example Class

Person >> birthDate: aDate
birthDate := aDate

Person >> birthDate
^birthDate

Person >> initialize
super initialize.
birthDate := '1/1/1970' asDate

10

CHA P T E R4
Defining a DescriptorSystem

As you can see the above created class and methods, don’t have anything re-
lated to persistence and don’t require you to inherit from a particular class.

Glorp models all the involved concepts (such as tables, columns, classes, etc.)
as first class objects, and then links instances of those objects in a Descrip-
torSystem. It is the core of a Glorp system, it holds all the Glorp metadata,
such as the Tables, Descriptors and Class Models.

By using a separate artifact (in this case, a class) to define all the metadata of
your system, you can decouple your business models from their persistence
information. This separation of concerns is a good practice, and helps with
the maintainability of your code.

Also, having an orthogonal description of your domain objects allows you to
have more than one descriptor for the same business domain class. This is
an important difference with patterns such as ActiveRecord where the persis-
tence metadata is defined in the business domain class, and you can’t reuse
the same class for two different systems using different persistence configu-
rations.

4.1 Defining a DescriptorSystem subclass

All the definitions and mappings are defined in a subclass of DescriptorSys-
tem, and for that we will create our own subclass as follows:

DescriptorSystem subclass: #GlorpBookDescriptorSystem
instanceVariableNames: ''
classVariableNames: ''
package: 'Glorp-Book'

11

Defining a DescriptorSystem

We said before that Glorp has a whole metamodel that involves describing
the mapped class, the table(s) where it is going to be mapped and the map-
ping itself. To define each one of those, Glorp follows a convention in the
method naming. We will mention the conventions below.

Class Model

We start by describing the class Person, and the way to do it is by defining a
method with the pattern classModelForYourClass:.

Here we describe the class model for the Person class.

GlorpBookDescriptorSystem >> classModelForPerson: aClassModel
aClassModel newAttributeNamed: #id.
aClassModel newAttributeNamed: #fistName.
aClassModel newAttributeNamed: #lastName.
aClassModel newAttributeNamed: #birthDate

Note that a class model is a Glorp representation of your domain class. Glorp
uses it to store metadata about your domain objects. The descriptor system
provides hooks to let you define such a class model. classModelForPer-
son: is one of these hooks. Based on the naming convention described be-
fore, Glorp automatically associates this class model to your domain class.

Table Model

The class Person will be stored in a single table (which is the usual case),
and we provide the description of the table in a similar way as with the class
model, i.e., by following the tableForYOURTABLE convention. Please notice
the upper case of the table name.

Here is the definition of the table model for PERSON table.

GlorpBookDescriptorSystem >> tableForPERSON: aTable
(aTable createFieldNamed: 'id' type: platform serial)
bePrimaryKey.

aTable
createFieldNamed: 'firstName'
type: (platform varChar: 100).

aTable
createFieldNamed: 'lastName'
type: (platform varChar: 100).

aTable
createFieldNamed: 'birthDate'
type: platform date.

If the table name is not uppercase, it is necessary to add the method allTable-
Names with the correct case, e.g.:

For a non-uppercase table names we define the method allTableNames.

12

4.2 Creating tables

GlorpBookDescriptorSystem >> allTableNames
"Return a list of all the table names that this system uses."
^#('Person')

The serial datatype, explained in detail below, is an autoincrementing integer
datatype. Every time you save a new instance Glorp will obtain a new integer
and assign it to your instance.

Expressing mappings

Once we have the class model and the table object, we should define the
mappings between the class attributes and the table fields.

In this simple example we use a DirectMapping, which is a class of mapping
that takes the value in the column and assigns it to the attribute, and vice
versa.

Here is the definition of the mapping between the class and the table.

GlorpBookDescriptorSystem >> descriptorForPerson: aDescriptor
| table |
table := self tableNamed: 'PERSON'.
aDescriptor table: table.
aDescriptor directMappingFor: #id.
(aDescriptor newMapping: DirectMapping)
from: #firstName
to: (table fieldNamed: 'firstName').

(aDescriptor newMapping: DirectMapping)
from: #lastName
to: (table fieldNamed: 'lastName').

(aDescriptor newMapping: DirectMapping)
from: #birthDate
to: (table fieldNamed: 'birthDate')

In the above method we can see how the the descriptor links the class at-
tribute to the field name.

Although this is verbose and the advantages may not be visible in this simple
example, here lies the power of the Glorp orthogonal descriptor system, you
describe everything and then link all the parts the way you want without
modifying your domain object.

4.2 Creating tables

Assuming we haven’t created the database tables externally, Glorp’s meta-
model allows you to perform DDL (Data Definition Language) commands such
as CREATE TABLE or CREATE CONSTRAINT (among others) using plain Pharo
objects, and it can even determine when to run those.

13

Defining a DescriptorSystem

To do that we must first connect to the database. We will explain how to do
so in the following sections. We will be using a PostgreSQL server running on
the same host as our Pharo image. We will then create the Login object and a
DatabaseAccessor for it to interact with the database.

4.3 Database Accessor

Glorp is programmed to be agnostic of the Smalltalk dialect and database
driver. To achieve that instead of talking directly to the driver it uses an
adapter object that acts as an intermediary between Glorp and the under-
lying driver. Each database driver requires its own subclass of DatabaseAc-
cessor.

We use the recommended accessor, which is the Garage accessor that is com-
patible with all the drivers supported by the library.

To define it as the default driver we must execute once the following expres-
sion:

"Run this once"
GAGlorpDriver beGlorpDefaultDriver.

4.4 Login

All the information necessary to connect to the database is defined in an in-
stance of the Login class. It is an abstraction for the connection parameters
used to connect to the database server, like the Plaform used, hostname, port,
username, password, database name and other parameters.

Here is a login creation:

login := Login new
database: PostgreSQLPlatform new;
username: 'postgres';
password: 'secret';
host: 'localhost';
port: '5432';
databaseName: 'glorpbook'.

The database accessor requires an instance of the class Login to establish a
connection to the database server specified in the login, using the platform
specified.

accessor := DatabaseAccessor forLogin: login.
accessor login.

You can make the Login secure by making its password volatile, so once the
password was accessed the instance variable will be set to nil and the secret
won’t be stored in the image anymore. Note that if you want to use the same

14

4.5 Session object

login instance for other connections, you must assign the password string
again.

Here we declare a secure Login

login secure: true

Verifying the connectivity.

If everything goes fine, then executing accessor isLoggedIn should an-
swer true.

accessor isLoggedIn
>>> true

Another way to test it is performing a basic query like the following (acces-
sor basicExecuteSQLString: 'SELECT 3+4') contents first first
should return 7 as the result; and yes, the contents first first is dirty,
but it is not meant to be used this way, we’re doing it just to quickly verify
that everything is working.

4.5 Session object

Once we’re able to connect to the database we can start interacting with it
using Glorp’s objects. We will do that using an object that orchestrates all
the other objects, the GlorpSession. The easiest way to get a session is to
ask the DescriptorSystem passing the Login instance instance as the argu-
ment.

Here is how we access a session

session := GlorpBookDescriptorSystem sessionForLogin: login.
session login.

How the Parts Play Together

Let us look into the implementation of the method DescriptorSystem>>ses-
sionForLogin: to understand better how the parts interact.

DescriptorSystem class >> sessionForLogin: aGlorpLogin
| system session |
system := self forPlatform: aGlorpLogin database.
session := GlorpSession new.
session accessor: (DatabaseAccessor forLogin: aGlorpLogin).
session system: system.
^ session

First we get a system instantiating the receiver (in our case GlorpBookDe-
scriptorSystem) passing the platform as argument. The platform in the

15

Defining a DescriptorSystem

system is important because it will be used to generate SQL code using its par-
ticular syntax and data types.

Then we instantiate a GlorpSession and store it in the session object. This
session object is assigned a DatabaseAccessor. It uses this accessor to com-
municate to the database, hence the name, but to know what to send to the
db it needs all the metadata defined in the system object defined before.

Note we ask the abstract DatabaseAccessor class to return a concrete in-
stance for aGlorpLogin, it will return an instance of the database accessor con-
figured as default.

About the Platform.

In Glorp terminology a Platform is the RDBMS (for Relational Database Manage-
ment System) platform itself. The abstract class DatabasePlatform defines
the abstract methods to deal with differences of supported data types, test
the support of certain features, and so on.

In Pharo we have MySQLPlatform, OraclePlatform, PostgresPlatform,
SQLServerPlatform, SQLite3Platform and UDBCSQLite3Platform as sub-
class of DatabasePlatform.

4.6 Saving/Updating/Deleting Objects

It is time to put to work all the classes and schema we just created. To do it
we will create and persist a few instances of our example class Person, and
then read some of them back. We’ll explain a little bit how Glorp decides
what and when to INSERT, UPDATE or DELETE an object using the concept of
Unit of Work. But we should create the required tables first.

Creating Tables

Now we have our working session object, we can perform our DDL queries
extracting the data from the system and sending commands to the accessor.
But before we should execute the following to create the tables:

session createTables

And voilà, it will send the required commands to the database to create our
tables, sequences, constraints and so on.

16

CHA P T E R5
Unit of Work and Transactions

If you worked with RDBMS’s before, you know you can use transactions that
detach you from immediate writes to the database files, and enable you to
rollback (undo) your changes, or do a batch of changes and commit them all
at once.

Glorp provides you with automatic handling of such database transactions.
It also adds another concept, the Unit of work (aka UOW or UnitOfWork). This
UnitOfWork keeps track of all the persisted objects, enabling you to commit or
rollback changes at the object level while maintaining the database transac-
tion in sync with it.

5.1 Saving New Instances

To save instances, we should send the message register: anInstance to
a session. Note that this operation should occur within a Unit of Work using
the message inUnitOfWorkDo: as follows:

session inUnitOfWorkDo: [
{
(Person new

firstName: 'John'; lastName: 'Locke';
birthDate: '1704-08-29' asDate).

(Person new
firstName: 'John'; lastName: 'Malkovich';
birthDate: '1953-12-09' asDate).

(Person new
firstName: 'George'; lastName: 'Lucas';
birthDate: '1944-05-14' asDate)

} do: [:each | session register: each]

17

Unit of Work and Transactions

].

As you can see, we didn’t say if the instance needs to be inserted or updated,
nor did we specify an id for each instance. The framework will determine
that by registering the instance in the all-mighty session.

Note that if we are registering an object that was read in a previous unit of
work, the object cannot be modified prior to registration in the current unit
of work.

5.2 Reading instances

We can now read back some of the persisted instances. Again we use the ses-
sion object, sending it the message read: and the class as argument. This
will return a collection of results.

The following expression returns all read all instances of Person:

session read: Person

Of course you don’t always read all the instances from the database but want
to filter the results. For that you can pass a block that will act as a filter.

The following expression reads all instances of Personmatching a criteria

session
read: Person
where: [:each | each firstName = 'John'].

Reading one instance

Another convenient way to retrieve a single instance instead of a Collection
is to use the readOneOf: or readOneOf:where: message in an analogous
way to read: and read:where:.

5.3 About blocks

The read:where: message might lead you to think you can pass any block to
filter the results as you can do with select: in a regular collection, but that
is not the case.

Glorp uses blocks as a very clever way to build expressions that are later con-
verted to SQL by the framework. You can do basic filtering using this feature,
but keep in mind it doesn’t work as a regular block.

18

5.4 Object update

Translated selectors

Next to regular operators such as = and >=, you can use some special selec-
tors that get translated to their counterparts SQL operators. For instance the
similarTo: selector gets converted to SQL’s LIKE operator.

With this we can retrieve all the Persons with a given last name using an op-
erator that gets translated:

session
read: Person
where: [:each | each lastName similarTo: 'Malk%'].

5.4 Object update

We can also update one instance, i.e., to read one and update it. We do it in
the context of a UnitOfWork using the message inUnitOfWorkDo:.

Updating an object read within a UnitOfWork:

session inUnitOfWorkDo: [
| person |
person := session
readOneOf: Person
where: [:each | each lastName = 'Locke'].

person birthDate: Date today.
].

Note that to update an object accessed from the database does not require
you to send the message register: to the session object, as we did while
populating the table.

This is because when you’re working inside a Unit of Work all the objects you
read are automatically registered by the session, saving you from explicitly
registering them (which is safe to do anyway, but it is not required).

5.5 Object deletion

So far we covered Creation, Read, and Update. We’re only missing the Dele-
tion of objects. This is as easy as it gets, just send the delete: to the session
object with the object you want to delete as argument.

The following snippet show how to delete an object inside of a UnitOfWork:

session inUnitOfWorkDo: [
| person |
person := session
readOneOf: Person
where: [:each | each lastName = 'Locke'].

session delete: person

19

Unit of Work and Transactions

].

Another way to delete objects is passing a condition block:

session inUnitOfWorkDo: [
session
delete: Person
where: [:each | each lastName = 'Locke'].

].

You can delete an object without being inside of a UnitOfWork, this will
cause the object to be deleted right away, without giving you the option to
rollback such action unless you handle the transaction manually.

5.6 Transactions

Glorp lets you handle transactions automatically using a unit of work or
manually as we will now show.

Rolling back changes

Atomic1 modifications to a database are important, and to achieve that you
need transactions that let you rollback changes if something fails.

A Unit of Work handles the errors and other unexpected terminations of the
block, so if something fails, it not only rollbacks any changes at the database
level if necessary, but also, and more importantly it reverts the changes in
your objects.

The following example shows that the last name of the Locke object will not
be modified and the database updated since the unit of work failed.

session inUnitOfWorkDo: [
person := session
readOneOf: Person
where: [:each | each lastName = 'Locke'].

person lastName: 'Wayne'.
Error signal: 'This error will abort the Unit Of Work.'
]

Manually managing transaction

The inUnitOfWorkDo: message is a convenient way to isolate a block of exe-
cution within the context of a transaction at both object and database levels.
However it has some limitations, like not being able to handle nested UnitOf-
Works or transactions. Everything happens in the context of the outer con-
text transaction in which it was evaluated.

1https://en.wikipedia.org/wiki/Atomicity_%28database_systems%29

20

https://en.wikipedia.org/wiki/Atomicity_%28database_systems%29
https://en.wikipedia.org/wiki/Atomicity_%28database_systems%29

5.6 Transactions

If for some reason you need to handle the start/end/rollback of the unit of
work manually, you can do so by using the following messages:

• beginUnitOfWork

• commitUnitOfWork

• rollbackUnitOfWork

• commitUnitOfWorkAndContinue

The first three have self-describing selectors, and can be used like in the fol-
lowing code snippet.

person := session
readOneOf: Person
where: [:each | each firstName = 'George'].

session beginUnitOfWork.
session delete: person.
session rollbackUnitOfWork.
session beginUnitOfWork.
person lastName: 'Lukas'.
session register: person.
session commitUnitOfWork.

The message commitUnitOfWorkAndContinue needs some explanation, but
the concept is simple: It commits the current unit of work, and then creates
a new one migrating all the objects registered in the commited unit of work
to the newly created, and still open, unit of work. If this paragraph confuses
you, looking at its implementation might explain it better.

It is useful for cases like batch loads or updates, where you want to commit
changes every n instances or similar.

Commiting and continuing the Unit Of Work:

session beginUnitOfWork.
10 to: 99 do: [:index |

session register: (
Person new
firstName: 'Sample';
lastName: index printString).

(index \\ 10) isZero ifTrue: [
session commitUnitOfWorkAndContinue

].
].
session commitUnitOfWork.

We can cleanup (delete) some sample instances by running:

session inUnitOfWorkDo: [
session

delete: Person
where: [:each | each firstName = 'Sample'].

21

Unit of Work and Transactions

].

22

CHA P T E R6
Glorp Configurations and

Additional Concepts

In our previous example we created a simple class that mapped 1:1 with a
table using simple data types, but Glorp provides many more features than
an ActiveRecord like mapping. It lets you fine tune the persistence of your
classes. We will go over the different configurations of class models, table
data types and constraints and mappings of all sorts.

6.1 Class models

A class model defines the attributes of your domain objects, and how they
compose. Each of your persisted objects should have an instance of Glor-
pClassModel in the descriptor system containing all the attributes of your
class. By convention, these attributes are added by implementing classMod-
elForYourClass: as we did previously for the Person example.

The simplest way to add an attribute is using a series of convenience meth-
ods returning instances of GlorpAttributeModel, described below:

newAttributeNamed: #email Used to define simple scalar/literal values
such as Numbers, Strings, Dates, etc.

newAttributeNamed: #address type: Address Used to define 1:1 (one to
one) relations with other objects of your domain model.

newAttributeNamed: #invoices collectionOf: Invoice Used to de-
fine 1:n (one to many) and n:m (many to many) relations of your class
model with other models.

23

Glorp Configurations and Additional Concepts

newAttributeNamed: #invoices collection: collectionClass of: Invoice
Similar as the one above for 1:n and n:m relations, but you can define
what kind of Collection is going to be used.

newAttributeNamed: #counters dictionaryFrom: keyClass to: valueClass
Used to define an attribute that is a Dictionary where the key is key-
Class and its values are instances of valueClass.

6.2 Attribute properties

The above described methods return instances of GlorpAttributeModel,
which share common properties that you can configure using the following
messages.

useDirectAccess: aBoolean Let you define whether the access to the
attribute described by the symbol of your domain model will be per-
formed by directly accessing the instance variable (slot) instead of us-
ing a message send. This is the default, and lets you persist variables
that don’t have getters and setters. It’s also useful where the getters
and setters

have extra behavior that you don’t want triggered by the persistence mech-
anisms. On the other hand, going through a message send allows you to per-
sist things that don’t correspond directly to a single instance variable.

beForPseudoVariable Useful for cases where you want to describe an at-
tribute that won’t be read nor written, but still described to be used on
queries.

For example, in a later section we talk about mapping the position of an
object in a collection to a field in the database, since databases don’t main-
tain order. We could map that order field to a pseudo-variable and use it in
queries, even though we don’t want it stored in the object.

GlorpBookDescriptorSystem >> classModelForPerson: aClassModel
(aClassModel newAttributeNamed: #id) useDirectAccess: true.
aClassModel newAttributeNamed: #firstName.
aClassModel newAttributeNamed: #lastName.
aClassModel newAttributeNamed: #birthDate.
aClassModel newAttributeNamed: #email.
aClassModel newAttributeNamed: #address type: Address.
aClassModel newAttributeNamed: #invoices collectionOf: Invoice.
aClassModel newAttributeNamed: #counters from: String to: Integer.

6.3 Table model

Glorp also models your database objects, such as tables, constraints, indexes,
etc.. With this model it will be able to determine how to serialize the objects

24

6.3 Table model

to SQL, how to perform joins to retrieve 1:1 or 1:n relations, and so on.

The descriptor system follows a convention to define the tables, it uses the
tableForTABLENAME: selector to configure TABLENAME, the argument of this
method is an instance of DatabaseTable, and this method is responsible for
describing your table in the relational database, including field names and
their data types, contraints (primary keys and/or foreign keys), etc.

Adding fields to the table

Let’s bring back our example from the beginning of this book

GlorpBookDescriptorSystem >> tableForPERSON: aTable
(aTable createFieldNamed: 'id' type: platform serial) bePrimaryKey.
aTable createFieldNamed: 'firstName' type: (platform varChar: 100).
aTable createFieldNamed: 'lastName' type: (platform varChar: 100).
aTable createFieldNamed: 'birthDate' type: platform date.

As you can see, you can add a field by sending createFieldNamed:type: to
the table object. The first argument of the method is name of the field (aka
column) in your table, the second one is the datatype.

For the datatype we’re not specifying any particular implementation of the
type but instead we send a message to the platform object, and in Glorp jar-
gon the platform is the RDBMS we’ll be using.

Doing it this way enables our table model to be RDBMS agnostic, and, for in-
stance, it will work with SQLite or PostgreSQL (or any other platform). E.g. if
our platform is PostgreSQL then platform varchar will return VARCHAR, but
if instead our platform is SQLite then it will return TEXT because SQLite only
supports TEXT as datatype for character based fields.

Going back to createFieldNamed:type:, it will return an instance of Database-
Field, which has properties of its own, such as if the field is nullable, unique,
its default value, and some convenience methods such as bePrimaryKey
which will create a PK (primary key) on the table for this field.

Commonly used datatypes in alphabetic order are:

25

Glorp Configurations and Additional Concepts

selector SQL-92 datatype Pharo class
blob BLOB ByteArray
boolean BOOLEAN Boolean
date DATE Date
decimal NUMERIC ScaledDecimal
double DOUBLE Float
float REAL Float
integer INTEGER Integer
serial SERIAL Integer
time TIME Time
timestamp TIMESTAMP DateAndTime
varchar VARCHAR String

You can find more datatypes by browsing the types method category of Database-
Platform or any of its subclasses, not all databases support all datatypes,
and some platforms have their own datatype. If you decide to use a datatype
that’s only supported by a particular RDBMS you will lose the benefits of be-
ing platform agnostic, so it is a tradeoff.

6.4 Mappings (aka Descriptor)

Once we have the Class Model describing our business objects and the Ta-
ble Models describing the tables where they will be stored, we need to de-
scribe how they are going to work together. To achieve that Glorp uses an
instance of Descriptor that contains the mappings between the attributes
of the class model and the fields of the tables involved.

As expected, there is a convention to define Descriptors and, you guessed
right, it is descriptorForYourClass: that will receive as an argument a
instance of Descriptor on which you will configure the mappings.

GlorpBookDescriptorSystem >> descriptorForPerson: aDescriptor
| table |
table := self tableNamed: 'PERSON'.
(aDescriptor newMapping: DirectMapping) from: #id to: (table

fieldNamed: 'id').
(aDescriptor newMapping: DirectMapping) from: #firstName to:

(table fieldNamed: 'firstname').
"snip..."
(aDescriptor newMapping: OneToOneMapping) attributeName: #address.
(aDescriptor newMapping: ToManyMapping) attributeName: #invoices.

As you can see, the usual practice is to get a reference to the tables involved
(one in this example, could be more), and then add mappings to aDescrip-
tor by sending it the message newMapping: with an instance of the class of
mapping we want to use.

There are many mappings that Glorp provides, but the most used ones are:

26

6.4 Mappings (aka Descriptor)

Direct mapping.

To map a number, a string, a date or any other value like object you use an in-
stance of DirectMapping, specifying which attribute from your class model
you want to map to a field of a table.

Although many times they will be the same symbol, the argument you pass
to the from: parameter is not the symbol of the selector but instead the
name of attribute you have defined in your classModelFor...: method.

1:1 relationships.

When you’re trying to map a single reference from one object to another,
you use the class OneToOneMapping and specify the name of the attribute
that this instance is mapping. If everything is as simple as this you don’t
have to specify further instructions and Glorp will determine how to retrieve
the instances based on the information provided in the ClassModel, foreign
keys, etc. If you need further instructions you can always define them, more
on that later.

1:N relationships.

If you are trying to map a collection that belongs to a parent/owner object like
the invoices of a Person or the items of such invoice to the invoice itself, then
you have to use the OneToManyMapping class. It is commonly used when you
have the rows of the tables at the N side of the relation have a field that points
back to the the 1 side. In our example, the invoices have a Foreign Key point-
ing back to the persons table.

N:M relationships.

The Many to Many relationships is similar to the previous one, but in this
case the other side of the relation might belong to more than one owner. For
instance, if you have Person and Tag, a Person might have many Tags, but
these tags in turn belong to other instances of Person. In this case you use
the ManyToManyMapping and also have to specify the attributeName.

From your the Pharo point of view, you will continue to see a regular collec-
tion but when storing its elements it will require a third table to do it, called
a link table, Glorp has a convention to name such link tables, and it is based
on composing the names of both sides of the relations. Following our Person
to Tag relation, the table name Glorp will expect is TAG_ON_PERSON, and this
must also have its definition in the descriptor system, so in this case there
must be a tableForTAG_ON_PERSON:method.

27

Glorp Configurations and Additional Concepts

6.5 Common properties of relationship mappings

All OneToOneMapping, OneToManyMapping and ManyToManyMapping are con-
venience subclasses of RelationshipMapping, and as such they share com-
mon properties that can be modified.

For instance, the only difference between OneToManyMapping and Many-
ToManyMapping is that the later is initialized to use a link table, but you can
have a OneToManyMapping that uses a link table if you prefer, you simple
send useLinkTable to it.

Reference Classes.

All RelationshipMapping instances can specify the class they reference by
sending referenceClass: with the desired class as argument. This is used a
lot, and is a convenience method that ends up modifying the attribute in the
ClassModel. So you can specify it at either place you find more convenient.

Note we only define the class referenced, because the other side of the rela-
tionship is the class for which we’re defining the mapping itself.

Other attribute common to all RelationshipMapping subclasses is that you
can specify how it is suppose to join with other tables, it is, its Join object.
More on this on the advanced section.

Exclusivity.

Another attribute is the exclusivity of relationships, enabled by sending be-
Exclusive to the mapping. This handy method makes that once the parent
(or left) side of the relation is deleted from the database, Glorp will manu-
ally delete the child (or right) side of it. In our Person example, if the relation
with Address was exclusive, then deleting a Person would cause Glorp to
delete its address as well.

One caveat of this convenience approach, is that it doesn’t play along with
database foreign key actions like ON DELETE CASCADE, basically because one
will happen without the other knowing it, and Glorp will try to delete an ex-
clusive object that was already removed from the database by the CASCADE
and because of that it will fail.

Collection type.

In the case of to many mappings you can specify the collection type of the
mapping, for instance, you can send collectionType: Set to your mapping
and have it initialized to a Set instead of the default OrderedCollection.

28

6.6 A Word about Proxies.

Proxy.

And last, but not least, you can specify whether to proxy or not such a rela-
tion. By sending shouldProxy: either true or false, Glorp will place prox-
ies or immediately build an instance from the database. If you don’t specify
this, it will proxy by default.

6.6 A Word about Proxies.

To avoid reading the whole object graph every time you read an object that
has any kind of relationship mapping, Glorp places a Proxy object instead of
reading it from the database. This saves a lot of roundtrips to the database,
bandwidth and CPU/memory in the image building objects that you may not
ever use.

However, there are cases when you know that certain objects reference other
objects that you know that always will be used, if that is the case you can
avoid the proxying, and instead force the immediate materialization.

Once Glorp turns a proxy into one of your domain objects, it will store your
object in the Session Cache (more on this later), so future references to the
same object won’t cause an additional read from the database, and instead
use the instance in the cache.

And also, Proxies are tricky animals, so beware when debugging something
that involves them. Sometimes they can fool the development tools, making
them believe they’re something they’re not!

29

CHA P T E R7
Extending our Basic Example

Now that we explained in more detail the main parts of Glorp’s descriptor
system, we’re ready to extend our basic example, we’re going to create a
minimal invoicing model to include the concepts just learnt.

We will

• define new Pharo class

• describe such new classes to be handled by Glorp

• describe the table in which such class instances will be stored

• describe the mapping between the instances and the records.

7.1 Domain classes

To do so we will create the following classes Person, Address, Invoice, In-
voiceItem, all inheriting from GlorpBookObject, as a convenience to factor
the id attribute.

We will omit the listing of accessor methods, but you should create them.
Regarding the id attribute, Glorp doesn’t require you to use it as the primary
key of your objects.

You can use as many attributes as you want, but for the sake of simplicity we
will use it as a surrogate key1, which is a key that is a unique identifier, an
object not derived from application data.

Here is the hierarchy root of book classes.

1https://en.wikipedia.org/wiki/Surrogate_key

31

https://en.wikipedia.org/wiki/Surrogate_key
https://en.wikipedia.org/wiki/Surrogate_key

Extending our Basic Example

Object subclass: #GlorpBookObject
instanceVariableNames: 'id'
classVariableNames: ''
package: 'Glorp-Book'.

GlorpBookObject subclass: #Person
instanceVariableNames: 'firstName lastName birthDate addresses

invoices tags'
classVariableNames: ''
package: 'Glorp-Book'.

GlorpBookObject subclass: #Address
instanceVariableNames: 'street number city zip'
classVariableNames: ''
package: 'Glorp-Book'.

GlorpBookObject subclass: #Invoice
instanceVariableNames: 'issueDate person address items'
classVariableNames: ''
package: 'Glorp-Book'.

GlorpBookObject subclass: #InvoiceItem
instanceVariableNames: 'invoice description price'
classVariableNames: ''
package: 'Glorp-Book'.

Aside from the accessors, when you’re dealing with collections (to-many re-
lations) that are going to persisted, it is recommended to early initialize all
the instance variables that will reference such collections. Otherwise it could
cause some failures because Glorp keeps a copy of the object attributes to en-
able rolling back changes on memory. Plus... having a complete instance is a
good practice too.

Person >> initialize
super initialize.
addresses := OrderedCollection new.
invoices := OrderedCollection new.

Invoice >> initialize
super initialize.
items := OrderedCollection new.

7.2 Class Model Declarations

Let’s create our GlorpBookDescriptorSystem to describe the new domain
models.

GlorpBookDescriptorSystem >> classModelForPerson: aClassModel
(aClassModel newAttributeNamed: #id) useDirectAccess: true.
aClassModel newAttributeNamed: #firstName.
aClassModel newAttributeNamed: #lastName.

32

7.2 Class Model Declarations

aClassModel newAttributeNamed: #email.
aClassModel newAttributeNamed: #addresses collectionOf: Address.
aClassModel newAttributeNamed: #invoices collectionOf: Invoice.

GlorpBookDescriptorSystem >> classModelForAddress: aClassModel
(aClassModel newAttributeNamed: #id) useDirectAccess: true.
aClassModel newAttributeNamed: #street.
aClassModel newAttributeNamed: #zip

GlorpBookDescriptorSystem >> classModelForInvoice: aClassModel
(aClassModel newAttributeNamed: #id) useDirectAccess: true.
aClassModel newAttributeNamed: #issueDate.
aClassModel newAttributeNamed: #person type: Person.
aClassModel newAttributeNamed: #address type: Address.
aClassModel newAttributeNamed: #items collectionOf: InvoiceItem

GlorpBookDescriptorSystem >> classModelForInvoiceItem: aClassModel
(aClassModel newAttributeNamed: #id) useDirectAccess: true.
aClassModel newAttributeNamed: #invoice type: Invoice.
aClassModel newAttributeNamed: #description.
aClassModel newAttributeNamed: #price

Table Declarations

Then we should declare the tables that represent our domain. Here is the
table models for the class Person, Address and Invoice.

GlorpBookDescriptorSystem >> tableForPERSON: aTable
(aTable createFieldNamed: 'id' type: platform serial) bePrimaryKey.
aTable createFieldNamed: 'firstName' type: (platform varChar: 100).
aTable createFieldNamed: 'lastName' type: (platform varChar: 100).
aTable createFieldNamed: 'email' type: (platform varchar: 200).

GlorpBookDescriptorSystem >> tableForADDRESS: aTable
(aTable createFieldNamed: 'id' type: platform serial) bePrimaryKey.
aTable createFieldNamed: 'street' type: (platform varChar: 100).
aTable createFieldNamed: 'zip' type: platform integer.

GlorpBookDescriptorSystem >> tableForINVOICE: aTable
| personField addressField |
(aTable createFieldNamed: 'id' type: platform serial)
bePrimaryKey.

aTable createFieldNamed: 'issueDate' type: platform date.
personField := aTable
createFieldNamed: 'person_id'
type: platform integer.

addressField := aTable
createFieldNamed: 'address_id'
type: platform integer.

aTable
addForeignKeyFrom: personField
to: ((self tableNamed: 'PERSON') fieldNamed: 'id').

33

Extending our Basic Example

aTable
addForeignKeyFrom: addressField
to: ((self tableNamed: 'ADDRESS') fieldNamed: 'id').

As you can see in our INVOICE table, we not only added fields, but also added
Foreign Keys (aka FK) to our table table model using the message addFor-
eignKeyFrom:to:. This will add the foreign keys to the list of constraints
of the table model, and will be used by Glorp to order writes/deletions and
infer relations.

Also notice that we need to pass the referenced field as argument. To ob-
tain it we ask the descriptor system for the table of PERSON and ADDRESS by
sending tableNamed: with the name of table we want as argument. This will
return the DatabaseTable with that name, and to this object we will ask for
the field named id.

GlorpBookDescriptorSystem >> tableForINVOICEITEM: aTable
| invoiceField |
(aTable createFieldNamed: 'id' type: platform serial) bePrimaryKey.
invoiceField := aTable createFieldNamed: 'invoice_id' type:

platform serial.
aTable createFieldNamed: 'description' type: (platform varchar:

150).
aTable createFieldNamed: 'price' type: platform decimal.
aTable createFieldNamed: 'position' type: platform integer.
aTable
addForeignKeyFrom: invoiceField
to: ((self tableNamed: 'INVOICE') fieldNamed: 'id').

GlorpBookDescriptorSystem >> tableForPERSON_ON_ADDRESS: aTable
| personField addressField |
personField := aTable
createFieldNamed: 'person_id'
type: platform integer.

addressField := aTable
createFieldNamed: 'address_id'
type: platform integer.

personField bePrimaryKey.
addressField bePrimaryKey.
aTable
addForeignKeyFrom: personField
to: ((self tableNamed: 'PERSON') fieldNamed: 'id').

aTable
addForeignKeyFrom: addressField
to: ((self tableNamed: 'ADDRESS') fieldNamed: 'id').

As you can see in the last method, we created a table model for the table
PERSON_ON_ADDRESS. This table will be used as a link table. Because this link
table references to other tables we also created Foreign Keys from each ref-
erence field using the same approach described before.

34

7.3 Mapping declarations

7.3 Mapping declarations

Address

The mapping for the class and table address is simple since there is a direct
mapping between the class model (the domain model) and the table.

GlorpBookDescriptorSystem >> descriptorForAddress: aDescriptor
| table |
table := self tableNamed: 'ADDRESS'.
aDescriptor table: table.
(aDescriptor newMapping: DirectMapping)
from: #id
to: (table fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #street
to: (table fieldNamed: 'street').

(aDescriptor newMapping: DirectMapping)
from: #city
to: (table fieldNamed: 'zip').

Invoice

The mapping for invoice is a bit more elaborated, because it not only con-
tains Direct Mappings, and one-to-one mappings for the Person and Ad-
dress, but also contains a one-to-many relationship to its items.

We introduced the orderBy: and writeTheOrderField attributes in the
#items mappings. You can use the first attribute independently or both to-
gether.

The orderBy: attribute instructs Glorp to read the elements from the database
and order (aka sort) them by the field described in the block. This is useful
so the collection that holds the references to the items (in this example)
is always sorted the same way, because the order the rows come from the
database is not always the same, and you can’t trust they will return in the
same order as they were written.

The writeTheOrderField command will make Glorp save the index of the
element in the collection as a field in the row. It will use the field defined in
orderBy: as its target, in this case position. So if you have an OrderedCollec-
tion with five items, the first element one will have 1 stored in the position
field, the second 2, and so on. If you change the order of the elements in the
collection, the position field will be saved with the new index.

GlorpBookDescriptorSystem >> descriptorForInvoice: aDescriptor
| table |
table := self tableNamed: 'INVOICE'.
aDescriptor table: table.
(aDescriptor newMapping: DirectMapping)

35

Extending our Basic Example

from: #id
to: (table fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #issueDate
to: (table fieldNamed: 'issueDate').

(aDescriptor newMapping: OneToOneMapping)
attributeName: #person.

(aDescriptor newMapping: OneToOneMapping)
attributeName: #address.

(aDescriptor newMapping: ToManyMapping)
attributeName: #items;
orderBy: [:each |

(each getTable: 'INVOICEITEM') getField: 'position'];
writeTheOrderField.

InvoiceItem

The mapping for each invoice item is slightly different since an item is al-
ways part of an Invoice, and only that invoice; so because of that we have a
OneToOneMapping referencing its invoice. This way we make the relation
between Invoice and InvoiceItem bidirectional.

GlorpBookDescriptorSystem >> descriptorForInvoiceItem: aDescriptor
| table |
table := self tableNamed: 'INVOICEITEM'.
aDescriptor table: table.
(aDescriptor newMapping: DirectMapping)
from: #id
to: (table fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #description
to: (table fieldNamed: 'description').

(aDescriptor newMapping: DirectMapping)
from: #price
to: (table fieldNamed: 'price').

(aDescriptor newMapping: OneToOneMapping)
attributeName: #invoice.

Person

The mapping for the class Person is more elaborate and worth some explana-
tion of what happens in the last lines.

Here we introduce the explicit join: attribute of the Reference Mapping.
Usually Glorp infers and creates such Join by looking at the Foreign Keys of
the described or referenced class, but you can make that Join explicit, you
just have to create a Join object with the source field and the referenced
field as arguments. In this case the join is pretty straightforward and be-
tween two fields, but it could be between as many fields as you want.

36

7.4 Sample data

Listing 7-1 Class descriptors

GlorpBookDescriptorSystem >> descriptorForPerson: aDescriptor
| table linkTable |
table := self tableNamed: 'PERSON'.
aDescriptor table: table.
(aDescriptor newMapping: DirectMapping)
from: #id
to: (table fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #firstName
to: (table fieldNamed: 'firstName').

(aDescriptor newMapping: DirectMapping)
from: #lastName
to: (table fieldNamed: 'lastName').

(aDescriptor newMapping: DirectMapping)
from: #email
to: (table fieldNamed: 'email').

(aDescriptor newMapping: ToManyMapping)
attributeName: #invoices;
orderBy: [:each |

(each getTable: 'INVOICE') getField: 'issueDate'].

linkTable := self tableNamed: 'PERSON_ON_ADDRESS'.
(aDescriptor newMapping: ManyToManyMapping)
attributeName: #addresses;
referenceClass: Address;
beExclusive;
join: (Join

from: (table fieldNamed: 'id')
to: (linkTable fieldNamed: 'person_id')).

7.4 Sample data

We will create some sample data for our example, and for the Persons we
will save three instances named after famous Smalltalkers, with random ad-
dresses, so don’t mail them.

session inUnitOfWorkDo: [
| lastnames firstnames |
{ 'Dan'. 'Alan'. 'Adele' }
with: {'Ingalls'. 'Kay'. 'Goldberg'}
do: [:firstName :lastName |

| person |
person := (Person new
firstName: firstName;
lastName: lastName).

person addresses add: (
Address new

37

Extending our Basic Example

street: (1 to: 1000) atRandom printString
, ' Random Avenue';
zip: (1000 to: 9000 by: 100) atRandom;
yourself).

session register: person
]

].

Now we created the sample Persons, let’s add an extra address for Alan.

session inUnitOfWorkDo: [
| alan |
alan := session
readOneOf: Person
where: [:each | each firstName = 'Alan'].

alan addresses
add: (Address new

street: '1025 Westwood Blv, 2nd Floor, Los Angeles, CA';
zip: 90024;
yourself)

].

As you can see, we didn’t have to register the newly created address because
the Person was read inside of a UnitOfWork. If we read the instance again
and inspect its addresses we will find the new instance is there.

(session
readOneOf: Person
where: [:each | each firstName = 'Alan']) addresses inspect

Before continuing and to make code simpler and more readable we’ll create a
few convenience methods:

InvoiceItem class >> description: aString price: aNumber
^ self new

description: aString;
price: aNumber;
yourself

Invoice >> addItem: anInvoiceItem
anInvoiceItem invoice: self.
self items add: anInvoiceItem

Invoice >> totalPrice
^ self items sum: #price

We can now procceed to create an few instances of Invoice. Let’s create one
invoice for each person in the database with two items describing dona-
tions to the Pharo Consortium2 and Association3 with randomized amounts
(within a certain range) for each one.

2http://consortium.pharo.org
3http://association.pharo.org

38

http://consortium.pharo.org
http://association.pharo.org
http://consortium.pharo.org
http://association.pharo.org

7.4 Sample data

session inUnitOfWorkDo: [
(session read: Person) do: [:person |
| invoice |
invoice := Invoice new

issueDate: Date today;
person: person;
address: person addresses atRandom.

invoice
addItem: (InvoiceItem
description: 'Pharo Consortium donation'

price: (1000s to: 4000s by: 1000s) atRandom);
addItem: (InvoiceItem
description: 'Pharo Association donation'

price: (20s to: 100s by: 10s) atRandom); yourself.
session register: invoice.

]
].

As usual, you can read the Invoices by doing session read: Invoice, let’s
print how much each Person donated.

(session read: Invoice) do: [:each |
Transcript
show: each person firstName, ' ', each person lastName;
show: ': ', each totalPrice printString;
cr.

]

When we presented the ReferenceMappings we mentioned how Glorp puts
proxies in place of a referenced object to avoid performing unnecessary
roundtrips to the database.

In the example above, assuming all caches are empty, Glorp will perform
one query to retrieve all the Invoices and then one extra query to retrieve
the data to instantiate each Person. So if you retrieve Invoices for three dif-
ferent persons, Glorp will perform four queries, it is four roundtrips, to the
database. Keep that in mind while we continue with other examples.

(session read: Invoice) sum: #totalPrice

The message sum: above will retrieve all the rows from the tables, instanti-
ate an equivalent quantity of Invoice and then go over all the invoices’ items
to sum them. In our example, we only have a few instances but what if we
had a million of them? Instantiating everything at the Pharo side wouldn’t
be convenient for such a simple sum. Performing an SQL SUM() at the database
side would be more efficient, since we would only retrieve the total instead.
But how to do such a query?

39

CHA P T E R8
The Query object

So far we’ve been querying objects by means of sending read: or read:where:
to the session object, but if you want to perform a particular query, like lim-
iting the number of results, running an aggregate function like SUM(), AVG(),
ordering the rows at the server side, performing subqueries and many other
features then the session object doesn’t provide you with an API for that.

8.1 The read: message

Everytime you sent a read: message to the session, the session created a
simple Query object to read the class passed as parameter as in the following
expression.

(session read: Invoice) executeIn: session

But you can instantiate a Query object independently, configure it to fit your
needs and execute it in the session. Enter the Query object!

8.2 SimpleQuery

Let’s say we want to know the sum of all the prices of our InvoiceItems, we
can do that by using the retrieve: method and using an aggregate function
like sum.

((SimpleQuery read: InvoiceItem)
readsOneObject: true;
retrieve: [:each | each price sum]) executeIn: session.

41

The Query object

The retrieve: method configures the query to return only the retrieved at-
tributes of the read object. The query will return a collection with the objects
retrieved instead of a collection of instances of the read class.

If we know beforehand that our query will return a single row with a single
field, i.e., a single object, we can configure the query to return that object
directly by setting readsOneObject: to true.

If you retrieve more than one object then the query will return a collection
of collections, in the form of #(#(...) #(...) ...).

((SimpleQuery read: Person)
retrieve: [:each | each firstName];
retrieve: [:each | each lastName]) executeIn: session.

8.3 Attributes of queries

The Query object models an SQL SELECT statement, and like that statement it
can include a WHERE, ORDER BY, GROUP BY, HAVING, etc.

WHERE expression

You can always include a where expression as you did when reading through
the session object. Inside the where expression, you can filter by attributes of
referenced objects.

((SimpleQuery read: Invoice)
where: [:each | each person lastName = 'Goldberg']
) executeIn: session

Or even by interacting with a referenced collection, i.e., retrieving only In-
voices containing items with a price above 2000.

((SimpleQuery read: Invoice)
where: [:invoice |
invoice items anySatisfy: [:item |

item price > 2000]]) executeIn: session

ORDER BY expression

The ORDER BY expression in a Query object is set by sending orderBy: to the
query object as many times, as fields you want to include in your ordering
criteria.

((SimpleQuery read: InvoiceItem)
orderBy: [:each | each price descending];
orderBy: [:each | each invoice person lastName]
) executeIn: session

42

8.3 Attributes of queries

GROUP BY expression

As shown in previous code samples you can also perform SQL’s aggregate
queries like SUM(), COUNT(), etc.; if you want to perform those aggregate
functions grouped by certain expression, then the groupBy: option comes to
the rescue.

((SimpleQuery read: InvoiceItem)
retrieve: [:e |
e invoice person firstName, '-', e invoice person lastName];

retrieve: [:e | e price sum];
groupBy: [:e |
e invoice person firstName, '-', e invoice person lastName]

) executeIn: session.

In the above example you can see we’re retrieving two fields concatenated
and grouped by the same concatenated value. Remember that when using an
aggregate function, all the non-aggregated fields retrieved must be included
in the GROUP BY. Notice here we’re also grouping by a field in other table,
Glorp resolves all the JOINs for you.

Retrieving the average donation

((SimpleQuery read: InvoiceItem)
retrieve: [:each | each description];
retrieve: [:each | each price average];
groupBy: [:each | each description]) executeIn: session.

Although the GROUP BY expression is used extensively in production systems,
it only works for retrieving fields of the query and not full-fledged instances
of your objects described in your DescriptorSystem.

LIMIT and OFFSET expressions

You can also limit the number of rows returned by your Query, this is useful
if you know your query will return one single row/object or if only want to
retrieve a certain number of rows. The LIMIT expression varies between dif-
ferent databases, Glorp will make sure it generates the right SQL code for the
plaform you’re using.

When the LIMIT expression is used in combination with the OFFSET expres-
sion it lets you implement simple pagination queries.

((SimpleQuery read: InvoiceItem)
limit: 3;
offset: 3) executeIn: session.

43

The Query object

8.4 Fetching referenced objects

We mentioned before that when you’re querying the Invoices Glorp will
place a Proxy object for each reference (e.g. Person) it doesn’t have in the
session cache, and then once the Proxy is hit by a message send it will mate-
rialize it by retrieving its contents by performing a database Query.

Imagine this scenario for at least 1000 Invoices that reference a different Per-
son each, that would be 1001 queries and their resulting I/O impact.

In a regular SQL query you would solve that by doing a regular JOIN with the
related table; when reading first class Objects with Glorp it makes it almost
as easy as doing a JOIN in SQL.

((SimpleQuery read: Invoice)
alsoFetch: [:each | each person];
alsoFetch: [:each | each address]) executeIn: session.

You can specify as many alsoFetch: references as you want, and Glorp will
knit all together by using JOIN expressions created from the Join objects de-
fined when configuring the reference mappings of the Class Descriptor.

If nothing else is added to the alsoFetch: expression block it will perform
INNER JOIN to knit the relations. If you’re also fetching a reference that might
be nil then the whole object/row would be excluded from the result. For in-
stance, if an Invoice doesn’t have an Address, then with the above example
that invoice would be left out by the JOIN.

You can save that by doing an OUTER JOIN on the field you’re fetching by
simply adding asOuterJoin to the field.

Retrieving all at once with an OUTER JOIN

((SimpleQuery read: Invoice)
alsoFetch: [:each | each person];
alsoFetch: [:each | each address asOuterJoin]) executeIn: session.

The alsoFetch: is a powerful feature, and can be used in combination with
all the above described Query attributes (except for GROUP BY).

8.5 Ensuring fresh data

Everytime you read an object inside a Glorp session, it will save it in the ses-
sion cache keyed by an object representing the Primary Key in your database,
in our example each ClassDescriptor will have a cache keyed by the id field,
which happens to be our Public Key in the tables.

This is great because, as any proper cache would, it avoids going outside of
your image to retrieve something from the database, saving you from the ex-
tra roundtrips. However, when the objects are modified concurrently during

44

8.6 Set operations

the lifetime of your session, then you could end up with an old version of it,
and even if you perform a new Query to the database Glorp will try to use the
same object it had in the session Cache.

As you might expect by now, Glorp provides a way to override this and force
the update of the Cache with the newly read data. Just simply set shoul-
dRefresh: true, and this will tell Glorp to ignore any attempt to read from
the Cache and instead always use what is new.

((SimpleQuery read: Invoice) shouldRefresh: true) executeIn: session.

8.6 Set operations

In addition to statements that affect the result set of the query, you can per-
form set operations1 like UNION ALL, INTERSECT and EXCLUDE (aka subtract)
between your query and other queries.

((SimpleQuery read: InvoiceItem) except:
(SimpleQuery read: InvoiceItem where: [:each | each price < 1000])
) executeIn: session.

SQL SET OPERATOR Query selector
UNION ALL union:
INTERSECT intersect:
EXCLUDE minus:

8.7 Conclusion

The SimpleQuery offers powerful logic and you should play with it to under-
stand how to use it.

1https://en.wikipedia.org/wiki/Set_operations_%28SQL%29

45

https://en.wikipedia.org/wiki/Set_operations_%28SQL%29
https://en.wikipedia.org/wiki/Set_operations_%28SQL%29

CHA P T E R9
Handling inheritance

In this chapter we will look at how Glorp help us handling object of different
subclasses. When a class Parent has two subclasses LeftChild and RightChild,
a polymorphic query is one where we can query on the Parent class and as a
result get instances of Parent, LeftChild and RightChild.

There are three common ways to support polymorphic queries with a rela-
tional database:

• A table for each class (abstract or not)

• A table for each concrete class

• One table for all classes

Glorp currently supports the two latest options. We will illustrate these two
approaches now.

9.1 A table for each concrete class

In this approach each concrete class has its own table.

That table holds all the instance variables for the class. As an example of this
approach, let us imagine that the Parent class an abstract class. Therefore,
we need two tables, which we call LEFTCHILDTABLE and RIGHTCHILDTABLE.

Class definitions

The class definitions are straightforward.

GlorpBookObject subclass: #Parent
instanceVariableNames: 'top'

47

Handling inheritance

classVariableNames: ''
package: 'Glorp-Book'

Parent subclass: #LeftChild
instanceVariableNames: 'left'
classVariableNames: ''
package: 'Glorp-Book'

Parent subclass: #LeftChild
instanceVariableNames: 'right'
classVariableNames: ''
package: 'Glorp-Book'

System Description

We’ll extend our System Descriptor to include the newly created classes.

Class model for LeftChild.

GlorpBookDescriptorSystem >> classModelForLeftChild: aClassModel
aClassModel newAttributeNamed: #left.
aClassModel newAttributeNamed: #top.
aClassModel newAttributeNamed: #id.

Class model for RightChild.

GlorpBookDescriptorSystem >> classModelForRightChild: aClassModel
aClassModel newAttributeNamed: #right.
aClassModel newAttributeNamed: #top.
aClassModel newAttributeNamed: #id

Describing the tables.

GlorpBookDescriptorSystem >> tableForLEFTCHILDTABLE: aTable
(aTable createFieldNamed: 'left_value' type: (platform varChar:

50)).
(aTable createFieldNamed: 'top' type: (platform varChar: 50)).
(aTable createFieldNamed: 'id' type: (self sequenceTypeNamed:

'parent_seq'))
bePrimaryKey.

GlorpBookDescriptorSystem >> tableForRIGHTCHILDTABLE: aTable
(aTable createFieldNamed: 'right_value' type: (platform varChar:

50)).
(aTable createFieldNamed: 'top' type: (platform varChar: 50)).
(aTable createFieldNamed: 'id' type: (self sequenceTypeNamed:

'parent_seq'))
bePrimaryKey.

We introduced sequenceTypeNamed:, that we didn’t use before. When us-
ing sequence or serial datatypes, Glorp will create a database sequence for
each table if required, but because we’re using a type resolver with inheri-

48

9.2 Handling inheritance

tance, it is necessary that all the children classes that use a serial datatype
share the same sequence.

The message sequenceTypeNamed: lookups in the Descriptor System for an
existing sequence with that name, and if no one was registered before it will
instantiate a new one with that name and register it for later use.

9.2 Handling inheritance

So far we created the class models for two classes, and a table model for each
one of them, but nothing involving inheritance. Notice we don’t have to cre-
ate a class model for the Parent class, although we will have to create a class
descriptor for it.

GlorpBookDescriptorSystem >> descriptorForParent: aDescriptor
(self typeResolverFor: Parent) register: aDescriptor abstract:

true.

As you can see, we introduced a concept in the Class Descriptor that we never
used, explicitly, before: a Type Resolver (or resolver for short).

Type resolver

Every Class Descriptor has a resolver that helps it determine which class to
instantiate. If Glorp doesn’t find one explicitly defined, it creates an Identi-
tyTypeResolver for your class.

You can define the resolver for your class by implementing a method named
typeResolverForYourClass that returns an instance of TypeResolver. We
will create one for our class Parent

GlorpBookDescriptorSystem >> typeResolverForParent
^ HorizontalTypeResolver forRootClass: Parent

There are different classes of resolvers:

IdentityTypeResolver No inheritance

HorizontalTypeResolver Each Class is persisted in a separate table

FilteredTypeResolver All Classes are persisted in the same table

We chose the HorizontalTypeResolver because we’re storing our instances
in separate tables. IdentityTypeResolver is the default one: it is for the
case when there is no inheritance, where you map a class to a single table,
or more than one table but always for a single class. and we will cover Fil-
teredTypeResolver later.

To do what is IdentityTypeResolver

49

Handling inheritance

Each of the class descriptor methods register a resolver. The method typeR-
esolverFor: results in a call to typeResolverForParent.

GlorpBookDescriptorSystem >> descriptorForLeftChild: aDescriptor
| leftTable |
leftTable := self tableNamed: 'LEFTCHILDTABLE'.
aDescriptor table: leftTable.
(aDescriptor newMapping: DirectMapping)
from: #id to: (leftTable fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #top to: (leftTable fieldNamed: 'top').

(aDescriptor newMapping: DirectMapping)
from: #left to: (leftTable fieldNamed: 'left_value').

(self typeResolverFor: Parent) register: aDescriptor.

GlorpBookDescriptorSystem >> descriptorForRightChild: aDescriptor
| rightTable |
rightTable := self tableNamed: 'RIGHTCHILDTABLE'.
aDescriptor table: rightTable.
(aDescriptor newMapping: DirectMapping)
from: #id to: (rightTable fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #top to: (rightTable fieldNamed: 'top').

(aDescriptor newMapping: DirectMapping)
from: #right to: (rightTable fieldNamed: 'right_value').

(self typeResolverFor: Parent) register: aDescriptor.

If you look at the last line in the definition of Descriptors for LeftChild and
RightChild you’ll notice we’re registering the Descriptor in the Type Re-
solver of the Parent class; both child classes, unless overriden, will continue
having their default resolver.

9.3 Playing with instances

Now we can play with some sample instances

session inUnitOfWorkDo: [
session register: (LeftChild new top: 'Left top'; left: 'I am a

left child').
session register: (RightChild new top: 'Right top'; right: 'I am a

right child').
].

With the setup above, we can write queries like the following one which
query the Parent class:

(session read: Parent)
>>> an OrderedCollection(a RightChild a LeftChild)

We can still write queries directly on the subclasses

50

9.4 One table for all classes

(session read: LeftChild)

There is one restriction on polymorphic queries when using Horizontal-
TypeResolver (a table for each Concrete Class) which is one can not use or-
derBy:. The query makes multiple requests to the database as it has to read
both tables, so we cannot have the database order the results for use. As a re-
sult the following request will raise an exception becausehorizontal resolvers
can’t order.

((Query read: Parent) orderBy: #top) executeIn: session

9.4 One table for all classes

In this alternate approach for table organization, there is one table that
holds the data for all objects in the hierarchy. In this example the one ta-
ble is called ALL_DATA. We include an object_type column used to store the
type of the object in the row. This allows GLORP to create an instance of the
correct class when it reads a row in the table. Note that regardless of what
type of object is in a row, one column, either left_value or right_value,
will be null. While this method does waste space in the database, perform-
ing a polymorphic query is faster as there is only one table to access.

We start by describing the new Type Resolver for the Parent class.

GlorpBookDescriptorSystem >> typeResolverForParent
^FilteredTypeResolver forRootClass: Parent

The class definitions remain the same as in the Table for each concrete class
example. The descriptor changes a bit.

GlorpBookDescriptorSystem >> descriptorForParent: aDescriptor
| table |
table := self tableNamed: 'ALL_DATA'.
aDescriptor table: table.
(aDescriptor newMapping: DirectMapping)
from: #id to: (table fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #top to: (table fieldNamed: 'top').

(self typeResolverFor: Parent)
register: aDescriptor abstract: true

Since we use a different resolver, we need to supply values for object_type
column and need more information for the Parent class.

GlorpBookDescriptorSystem >> descriptorForLeftChild: aDescriptor
| leftTable |
leftTable := self tableNamed: 'ALL_DATA'.
aDescriptor table: leftTable.
(aDescriptor newMapping: DirectMapping)
from: #id to: (leftTable fieldNamed: 'id').

51

Handling inheritance

(aDescriptor newMapping: DirectMapping)
from: #top to: (leftTable fieldNamed: 'top').

(aDescriptor newMapping: DirectMapping)
from: #left to: (leftTable fieldNamed: 'left_value').

(self typeResolverFor: Parent)
register: aDescriptor
keyedBy: 'L'
field: (leftTable fieldNamed: 'object_type').

Note how to indicate the value of the object_type column for LeftChild
objects with the resolver. The argument for the keyedBy: parameter is the
String 'L' but it could be any String of your preference, like the class name.
Keep in mind that the shorter the key, the less storage space it will take, and
also less bandwidth used.

GlorpBookDescriptorSystem >> descriptorForRightChild: aDescriptor
| rightTable |
rightTable := self tableNamed: 'ALL_DATA'.
aDescriptor table: rightTable.
(aDescriptor newMapping: DirectMapping)
from: #id to: (rightTable fieldNamed: 'id').

(aDescriptor newMapping: DirectMapping)
from: #top to: (rightTable fieldNamed: 'top').

(aDescriptor newMapping: DirectMapping)
from: #right to: (rightTable fieldNamed: 'right_value').

(self typeResolverFor: Parent)
register: aDescriptor
keyedBy: 'R'
field: (rightTable fieldNamed: 'object_type').

Even though Parent is still an abstract class, Glorp requires us to given the
mappings for the Parent instance variables. If Parent were not abstract we
would have to provide a key value for the column object_type.

GlorpBookDescriptorSystem >> tableForALL_DATA: aTable
(aTable createFieldNamed: 'top' type: (platform varChar: 50)).
(aTable createFieldNamed: 'left_value' type: (platform varChar:

50)).
(aTable createFieldNamed: 'right_value' type: (platform varChar:

50)).
(aTable createFieldNamed: 'object_type' type: (platform varChar:

2)).
(aTable createFieldNamed: 'id' type: (platform sequence))

bePrimaryKey.

About inheritance with Type Resolvers

Although in our example with the class Parent was the superclass of both
LeftChild and RightChild, in Glorp terms it is not required that child De-

52

9.4 One table for all classes

scriptors share a common class ancestor, as far as they have the same class
attributes as the parent Descriptor.

53

CHA P T E R 10
Under the hood

10.1 How Glorp expressions work

At this point you might have noticed that we use blocks in many places to
specify the where expression, retrieve a particular field, order the results, and
many other things.

Although we use blocks for the convenience and readability they provide,
once assigned to a Glorp object such as SimpleQuery, Glorp converts the
block to a Glorp expression, depending on the context it may be any of the sub-
classes of GlorpExpression.

query where: [:each | each attribute > 100]

To convert the block to an expression, Glorp passes a MessageArchiver as
the first argument of the block, the message archiver will intercept all the
message sends vía doesNotUnderstand: hook, and will return another archiver,
so the next message send is handled by the new archiver and so on. With this
strategy it will construct a tree of instances of GlorpExpression.

Using each as the block argument name can be misleading, but it is used by
convention, but it has more sense in the context of a filtering expression
than in a retrieve: or groupBy:.

Because it uses doesNotUnderstand: as a way to build the expression tree,
it is possible that some selectors will be highlighted by Pharo as not imple-
mented, in particular salectors that are used to instantiate FunctionEx-
pression’s.

55

Under the hood

10.2 About special selectors

When writing blocks that involve more than one condition, we don’t use
and: nor or: selectors, and instead we use AND: and OR: respectively. The
same applies for isNil and notNil. This is so because the compiler opti-
mizes certain message sends, including the ones mentioned before.

Example of special selectors:

query where: [:each |
each attributeOne > 100 OR: [
each attributeTwo notNIL AND: [
each attributeThree isNIL]]]

10.3 Function expressions

The special selectors mentioned before are nothing but a particular case of
a FunctionExpression, but as those there are many others, consider the
following Glorp query:

SimpleQuery read: Person where: [:each |
each lastName asUppercase similarTo: 'GOLD%']

You can see there that we send the asUppercasemessage to the lastName
attribute and then similarTo: to that result. The previous query will pro-
duce something like this:

SELECT * FROM Person WHERE UPPER(lastName) LIKE 'GOLD%'

It is very likely that the similarTo: selector will be highlighted as miss-
ing or not implemented in the current image. This is so because the Mes-
sageArchiver will resolve the symbol to an instance of one of the subclasses
of FunctionExpression. It achieves it by rebuilding the archiver as it con-
sumes the selectors, you can find how it does by looking for the implemen-
tors of rebuildOn:startingFrom:withOuterScopeBase:.

In the middle of those implementors you’ll find senders to getFunction:ar-
guments:, this in turn will query the platform for the list of functions avail-
able, which will end up creating the list of default functions by sending cre-
ateBasicFunctionsFor: in to the FunctionExpression class.

If you ever need to add functions not supported by default, you can extend
the functions in FunctionExpression class >> createBasicFunctions-
For: or by adding them to your current platform. Also you can read there
the list of available symbol functions and their default mapping to SQL func-
tions.

56

10.4 Glorp class model diagram

Figure 10-1 Glorp objects UML Diagram

10.4 Glorp class model diagram

The following diagram 10-1 provides an outline of the most important classes
and attributes of Glorp’s object model.

57

CHA P T E R 11
Appendix A: Basic Relational

Databases Concepts

11.1 Tables

A table is a collection of related data held in a structured format within a
database. It consists of fields (columns), and rows.

In relational databases and flat file databases, a table is a set of data elements
(values) using a model of vertical columns (identifiable by name) and hori-
zontal rows, the cell being the unit where a row and column intersect.

A table has a specified number of columns, but can have any number of rows.
Each row is identified by one or more values appearing in a particular col-
umn subset. The columns subset which uniquely identifies a row is called the
primary key.

11.2 Rows

In the context of a relational database, a row —also called a record or tu-
ple— represents a single, implicitly structured data item in a table. In simple
terms, a database table can be thought of as consisting of rows and columns
or fields. Each row in a table represents a set of related data, and every row
in the table has the same structure.

59

Appendix A: Basic Relational Databases Concepts

11.3 Columns

For example, in a table that represents companies, each row would repre-
sent a single company. Columns might represent things like company name,
company street address, whether the company is publicly held, its VAT num-
ber, etc.. In a table that represents the association of employees with depart-
ments, each row would associate one employee with one department.

11.4 Constraints

Constraints make it possible to further restrict the domain of an attribute.
For instance, a constraint can restrict a given integer attribute to values be-
tween 1 and 10. Constraints provide one method of implementing business
rules in the database. SQL implements constraint functionality in the form of
check constraints.

Constraints restrict the data that can be stored in relations. These are usu-
ally defined using expressions that result in a boolean value, indicating whether
or not the data satisfies the constraint. Constraints can apply to single at-
tributes, to a tuple (restricting combinations of attributes) or to an entire
relation.

Since every attribute has an associated domain, there are constraints (do-
main constraints). The two principal rules for the relational model are known
as entity integrity and referential integrity.

Primary Key

A primary key uniquely specifies a tuple within a table. In order for an at-
tribute to be a good primary key it must not repeat. While natural attributes
(attributes used to describe the data being entered) are sometimes good pri-
mary keys, surrogate keys are often used instead.

A surrogate key is an artificial attribute assigned to an object which uniquely
identifies it (for instance, in a table of information about students at a school
they might all be assigned a student ID in order to differentiate them).

The surrogate key has no intrinsic (inherent) meaning, but rather is useful
through its ability to uniquely identify a tuple. Another common occurrence,
especially in regard to N:M cardinality is the composite key. A composite
key is a key made up of two or more attributes within a table that (together)
uniquely identify a record. (For example, in a database relating students,
teachers, and classes. Classes could be uniquely identified by a composite key
of their room number and time slot, since no other class could have exactly
the same combination of attributes. In fact, use of a composite key such as
this can be a form of data verification, albeit a weak one.

60

11.5 Indexes

Foreign Keys

A foreign key is a field in a relational table that matches the primary key col-
umn of another table. The foreign key can be used to cross-reference tables.
Foreign keys do not need to have unique values in the referencing relation.
Foreign keys effectively use the values of attributes in the referenced rela-
tion to restrict the domain of one or more attributes in the referencing rela-
tion.

11.5 Indexes

An index is one way of providing quicker access to data. Indices can be cre-
ated on any combination of attributes on a relation. Queries that filter using
those attributes can find matching tuples randomly using the index, without
having to check each tuple in turn. This is analogous to using the index of a
book to go directly to the page on which the information you are looking for
is found, so that you do not have to read the entire book to find what you are
looking for.

Relational databases typically supply multiple indexing techniques, each of
which is optimal for some combination of data distribution, relation size, and
typical access pattern.

Indices are usually not considered part of the database, as they are consid-
ered an implementation detail, though indices are usually maintained by
the same group that maintains the other parts of the database. It should be
noted that use of efficient indexes on both primary and foreign keys can dra-
matically improve query performance.

11.6 Relations

Joins

A SQL join clause combines records from two or more tables in a relational
database. A JOIN is a means for combining fields from two tables (or more) by
using values common to each

ANSI-standard SQL specifies five types of JOIN: INNER, LEFT OUTER, RIGHT
OUTER, FULL OUTER and CROSS. As a special case, a table (base table, view,
or joined table) can JOIN to itself in a self-join.

INNER JOINs

An inner join requires each record in the two joined tables to have matching
records, and is a commonly used join operation in applications but should
not be assumed to be the best choice in all situations. Inner join creates a

61

Appendix A: Basic Relational Databases Concepts

new result table by combining column values of two tables (A and B) based
upon the join-predicate. The query compares each row of A with each row
of B to find all pairs of rows which satisfy the join-predicate. When the join-
predicate is satisfied by matching non-NULL values, column values for each
matched pair of rows of A and B are combined into a result row.

The result of the join can be defined as the outcome of first taking the Carte-
sian product (or Cross join) of all records in the tables (combining every
record in table A with every record in table B) and then returning all records
which satisfy the join predicate. Actual SQL implementations normally use
other approaches, such as hash joins or sort-merge joins, since computing
the Cartesian product is slower and would often require a prohibitively large
memory space to store.

OUTER JOINs

The joined table retains each record—even if no other matching record ex-
ists. Outer joins subdivide further into left outer joins, right outer joins, and
full outer joins, depending on which table’s rows are retained (left, right, or
both).

The result of a left outer join (or simply left join) for tables A and B always
contains all records of the ”left” table (A), even if the join-condition does
not find any matching record in the ”right” table (B). This means that if the
ON clause matches 0 (zero) records in B (for a given record in A), the join
will still return a row in the result (for that record)—but with NULL in each
column from B. A left outer join returns all the values from an inner join plus
all values in the left table that do not match to the right table, including rows
with NULL (empty) values in the link field.

For example, this allows us to find an employee’s department, but still shows
employees that have not been assigned to a department (contrary to the
inner-join example above, where unassigned employees were excluded from
the result).

11.7 Data manipulation language (DML) queries

SELECT

A SELECT statement retrieves zero or more rows from one or more database
tables or database views. In most applications, SELECT is the most commonly
used data manipulation language (DML) command. As SQL is a declarative
programming language, SELECT queries specify a result set, but do not spec-
ify how to calculate it. The database translates the query into a ”query plan”
which may vary between executions, database versions and database soft-
ware. This functionality is called the ”query optimizer” as it is responsible

62

11.7 Data manipulation language (DML) queries

for finding the best possible execution plan for the query, within applicable
constraints.

INSERT

An SQL INSERT statement adds one or more records to any single table in a
relational database.

The number of columns and values must be the same. If a column is not spec-
ified, the default value for the column is used. The values specified (or im-
plied) by the INSERT statement must satisfy all the applicable constraints
(such as primary keys, CHECK constraints, and NOT NULL constraints). If
a syntax error occurs or if any constraints are violated, the new row is not
added to the table and an error returned instead.

UPDATE

An SQL UPDATE statement changes the data of one or more records in a table.
Either all the rows can be updated, or a subset may be chosen using a condi-
tion.

In some databases, such as PostgreSQL, when a FROM clause is present, what
essentially happens is that the target table is joined to the tables mentioned
in the fromlist, and each output row of the join represents an update op-
eration for the target table. When using FROM, one should ensure that the
join produces at most one output row for each row to be modified. In other
words, a target row shouldn’t join to more than one row from the other ta-
ble(s). If it does, then only one of the join rows will be used to update the
target row, but which one will be used is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-
selects is safer, though often harder to read and slower than using a join.

DELETE

In the database structured query language (SQL), the DELETE statement re-
moves one or more records from a table. A subset may be defined for dele-
tion using a condition, otherwise all records are removed.

Any rows that match the WHERE condition will be removed from the table. If
the WHERE clause is omitted, all rows in the table are removed. The DELETE
statement should thus be used with caution.

The DELETE statement does not return any rows; that is, it will not generate
a result set.

63

	Illustrations
	What is Glorp?
	Installation
	Database server
	Database drivers
	Native drivers
	Library wrapper drivers (FFI)
	A common driver API
	Available drivers
	Glorp packages
	Glorp with UDBC / SQLite3
	Running the tests

	Person: Our First Example Class
	Class definition
	Instance methods

	Defining a DescriptorSystem
	Defining a DescriptorSystem subclass
	Class Model
	Table Model
	Expressing mappings

	Creating tables
	Database Accessor
	Login
	Verifying the connectivity.

	Session object
	How the Parts Play Together
	About the Platform.

	Saving/Updating/Deleting Objects
	Creating Tables

	Unit of Work and Transactions
	Saving New Instances
	Reading instances
	Reading one instance

	About blocks
	Translated selectors

	Object update
	Object deletion
	Transactions
	Rolling back changes
	Manually managing transaction

	Glorp Configurations and Additional Concepts
	Class models
	Attribute properties
	Table model
	Adding fields to the table

	Mappings (aka Descriptor)
	Direct mapping.
	1:1 relationships.
	1:N relationships.
	N:M relationships.

	Common properties of relationship mappings
	Reference Classes.
	Exclusivity.
	Collection type.
	Proxy.

	A Word about Proxies.

	Extending our Basic Example
	Domain classes
	Class Model Declarations
	Table Declarations

	Mapping declarations
	Address
	Invoice
	InvoiceItem
	Person

	Sample data

	The Query object
	The read: message
	SimpleQuery
	Attributes of queries
	WHERE expression
	ORDER BY expression
	GROUP BY expression
	LIMIT and OFFSET expressions

	Fetching referenced objects
	Ensuring fresh data
	Set operations
	Conclusion

	Handling inheritance
	A table for each concrete class
	Class definitions
	System Description

	Handling inheritance
	Type resolver

	Playing with instances
	One table for all classes
	About inheritance with Type Resolvers

	Under the hood
	How Glorp expressions work
	About special selectors
	Function expressions
	Glorp class model diagram

	Appendix A: Basic Relational Databases Concepts
	Tables
	Rows
	Columns
	Constraints
	Primary Key
	Foreign Keys

	Indexes
	Relations
	Joins
	INNER JOINs
	OUTER JOINs

	Data manipulation language (DML) queries
	SELECT
	INSERT
	UPDATE
	DELETE

