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Abstract— Precise positioning plays a key role in successful 

navigation of autonomous vehicles. A fusion architecture of Global 

Positioning System (GPS) and Laser-SLAM (Simultaneous 

Localization and Mapping) is widely adopted. While Laser-SLAM 

is known for its highly accurate localization, GPS is still required 

to overcome accumulated error and give SLAM a required 

reference coordinate.  However, there are multiple cases where 

GPS signal quality is too low or not available such as in multi-story 

parking, tunnel or urban area due to multipath propagation issue 

etc. This paper proposes an alternative approach for these areas 

with WiFi Fingerprinting technique to replace GPS. Result 

obtained from WiFi Fingerprinting will then be fused with Laser-

SLAM to maintain the general architecture, allow seamless 

adaptation of vehicle to the environment.  
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I. INTRODUCTION 

A fusion system of Laser-SLAM and GPS is commonly 
adopted for localization of smart vehicle. Since Laser-SLAM is 
only capable of delivering accurate localization result within its 
local coordinate system, GPS information is required to map 
SLAM coordinate to a global one. Also, Laser-SLAM motion 
model is prone to accumulated error after a long run. Thus a 
combination with global GPS position will not only help to 
improve positioning results but also potentially solve SLAM 
problem of loop closure [1],[2], [3]. Still, there are areas with 
low to no GPS signal such as Multi-story parking, tunnel or 
urban area with dense construction. Hence, it is necessary to find 
an alternative approach for these areas.  

A lot of studies recently address this issue with different 
approaches. Studies in [2], [4], [5] make use of environment 
static map to improve SLAM matching confidence. A network 
of cooperating vehicles is explored in [6], [7] with the aim to 
improve localization of each vehicle. A complete solution 
utilizes a wide range of information such as GPS, radio 
frequency identification, vehicle to vehicle and vehicle to 
infrastructure communication is introduced in [8]. However, 
these solutions often fall into the problem of fusing different 
sensors data and information. Dealing with various form of 
information standards, errors and uncertainties bring unstable to 
the system as a whole. Moreover, the combination of GPS and 
SLAM performs well in most of the cases, a complicated 
addition to the system for cases like tunnel, car park should be 
avoided. 

This paper proposes to use WiFi Fingerprinting techniques 
as a replacement for GPS information in weak GPS area. WiFi 
Fingerprinting localization is a technique where WiFi map of 
targeted environment will be learned in training phase. A 
prediction phase will carry out location by comparing current 
signal with pre-learned radio map. While learning radio map of 
the targeted area is mandatory for WiFi Fingerprinting, the effort 
of collecting such data is much less in comparison to map-based 
and camera methods. Moreover, WiFi Fingerprinting is capable 
of mimicking GPS behavior in the fusion solution with Laser-
SLAM. The fusion system of GPS and SLAM can be smoothly 
switched to WiFi and SLAM when certain conditions are met. 
This reduces uncertainty need to be added to the vehicle. 

The main idea of this study is to replace poor GPS signal in 
certain areas with results from WiFi Fingerprinting localization 
method. A fusion strategy using a bootstrap particles filter of 
GPS - SLAM and WiFi – SLAM is also proposed. This fusion 
approach will help vehicles to adapt seamlessly to the change of 
environment. 

This paper structure is as follows. In section II, WiFi 
Fingerprinting method using ensemble neural network is 
explained together with a fusion strategy. Section III describes 
experiments conducted. Finally, Section IV concludes the paper 
with expected future improvement.  

II. METHODOLOGY 

A. WiFi Fingerprinting method 

WiFi fingerprinting localization is a technique based on 
learning the map of WiFi RSSI (Radio Signal Strength 
Indicator) available in the environment at multiple reference 
points spread across the environment. The main assumption is 
that each reference point has a unique pattern of RSSIs of all 
available Access Points (APs). This pattern then allows vehicles 
to recognize the location just by scanning RSSIs for next visit. 
This method has two main steps. The first step is a training phase 
with multiples WiFi scanning at each reference position in an 
environment is recorded together with its coordinate. The 
second step is a prediction phase where scanning data of RSSIs 
without coordinate is compared to data registered in step 1. A 
prediction from the second step is likely the current position of 
the vehicle.  

The major challenge in this approach is RSSIs of standard 
WiFi system are often noisy due to interference, and multipath 
propagation problem. A raw data processing will be performed 



on noisy and unstable wifi signal strength. Upon recording a 
vector of RSSI and the corresponding location as in (1) where 
𝑥𝑖,𝑗  is WiFi RSSI from jth WiFi APs recorded in ith scan, 𝜌𝑙 is a 

label which has corresponding coordinate at position of 
sampling and n is fixed constant. Here, n should be greater than 
total number of APs in learning environment 

                     {𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, … , 𝑥𝑖,𝑛, 𝜌𝑙}            (1) 

Collected data will be normalized in the range of [-1, 1) 
where in particular scan, detected AP RSSI would be normalized 
(2) in the range [0, 1) with 0 as weakest possible signal strength 
and 1 as strongest possible signal strength. Other undetected 
APs at 𝜌𝑙 will take value -1 

          𝑥𝑖 = {
−1, 𝐴𝑃𝑖  𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

1 −  
(−1)×𝑅𝑆𝑆𝐼

100
 , 𝐴𝑃𝑖  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

         (2) 

A system of 2 omnidirectional wifi antenna is mounted close 
to each other to minimize the impact of signal interference or 
multipath problem of the radio signal. In a particular scan, the 
antenna with highest RSSI between the two will be recorded. 
This is due to the observation that interference and multipath 
propagation will most likely reduce received signal strength. 
Thus, the higher RSSI will likely to be closer to direct signal 
without interference.   

For the second step, A set of neural networks is implemented 
to learn from training data and perform. However, as RSSI 
appears to be noisy and scanning frequency of WiFi is low in 
comparison to movement speed, data will be considered to be a 
high variant. Using a method called Ensemble Bagging 
(Bootstrap Aggregating) Neural Network, which is well-known 
for combining multiple learning models to derive better results 
of prediction [9], [10], the system is expected to overcome high 
variant and noisy data issue. 

Consider a classification method with a pair {𝑋𝑖 , 𝑌𝑗} where 

𝑋𝑖  is a vector of predictor variable and 𝑌𝑗  denotes a response, 

𝑌𝑗 ∈ {1, 2, . . 𝑚} . The target function is 𝑃(𝑌 = 𝑗 |𝑋 = 𝑥)  for 

classification. A function estimator which results from a set of 
training samples and a classification model is formed (3). 

               𝑔(∙) = ℎ((𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑚) ))          (3) 

Bagging algorithm consists following steps:  

Step 1: Construct a bootstrap sample (4) by randomly 
sampling with replacement n times from original data:    

      (𝑋^
1, 𝑌^

1), (𝑋^
2

, 𝑌^
2), … , (𝑋^

n
, 𝑌^

m)          (4) 

Step 2: Compute bootstrapped estimator 𝑔^(∙)  in (5) by 
applying same classification model to newly formed bootstrap 
sample. 

       𝑔^(∙) = ℎ((𝑋^
1, 𝑌^

1), (𝑋^
2

, 𝑌^
2), … , (𝑋^

n
, 𝑌^

m)))         (5) 

Step 3: Repeat two steps above for K times with K is large. 
The bagging estimator is (6). 

 𝑔^
𝑏𝑎𝑔𝑔

(∙) =  
1

𝐾
(∑ 𝑔^𝑖(∙)𝐾

𝑖=1 ) 

Theoretically, the bagging estimator is (7) as K goes to 
infinity:  

   𝑔^
𝑏𝑎𝑔𝑔

(∙) = 𝐄^[𝑔^(∙)]           (7) 

In practice, a finite large K is expected to improve the 
accuracy of Monte Carlo approximation. In this study, a model 
of the neural network is constructed without carefully tuning 
parameters. Then K is chosen at 100 simple neural networks for 
ensemble purpose.  

B. Fusion of WiFi Fingerprinting with Laser-SLAM 

As mentioned in section I, this study aims to maintain the 
architecture of fusion between GPS – SLAM for a seamless 
adaptation of environmental conditions. A fusion strategy using 
particle filter is applied to accomplish the goal. The general 
design is demonstrated in Fig. 1. 
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Fig. 1. Fusion architecture of WiFi/ GPS and Laser SLAM  

In this solution, GPS signal / WiFi localization result with 
expected error will serve as variance σ in covariance of particle 
estimation and WiFi/ GPS location. Thus, taking WiFi/ GPS 
location as median (𝜇𝑊𝑖𝐹𝑖and  𝜇𝐺𝑃𝑆 respectively) it is possible 
to update the score of each particle using Gaussian distribution 
(8): 

       𝑃(𝑋𝑖,𝑡| 𝜇𝑡 , σ𝑡) =
1

√2σ𝑡
2𝜋

𝑒
−(𝑥−𝜇𝑡)2

2σ𝑡
2⁄
          (8) 

 Here, 𝜇𝑡  and σ𝑡  is determined by quality of WiFi / GPS 

location estimation and 𝑋𝑖,𝑡 is estimated location of particle i at 

current time t. While Dilution of precision (DOP) of GPS can be 
used to estimate these two variables when GPS is available, the 
corresponding values for WiFi are fixed and estimated through 
evaluation of empirical experiment results. This fusion 
architecture is interesting since it allows the system to switch 
between GPS signal and WiFi estimation effortlessly. Since 
WiFi Fingerprinting has constant estimated error, switching 
between GPS and WiFi is decided by comparing quality of 
available GPS to WiFi estimation. Hence, a stable result is 
expected from the fusion system. 

          𝑃(𝑋𝑖,𝑡| s𝑡) =  𝑃(𝑋𝑖,𝑡| 𝜇𝑡 , σ𝑡) 𝑆(𝑋𝑖,𝑡)          (9) 

                    𝐸𝑡 =  ∑ 𝑃(𝑋𝑖,𝑡| s𝑡) 𝑋𝑖,𝑡
𝑖=0
𝑛                        (10) 

 With particle evolution model using odometer sensors data 
and covariance updating from WiFi/GPS, the estimated particles 
will represent results from traditional SLAM motion model 
component. A multinomial resampling [11], [12] of particles is 
required at this stage to refine particles pool. Significant 
particles will be brought to matching and scoring step with laser 



data in the current position. Equation (9) shows how SLAM 
score 𝑆(𝑋𝑖,𝑡) for matching process of each particle will be fused 

with score from WiFi/ GPS covariance correction. By using 
WiFi/ GPS expected errors as covariance of fusion, particles will 
tend to be distributed around WiFi/GPS reference. Finally, an 
estimation of current position is made by normalize score all 
particles and take mean value as shown in (10).  

III. EXPERIMENTS AND RESULTS 

Experiments are carried out in INRIA Rocquencourt campus 
using a cyber car and a version of Credibilist SLAM [1]. The 
cyber car (Fig. 3) is equipped with one front IbeoLux LIDAR 
sensor, a standard 2.4 GHz WiFi antennas for WiFi 
Fingerprinting and an IMU for odometer information. A Real-
Time Kinematic GPS (RTK GPS) antenna is mounted on the car 
to give precise ground truth. 

The cybercar is then guided through test paths as shown in 
Fig. 4. There are four intersections noted on the map: A, B, C, 
D. Test paths are sequenced as follows: A – B – C – D – B – A. 
Path from A – B with sufficient WiFi infrastructure will be 
trained for WiFi Fingerprinting localization. A standard GPS 
with expected error of 6 meters is utilized in combination with 
SLAM. There are 2 experimental scenarios: 

(1): A fusion of standard GPS and Credibilist SLAM path: 
A-B-C-D-B-A. 

(2): A combination of WiFi/standard GPS and Credibilist 
SLAM with WiFi and SLAM for A-B, B-A; Standard GPS and 
SLAM for B-C-D-B. Here, the path from A-B is simulated for 
poor-GPS case where WiFi Fingerprinting is available. The 
system is then tested for the ability to replace GPS with WiFi 
information and vice versa. 

Before integrating WiFi into the system, it is necessary to 
investigate the characteristic and expected error bound of WiFi 
alone as a localization method. This is done by another 
experiment along the entire test path A-B. For this path, a radio 
map is learned including 15 reference points. At each point, 30 
scans of WiFi signal are collected as training data. An ensemble 
of 50 neural networks, each with 170 input neurons, 90 nodes at 
hidden layer and 15 outputs are trained. Average of predictions 
from all networks will then be calculated. A threshold of 0.55 is 
set for which prior probability from prediction must overcome 
to be counted as a valid localization estimate. Fig. 4 shows an 
independent WiFi localization result with particle filter. It 
proves that alone, WiFi localization is able to track vehicle. The 
Euclidian error of each localization output is calculated and 
presented in Fig. 5. The average error in entire path is 3.328 
meters and 98% of errors are under 6 meters. This allows us to 
set σ𝑊𝑖𝐹𝑖  at 6 meters for fusion equation. 

 

Fig. 2. Experiment environment – INRIA Rocquencourt campus 

 

Fig. 3. Cybercar – RITS team INRIA 

 

Fig. 4. WiFi localization result (red) and fusion with SLAM (blue) 
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Fig. 5. Error distribution of WiFi localization and fusion with SLAM 

 

Fig. 6. Fusion of standard GPS and SLAM (σ𝐺𝑃𝑆 = 6) 

 

Fig. 7. Fusion of weak GPS and SLAM (σ𝐺𝑃𝑆 = 10) 

In the first scenario, GPS information is assumed to be 
available for whole path A-B-C-D-B-A. Fig. 6 shows a RTK 
GPS ground truth in green and a fusion of SLAM and standard 

GPS in blue. With assists from GPS, SLAM can recognize the 
previous location and follow the vehicle with only one LIDAR 
sensor setup.  

 

Fig. 8. Fusion of WiFi, Standard GPS and SLAM (σ𝐺𝑃𝑆 = 6, σ𝑊𝑖𝐹𝑖 = 6) 

In the second scenario, the path from A-B is assumed to be 
a weak GPS area. The vehicle is required to activate WiFi 
localization for A-B then replace it with GPS when possible (B-
C-D). Localization result is shown in Fig. 7 with the green 
ground truth of RTK GPS and the blue fusion localization result 
of WiFi, GPS and SLAM. In this case, the average error of 
fusion localization method is estimated at 2.7 meters with 
maximum error of 8 meters. 

IV. CONCLUSION 

This paper presents an alternative solution for weak GPS 
area with WiFi Fingerprinting localization technique. A fusion 
strategy for WiFi, GPS and SLAM are proposed to adapt the 
system to the change of environmental conditions seamlessly. 
Early results show that a combination of WiFi and SLAM can 
be a replacement for weak GPS and SLAM fusion. In the future, 
several techniques will be applied to improve the system such 
as: a deep learning strategy for wifi fingerprinting as well as a 
multi-receiver setup for wifi fingerprints.  
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