.. Application-to-elasto-acoustics, Transmission conditions. Coupled elasto-acoustic system, p.14

Z. Badics, Trefftz-Discontinuous Galerkin and Finite Element Multi-Solver Technique for Modeling Time-Harmonic EM Problems With High-Conductivity Regions, IEEE Transactions on Magnetics, vol.50, issue.2, pp.401-404, 2014.
DOI : 10.1109/TMAG.2013.2284383

C. Baldassari, H. Barucq, H. Calandra, B. Denel, and J. Diaz, Abstract, Communications in Computational Physics, vol.43, issue.02, pp.660-673, 2012.
DOI : 10.1190/1.3124931

L. Banjai, H. Emmanuil, O. Georgoulis, and . Lijoka, A Trefftz Polynomial Space-Time Discontinuous Galerkin Method for the Second Order Wave Equation, SIAM Journal on Numerical Analysis, vol.55, issue.1, pp.63-86, 2017.
DOI : 10.1137/16M1065744

H. Barucq, J. Diaz, R. Djellouli, and E. Estecahandy, High-order Discontinuous Galerkin approximations for elasto-acoustic scattering problems, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184107

F. Bassi, . Rebay, S. Mariotti, M. Pedinotti, and . Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, pp.99-109, 1997.

F. Bassi and S. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier???Stokes Equations, Journal of Computational Physics, vol.131, issue.2, pp.267-279, 1997.
DOI : 10.1006/jcph.1996.5572

E. Bossy, Evaluation ultrasonore de l'os cortical par transmission axiale: modélisation et expérimentation in vitro et in vivo, 2003.

F. Brezzi and L. Marini, Virtual element and discontinuous Galerkin methods In Recent developments in discontinuous Galerkin finite element methods for partial differential equations, pp.209-221, 2014.

J. Diaz and . Gar6more2d, Analytical solutions of wave propagation problems in stratified media). https://gforge.inria.fr/projects

J. Diaz, Approches analytiques et numériques de problèmes de transmission en propagation d'ondes en régime transitoire. Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, 2005.

G. Guy and . Drijkoningen, Introduction to reflection seismology. Lecture notes -TA3630, 2015.

H. Egger, F. Kretzschmar, M. Sascha, T. Schnepp, and . Weiland, A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell's Equations, SIAM Journal on Scientific Computing, vol.37, issue.5, pp.689-711, 2015.
DOI : 10.1137/140999323

C. Farhat, I. Harari, and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.1389-1419, 2003.
DOI : 10.1016/S0045-7825(02)00646-1

F. Frs, Trefftz type approximation and the generalized finite element method ? history and development, Computer Assisted Mechanics and Engineering Sciences, vol.4, pp.305-316, 1997.

G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems, Journal of Computational Physics, vol.225, issue.2, pp.1961-1984, 2007.
DOI : 10.1016/j.jcp.2007.02.030

I. Herrera, Trefftz method: A general theory, Numerical Methods for Partial Differential Equations, vol.30, issue.6, pp.561-580, 2000.
DOI : 10.1007/978-3-662-11270-0_27

S. Jan, T. Hesthaven, and . Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, 2007.

R. Hiptmair, A. Moiola, and I. Perugia, -Version, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.264-284, 2011.
DOI : 10.1137/090761057

URL : https://hal.archives-ouvertes.fr/hal-01094440

R. Hiptmair, A. Moiola, and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations, Mathematics of Computation, vol.82, issue.281, pp.247-268, 2013.
DOI : 10.1090/S0025-5718-2012-02627-5

M. Robert, . Kirby, J. Spencer, B. Sherwin, and . Cockburn, To CG or to HDG: a comparative study, Journal of Scientific Computing, vol.51, issue.1, pp.183-212, 2012.

F. Kretzschmar, A. Moiola, I. Perugia, M. Sascha, and . Schnepp, error analysis of space???time Trefftz discontinuous Galerkin methods for wave problems, IMA Journal of Numerical Analysis, vol.36, issue.4, pp.1599-1635, 2015.
DOI : 10.1093/imanum/drv064

F. Kretzschmar, M. Sascha, I. Schnepp, T. Tsukerman, and . Weiland, Discontinuous Galerkin methods with Trefftz approximations, Journal of Computational and Applied Mathematics, vol.270, pp.211-222, 2014.
DOI : 10.1016/j.cam.2014.01.033

P. Le and T. , Modélisation et calcul des milieux continus. Editions Ecole Polytechnique, 2009.

A. Macig and J. Wauer, Solution of the two-dimensional wave equation by using wave polynomials, Journal of Engineering Mathematics, vol.79, issue.4, pp.339-350, 2005.
DOI : 10.1007/s10665-004-4282-8

P. Antonietti and I. Mazzierei, A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics, 2016.

A. Moiola, I. Hiptmair, and . Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), pp.809-837, 2011.
DOI : 10.1023/B:ACOM.0000016428.25905.da

A. Moiola and I. Perugia, A space???time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation, Numerische Mathematik, vol.99, issue.4, pp.1-47, 2017.
DOI : 10.1002/nme.4673

S. Petersen, C. Farhat, and R. Tezaur, A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain, International Journal for Numerical Methods in Engineering, vol.29, issue.R2, pp.275-295, 2009.
DOI : 10.1007/978-3-642-59721-3_15

R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems, International Journal for Numerical Methods in Engineering, vol.13, issue.2, pp.796-815, 2006.
DOI : 10.1142/S0218396X00000121

E. Trefftz, Ein Gegenstuck zum Ritzüschen Verfahren, Proc. 2nd Int, pp.131-137, 1926.

D. Wang, R. Tezaur, and C. Farhat, A hybrid discontinuous in space and time Galerkin method for wave propagation problems, International Journal for Numerical Methods in Engineering, vol.65, issue.5, pp.263-289, 2014.
DOI : 10.2307/2308881

C. Lucas, G. Wilcox, C. Stadler, O. Burstedde, and . Ghattas, A high-order discontinuous Galerkin method for wave propagation through coupled elastic?acoustic media, Journal of Computational Physics, vol.229, issue.24, pp.9373-9396, 2010.