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ABSTRACT
Although users accomplish ever more tasks on touch-enabled
mobile devices, gesture-based interaction remains limited and
almost never customizable by users. Our goal is to help users
create gestures that are both personally memorable and reli-
ably recognized by a touch-enabled mobile device. We ad-
dress these competing requirements with two dynamic guides
that use progressive feedforward to interactively visualize the
“negative space” of unused gestures: the Pathward technique
suggests four possible completions to the current gesture, and
the Fieldward technique uses color gradients to reveal opti-
mal directions for creating recognizable gestures. We ran a
two-part experiment in which 27 participants each created 42
personal gesture shortcuts on a smartphone, using Pathward,
Fieldward or No Feedforward. The Fieldward technique best
supported the most common user strategy, i.e. to create a
memorable gesture first and then adapt it to be recognized
by the system. Users preferred the Fieldward technique to
Pathward or No Feedforward, and remembered gestures more
easily when using the technique. Dynamic guides can help de-
velopers design novel gesture vocabularies and support users
as they design custom gestures for mobile applications.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
Dynamic guides; Gesture recognition; Personalized gestures;
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INTRODUCTION
Billions of mobile phones [23], laptops and tablets contain
sensors that detect touch and can capture drawn 2D gestures.
When used as input, gestures offer multiple advantages over
traditional buttons, sliders and pull-down menus: they are fast
to execute, and can be performed “eyes-free” in the dark or
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if the display is not visible. Gestures can efficiently access
large sets of commands, and can be concatenated or otherwise
combined into hierarchies or gestural grammars.

If gesture interaction is so useful, and touch capability is ubiq-
uitous, why is gesture interaction on mobile devices mostly
limited to pinch, drag and swipe? One possible reason is learn-
ability [5]: Users remember the pinch gesture after seeing it
once; complex gestures require more effort. Systems such as
Marking Menus [11], Octopocus [5] and Arpège [7] provide in-
context feedforward in the form of dynamic guides that reveal
potential gestures or chords and associated commands. Ex-
perts perform known gestures quickly and efficiently, whereas
novices pause to see the available gestures appear around their
finger or fingers. Octopocus and Arpège also indicate the
likelihood of each remaining gesture, based on previously
performed input.

The above techniques help users learn existing gesture sets, but
offer no support for creating or modifying them. Just as users
prefer to create their own memorable banking PINs, rather
than those issued by the bank, we believe that users will prefer
to create their own gestures, associating them with symbols,
objects, actions, or even “muscle memory” to facilitate their
recall. However, creating personally memorable gestures ad-
dresses only half the problem: the system must also reliably
recognize them [25].

We propose in-context dynamic guides that let users explore
ideas for new, memorable gestures, and determine which ones
the system can also recognize. We believe that mapping user-
defined gestures to command shortcuts and scripts will in-
crease the adoption of gesture-based interaction on mobile
devices. For example, a user might associate a custom gesture
with a script that snaps a picture and texts it to her boyfriend.
Or, she might redefine a system-defined gesture, such as a
question mark for “help”, and access it from any application
or hardware platform.

This paper describes the related work on recognizing and
learning gestures, as well as customizing interfaces. We then
describe the design and implementation of two in-context
dynamic guides with different forms of progressive feedfor-
ward. Pathward is inspired by Octopocus’s [5] path-based
visualization of the “positive space” of existing gestures, but
instead displays samples from the “negative space” of possible
gestures. Fieldward displays a heatmap-like display of the im-
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mediate future of the user’s gesture. We present the results of
a two-part experiment that compares these two techniques and
a no-feedforward condition. We discuss potential applications
of our approach, with implications for design and directions
for future research.

RELATED WORK
Recent advances in mobile phone and tablet technology make
it possible to capture and recognize diverse forms of gesture
input. From the user perspective, challenges include design
of gesture sets, learnability, and personalization. Technical
challenges include correctness, noise tolerance, computational
cost, and ease of implementation.

Designing Gesture Sets
Current touch-based mobile platforms typically support di-
rect manipulation gestures, such as pinching and dragging, to
manipulate objects on the screen. Such gestures are usually
simple, based on the metaphor of interacting with physical or
virtual objects. Gestures may also be used to generate words
on a soft keyboard [29] or to enter passwords on a mobile de-
vice [25]. Gesture typing is significantly faster than pressing
keyboard keys: When entering passwords, users prefer draw-
ing patterns to pressing buttons, even though button presses
are easier for the system to recognize.

Several visual taxonomies ([24], [19]) lay out the features
that distinguish different gestures on tabletop and mobile plat-
forms. We are specifically interested in gestures that invoke
commands on mobile devices. These may incorporate one or
more strokes or segments – each of which may be straight
or curved – and may include additional dimensions, such as
pressure or temporal features.

A key challenge is to design coherent sets of gestures that
successfully address this complexity. One approach is to use
letter-shaped gestures that spell enough of the command name
to identify it uniquely [13]. Another strategy is to use a Mark-
ing Menu [11], which organizes commands in a radial layout
around the cursor. The user invokes a command by moving
the cursor in the command’s direction.

Although Marking Menus are up to three times faster than ordi-
nary pull-down menus, they can only handle a limited number
of items, usually between eight and 16. However, the same
radial structure can also be applied to hierarchically organized
commands, as in Hierarchical Marking Menus [12]. Flower
[4], and Wave menus [3] also use a radial layout and support
hierarchical organization, but use specific schemas to organize
the gestures. Appert and Zhai [1] argue that designers should
avoid complex, hard-to-visualize recognition algorithms.

Other researchers have involved users in the design of ap-
plication gesture sets, asking them to generate and interpret
“natural gestures” [27, 15] or as part of a participatory design
session [21]. Researchers who compare the memorability of
free-form gestures find that user-defined gestures are both eas-
ier to master [16] and easier to remember [17]. These studies
suggest that users should play a role in defining gestures, but
focus only on designing standardized gesture sets for future

applications, rather than on how to let users create their own
gestures in the field.

Learning Gesture Sets
Kurtenbach and Buxton [11] focused on the trade-off between
designing for novices, who value discovery and learning, and
experts, who value speed and robustness. Their Marking Menu
offers an elegant solution – experts who already know the
appropriate gesture just execute it, whereas novices pause
to display a Marking Menu. Users see both visual feedback
indicating the gesture they just performed, and feedforward
indicating the directions of the remaining possible commands.
Over time, novices learn the gestures associated with each
command, without requiring conscious effort or a specific
intent to learn. The system is forgiving – experts who forget a
gesture may also pause and the menu appears to remind them.

Octopocus [5] also provides dynamic guides around the cursor
when the user pauses, but is not restricted to radial or other
structured layouts. It can handle any arbitrarily shaped gesture,
so gesture set designers can include more meaningful gestures,
e.g. drawing a ? for help. We hope to provide similar dynamic
guides that support creating, not just learning gestures.

Personalizing Gestures
Long et al.’s [14] study of how users design their own gesture
sets found that users lack understanding of the recognizer and
often add strokes that are too similar to previously defined ges-
tures. Horvitz [10] developed a mixed-initiative system [10]
that suggests modifications when a user’s gesture is too sim-
ilar to an existing gesture. Oh and Findlater [18] studied
personalized gesture-creation, and developed a design space
for procedural modification of existing gestures. Unfortu-
nately, few commercial systems support user-directed gesture
creation. Some tablets use multi-finger gestures to perform
pre-specified functions, e.g. dragging four fingers to switch
applications, but users can only disable this, not modify it.

Gesture Recognition
Rubine’s Classifier [20] is probably the most well-
known gesture-recognition technique, followed by Dynamic
Time Warping (DTW) [22] and Hidden Markov Models
(HMM) [26]. The $1 Recognizer [28] facilitates compact
and easily-understandable implementation. In addition to iden-
tifying a template match, approaches such as the Gesture
Variation Follower [6] also output continuous measures of
deviation from the template. Gesture-Typing interfaces [29]
are a special case of gesture recognition. With an installed
base of over 100+ million devices, Google’s Android Key-
board [8] is probably the most highly used gesture recognizer.
We do not focus on gesture recognition, per se, but rather seek
recognizer-agnostic techniques.

DESIGN CHALLENGE
Our goal is to help users create personally meaningful ges-
tures that execute commands on mobile phones and tablets.
Such gestures must satisfy two competing requirements: Users
want gestures that are easy to remember, whereas the system
must reliably distinguish gestures from each other. Although
techniques such as Marking Menus [11] and Octopocus [5]



explicitly support learning gestures, neither addresses how to
help users create or redefine those gestures.

As a starting point, we assume that professional designers will
design an “optimal” set of gestures, test them for compatibil-
ity and memorability, and then hard-code the gesture set into
the system, just as they do for keyboard shortcuts. Systems
with a small space of pre-existing gestures, such as Marking
Menus, could be modified via simple configuration dialogs,
e.g., Maya’s [2] Marking Menu Editor. Alternatively, users
could modify the mappings via a configuration window that
displays pre-existing gestures and their corresponding com-
mands, as in Scrybe [9]. However, neither approach helps
users add new, personally meaningful gestures to the system.

Users can configure shortcut keys, which benefit from a dis-
crete input space where each key can be identified unambigu-
ously. It is easy to verify that mapping the same key combi-
nation to two different commands will cause a conflict, and
other conflicts are not possible. Gesture input, however, is
different. Every time the user performs a particular gesture,
it varies, sometimes significantly. The system must compare
each gesture to a set of predefined templates, using a specified
distance metric.

If the performed gesture is “close” to a gesture template and
“far away” from all others, the recognizer can safely assume
that the close gesture is the intended one, and execute the
associated command. However, errors can occur when gesture
templates are very similar to each other. For example, a user
may intend to draw a straight line, but curve the line, thus
matching an “arc” gesture instead. To avoid this, the set of
mapped gestures must be distant enough from each other to
prevent accidental misidentification.

Designing and adding new gestures to the system presents sev-
eral challenges. Each new gesture must be compatible with the
existing gesture set, but the distance metrics may be confusing
or uninformative. Because two arbitrary shapes likely vary
along multiple dimensions, users who lack intimate knowl-
edge of the recognition technique and implementation will
have difficulty intuiting how the recognizer works, even when
provided with a scalar distance score. The representation of
distance between two gestures may be non-linear, depending
on both the technique used and any implementation optimiza-
tions. Users may even be confused by the system’s represen-
tation of a single gesture, since it may have been temporally
or spatially resampled, normalized, or warped. Recognizer
features, such as scale, rotation, and direction sensitivity, may
also result in surprising collisions.

DESIGN SOLUTION
We created two dynamic guides that display graphical feed-
forward around the user’s finger. Both techniques support
interaction between the user and the system’s gesture recog-
nizer – each indicates which future directions will result in
recognizable gestures. Users can explore this negative space
of possible gestures to see if gestures they find memorable are
also easy for the system to recognize.

Both guides use color to indicate the suitability of a gesture
or direction. A gradient from blue to red indicates increasing

proximity to existing gestures in the recognizer space1. Blue
gestures are unique; purple ones are ambiguous. Users may
draw any gesture they like – neither dynamic guide constrains
the user’s drawing in any way. The techniques simply reveal
information about the uniqueness of each gesture from the
recognizer’s perspective, and suggest possible completions.

We treat the recognizer as a “black box” with no recognizer-
specific heuristics, which lets us support multiple implementa-
tions. Both dynamic guides are recognizer-agnostic, able to
accommodate subsequent improvements to the recognizer, or
even changing it entirely, without lowering effectiveness.

Pathward Dynamic Guide

Figure 1. Pathward technique: a. The user draws a black circle: three
possible completions appear at the touch point (yellow circle). b. The
user ignores them and draws downward: two possible completions ap-
pear. c. The user follows the blue line upward to create a unique gesture.

The Pathward technique is inspired by the Octopocus [5] dy-
namic guide, but with a twist. Octopocus shows the positive
space of existing gesture-command pairs, and how to con-
tinue from the current touch point to correctly execute each
gesture. We adapted this approach to display samples of pos-
sible recognizable gestures, drawn from the negative gesture
space revealed by the recognizer. Since the number of possible
gestures is prohibitively large, samples are constructed by con-
catenating a random selection of pre-generated gestural atoms
consisting of simple lines and arcs. The recognizer evaluates
each sample against the existing gesture set, and the set of
samples is optionally pruned based on the recognition scores.

Like Octopocus, the Pathward technique calculates the offset
from the gesture’s starting point, and advances the displayed
gesture suggestions by an equivalent path length (see Fig.1).
The remainders of the gesture suggestions are shown origi-
nating from the current touch point, indicated by the yellow
circle annotations (which are not seen by user). As the user
draws, the shapes formed by the drawn gesture and each re-
maining suggestion are repeatedly passed to the recognizer for
evaluation, and the colors of the suggested paths are updated
to reflect their evolving recognition scores.

Fieldward Dynamic Guide
The second dynamic guide offers a more holistic view of the
negative gesture space, in the form of a dynamic heatmap.
While Pathward suggests four pre-evaluated gesture comple-
tions, Fieldward evenly samples the entire display to complete
the gesture with vectors originating from the current touch-
point (see Fig.2). The score for each completion defines the
color at the corresponding point in the background, resulting
1The same colors were used for Synaptics Scrybe [9], avoiding
problems with the most common types of color blindness.



Figure 2. Fieldward technique: a. The drawn circle ends in a red zone,
indicating the gesture is not unique. b. The user draws downward; then
c. moves upward, ending in a blue zone to define a unique gesture.

in a color field that indicates the zones in which a gesture
would be unique (blue), ambiguous (purple), or collide with
existing gestures (red). An OpenGL shader is used to display
even gradients among the sampled points.

Pathward vs. Fieldward: Advantages and Disadvantages
The Pathward and Fieldward techniques address different sets
of trade-offs. One advantage of the Pathward technique is its
ability to represent suggested gestures of arbitrary complexity
and length, including curves, loops, and closed figures. This
is especially important for users who do not think to explore
certain aspects of the gesture design space. For example, our
pilot tests revealed that many users prefer drawing closed paths
and figures, but we cannot tell whether they explicitly rejected
open figures or simply did not consider them.

A major disadvantage of Pathward technique is that, as ob-
served with Octopocus [5], users can only interpret a limited
number of gestures before becoming confused by “visual clut-
ter”. Some of this can be mitigated by varying the opacity of
the suggested gestures, using high opacity only for the sections
that immediately follow the touch point, with low opacity for
the remainder of each gesture suggestion. Even so, we chose
to limit the number of suggested gestures to four, to ensure
that the user could easily distinguish among them.

An additional drawback is the arbitrary nature of the suggested
gestures. Although we could certainly develop a statistical
description of each user’s gestures in order to make person-
alized suggestions, it is not clear whether the user would be
better served with stylistically similar or different suggestions.
The Pathward suggestions are thus limited to a technical ex-
ploration of the negative gesture space from the system’s per-
spective, where each suggested shape is arbitrary and is not
pre-associated with any meaning.

The Fieldward technique avoids several disadvantages of the
Pathward technique. First, since feedforward is displayed as
background gradients instead of discrete objects, an arbitrarily
high-resolution sampling of the gesture space does not result
in visual clutter, nor does it distract from the drawn gesture. In
practice, sampling resolution is limited only by computational
cost and the need to run the technique at interactive framerates.

In addition, users may be confused or frustrated if Pathward
suggests gestures that they judge to be stylistically or cogni-
tively inconsistent with the problem domain, the set of existing
gestures, or the user’s personal preferences. By contrast, the
Fieldward’s ambient display avoids suggesting any particular
gesture style, shape, or other visual object.

However, these advantages are offset by certain costs. The
most important is the temporal limitation: unlike Pathward,
the Fieldward technique can only display one linear step into
the future of the current gesture. The benefits of Fieldward’s
high spatial resolution are matched by a corresponding loss
in the order (cf. polynomial expressions) of the suggestions,
since it cannot show the effects of projected curves, loops or
even additional line segments beyond the first one. Also, users
must remember that recognizable gestures should end in a
blue zone, but may traverse red zones in the process.

EXPERIMENT DESIGN
We ran an experiment to compare the Pathward and Field-
ward techniques, with a No Feedforward control condition.
Although these techniques can work on any touch display, we
focus on mobile devices, which offer compelling applications
for personalized gestures. Our research questions include:

1. Can dynamic guides help participants create memorable
gestures that are also easy for the system to recognize?

2. Do participants prefer Fieldward or Pathward?
3. Which strategies do participants use to define personal

gestures, and are they affected by the choice of technique?

Methodological Challenges
The experimental design was challenging, causing us to run a
series of pilot studies before settling on the two-part approach
described in the Method section below. We ran the first pilot
on a tablet, but found that participants used the large screen
space to create very long gestures, making them more likely
to be unique. We decided to switch to smartphones, since
the smaller screen size significantly increased the difficulty of
the task, which also increased the need for a dynamic guide.
Inspired by situations that require one-handed interaction, such
as standing on a crowded bus or carrying groceries, we asked
participants to draw each gesture with the thumb of one hand.

Another problem stemmed from our initial use of “invocable”
guides, in which the feedforward only appears if the user hesi-
tates. Some pilot test users never invoked feedforward, making
it impossible to compare techniques. For the experiment, we
decided to turn on the dynamic guide at touch down, to ensure
consistency across conditions; in a real application, we would
restore the delay so that experts could proceed with no guide.

We designed the dynamic guides so users could choose the
desired level of “recognizability” of their gestures, that is, how
sloppily the gesture could be performed and still be recognized
correctly. In the first pilot study, participants applied different
criteria to determine if recognition was “good enough”, and
many did not understand what “recognizable” actually meant;
for the experiment, we chose a specific recognition threshold.

Early pilot tests were excessively long, up to two hours, and
exhausted the participants. So we sought alternatives that
would reduce the time to an hour while ensuring sufficient
task difficulty. We explored starting with an existing gesture
set, to which participants added new gestures. The task was
immediately difficult, since each stored gesture increases the
likelihood of a collision. Unfortunately, providing users with
existing gestures influences their strategies for creating new



gestures in subtle and unmeasurable ways. In the experiment,
we asked participants to create the gesture set from scratch,
starting with six gestures in the initial practice block.

Early pilot studies used a within-participants design, in which
users were shown a command name and asked to generate
an “easy-to-remember” gesture, register it and later recall it.
We counter-balanced the feedforward techniques for order,
and tried various block sizes, ranging from 1 to 12, rotating
through each of the three techniques: Fieldward, Pathward and
No Feedforward. Unfortunately, we found that the two feed-
forward techniques were highly confounded: a technique from
a previous block sometimes revealed subtle information about
gestures already present in the gesture set, and influenced par-
ticipants in unmeasurable ways. For example, a participant in
the No Feedforward condition might use a gesture suggestion
from the previous Pathward condition. This carry-over meant
that a within-participant design could not untangle the effect
of the current condition from previous conditions.

Another problem was that participants learned at different
rates, and faced problems generating gesture ideas at different
points in the study. Many participants avoided using dynamic
guides when the gesture set was almost empty, since gestures
were recognized reliably anyway. They started to use guides
only after they “got stuck”, usually after about a dozen ges-
tures. Other participants developed strategies that worked for a
few trials, after which they had to come up with a new strategy.

The high variability in learning and gesture-creation strategies,
independent of the techniques, led us to consider a between-
participants experimental design. Exposing three groups of
participants, each to a different technique (Fieldward, Path-
ward and No Feedforward), provides a “clean” comparison
of the characteristics of each technique. However, it does not
allow us to determine which technique users might prefer had
they been exposed to all of the techniques.

Finally, we considered alternative control conditions, for ex-
ample displaying the existing gestures. However, providing
information about registered gestures only in the control con-
dition would strongly bias the participants; and providing it in
all conditions would weaken our ability to measure the effects
of the feedforward techniques. Further, since we deal with
multiple examples of each user-defined gesture, there is also
no single “correct” version to display.

Method
Based on the above considerations, we decided on a two-
part experimental design. Part One treats the feedforward
technique – Pathward, Fieldward, or No Feedforward – as a
between-participants factor, whereas Part Two treats them as a
within-participants factor. We believe this offers a reasonable
compromise: The between-participant blocks let us compare
performance measures across techniques without confounding
or learning effects; the within-participant blocks let partici-
pants try all three techniques when the size of the gesture set is
large enough that the task consistently benefits from a dynamic
guide. We collect all the same data for both Parts One and
Two, but the analysis for Part Two focuses on the qualitative
data, where participants compare the techniques to each other.

Participants
We recruited 27 participants (15 men, 12 women) ages 22-40.
Three were left-handed; one right-handed participant preferred
using her left hand for the experiment.

Hardware and Software
We used two LG Nexus 5 (4.95" display) and two LG Nexus
5x (5.2" display) smartphones. The Pathward and Fieldward
techniques are implemented in Java and integrated into an
application for the Android platform (see Fig. 3). Touch
events (down, move, up) from the Android system are used to
build a vector that describes the current gesture. With each
move event, gesture completion candidates are appended to the
user’s gesture and the stock Android gesture recognizer is used
for calculating distances between each candidate gesture and
the existing template gestures. This implementation supports
only single-touch, unistroke gestures.

Depending on its configuration for sensitivity to rotation and
direction of gestures, the stock Android recognizer uses dif-
ferent techniques for calculating inter-gesture distance. We
used the default configuration (sensitive to both rotation and
sequence) where the recognizer returns a score based on
the inverse of the minimum cosine distance between two-
dimensional gesture representations that have been pre-rotated
and normalized. Due to optimizations in the recognizer and
the particular internal representation, the scores are difficult
to understand intuitively. However our pilot test results indi-
cated that a score lower than 1.5 is sufficient for adding a new
gesture with no collisions.

Procedure
Task description
A key application for dynamic guides is to help users cre-
ate custom gesture-command combinations for their mobile
phones. We envision a scenario in which a phone manufacturer
provides a set of gestures for accessing common commands.
For example, a ? gesture might be assigned to Help. Users
could then redefine these gestures, e.g. assigning a thunderbolt
gesture to Get Weather Report. Users could also create new
gesture shortcuts for personally useful commands, e.g. Call
Mom, or Post this photo on Facebook. These gestures can
be performed eyes-free on a watch or smartphone; such as
sending a custom message in reply to a call during a meeting.

Evaluate

ACTION_DOWN
ACTION_MOVE
ACTION_UP

Score
Add Gesture

Gesture 
Builder

Android 
Gesture 

recognizer

Append 
Candidates

Generate 
Feedforward

Canvas

GL Shader

Touch events:

Figure 3. Simplified system diagram: With each move event, completion
candidates are appended to the user’s gesture and passed to the recog-
nizer for evaluatino. Recognition scores are used to generate feedfor-
ward using an OpenGL shader (Fieldward) or Canvas functions (Path-
ward). Successful gestures are added to the recognizer’s internal store.



Command Category Command Examples
Communication: Family Call Mom

Group-chat Friends
Communication: Social-Media Facebook share

Check #TrafficAlert
Context: Media Dropbox PDF

Repeat Song
Context: Location Show location

Navigation On
Shortcuts: Apps Tweet photo

Take Selfie
Shortcuts: OS Airplane-mode On

Dismiss Notifications
Table 1. Left: Trial commands are drawn from six command categories.
Right: Examples of specific trial commands.

Based on this scenario, we designed an ecologically valid
task for the experiment. Table 1 (left column) shows three
categories of common mobile phone commands: communi-
cation, context and shortcuts, each with two subcategories.
We created six phrases from each subcategory, consisting of a
verb-noun combination, such as Publish video, and a longer
description, (Publish current video on Youtube) (see Fig.4a).

Trial description
Each trial begins by presenting the participant with a brief com-
mand, e.g. Call Mom, initially shown in black (see Fig.4b).
The participant designs a gesture associated with that com-
mand that they can easily remember but that is still recogniz-
able by the system. Participants may create any gesture they
like, except for letters and numbers.

In the Pathward or Fieldward conditions, the associated feed-
forward technique is activated on touch down, and disappears
on touch up. No feedforward appears in the No Feedforward
condition. All three conditions provide recognition feedback
by changing the color of the currently drawn command. If the
command is recognizable, i.e. with an inter-gesture distance
score above 1.5, the command label turns red, otherwise it
turns blue. If the participant approves the gesture, she can
register it, by re-drawing the same gesture two more times,
without feedforward. This ensures that the recognizer has
three good samples of the gesture. Each recording increments
the number in the gray “REGISTER #/3” box (see Fig.4).

If the participant is not satisfied with the gesture at this stage,
she can try a new gesture, as many times as she likes. The trial
ends when the participant has successfully registered three
recognizable samples of the gesture. If the participant cannot
successfully register a second or third sample of the gesture,
she can press a button to move on to the next command.

Experiment overview
Figure 5 shows the design of the overall experiment, which is
divided into two parts. Each part consists of a practice block,
followed by three experimental blocks. Each block consists of
six trials in which the participant is presented with a command
and asked to create a new gesture. Each experimental block
contains an example from each of the six categories in Table 1,
counterbalanced for order within and across blocks.

Figure 4. Dynamic guides help users create recognizable gestures.
a. Pathward suggests four paths: blue paths successfully complete the
user’s black gesture, red paths collide with existing gestures. b. Fieldward
displays an interactive heatmap: linear completions ending on blue are
recognizable, and on red cause collisions. Purple paths and areas are
ambiguous.

Part One: Between-Participants Design
Part One uses a between-participants design with one factor:
TECHNIQUE (Path, Field, None). Participants are randomly
assigned to one of three groups, each with a different feedfor-
ward technique.

All participants begin with practice block a, which serves as
the initial practice session. The experimenter first explains
the general goals of the study and then demonstrates how to
generate and record a gesture that is recognizable. Participants
are asked to hold the phone with only one hand and perform
all gestures with their thumb; they are invited to keep their
free hand busy (e.g. by holding a pen) to ensure they only
use one hand to perform the gestures. The experimenter asks
the participant to copy and register four new gestures, the first
two with No Feedforward and the others with the assigned
technique – Path, Field, None – explaining how the technique
works. Participants are then asked to create and register two of
their own gestures using the assigned feedforward technique.
The practice block poses the easiest gesture-creation task,
since the gesture set is initially empty, making the first few
gestures easily distinguishable. The gesture set in subsequent
experimental blocks includes these six preliminary gestures.

Next, each group of participants receives three blocks of the
same technique: A is assigned Fieldward, B is assigned Path-
ward, and C is the control No Feedforward technique. Each
participant performs three experimental blocks of six trials, to
create a total of 18 new gestures. At the end of each block,
participants are tested on their ability to remember the last six
gestures they created in order to prevent them from simply
creating random scribbles. Commands are presented in ran-
dom order and the participant is asked to draw the associated
gesture, with no feedforward. The message “OK!” appears if
the recognizer matches the gesture with the right command;
otherwise “wrong gesture” appears.



test test test test test test
Gestures:  6 6 6 6 6 6 6 6

Block:  654b321a
Group A:  Practice Field Field Field Practice Field
Group B:  Practice Path Path Path Practice Path
Group C:  None None NonePractice Practice None
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None
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None
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Path
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Figure 5. Experiment design: Experimental blocks 1-3 are allocated between participants. Experimental blocks 4-6 are allocated within participants,
with blocks 4 and 5 counter-balanced with a latin square across participants. Block 6 repeats the technique in blocks 1-3. Each experimental block
includes six trials that produce six new gestures, followed by a test.

At the end of Part One, each participant has added a total of 24
gestures to their gesture set: six from the practice block and
18 from the three experimental blocks. After finishing block
3, participants answer a questionnaire, and may take a break
before beginning Part Two.

Part Two: Within-Participants Design
Participants are assigned the two remaining feedforward tech-
niques from Part One in blocks 4 and 5, counter-balanced for
order across participants according to a Latin square. Block 6
presents the same technique as in blocks 1-3. This produces
an ABCA design that lets participants compare the three tech-
niques at a point when the task has become reliably difficult.

All participants begin with practice block b, which introduces
the two remaining feedforward techniques. This practice block
uses a different gesture set, to prevent confounding with the
participant’s existing gesture set. The first three trials of the
practice block show one new technique, the last three show
the other. The experimenter explains each new technique and
asks the participant to use it to copy and register a new gesture.
Participants then create two additional gestures, using the same
technique. When practice block b is finished, the six gestures
are deleted and the 24 gestures from Part One are restored.

Each participant performs three experimental blocks of six
trials to create a total of 18 additional gestures. At the end of
each block, participants are tested on their ability to remember
the last six gestures they created. At the end of the experiment,
each participant has created a total of 36 gestures under exper-
imental conditions, plus the six created during practice block
a. After finishing block 6, participants answer a questionnaire.

Data Collection
During the practice and experimental blocks, the smartphone
runs a screen recorder that saves video of every performed
gesture. The experiment log includes timestamps of the start
and end of each trial, as well as the touch events for every
gesture tried by the participant, the gesture length in pixels,
the drawing time in milliseconds, and the list of inter-gesture
distance scores from the recognizer. From this raw data we
can extract the number of recognizable gestures performed,
the number of non-recognizable gestures performed (FAILED
ATTEMPTS), the number of recognizable gestures that users
performed but decided not to register (USER-REJECTED GES-
TURES), and the number of successful recall tests (RECALL
ACCURACY).

At the end of Part One, participants are given a questionnaire
with a list of all 18 commands and are asked to describe the
strategies they used to make their gestures memorable. During
Part Two, participants see a list of 6 commands at the end of
each block. As in Part One, they describe the strategies they
used to make their gestures memorable. They then answer
four Likert-style questions to assess each technique (see Quan-
titative Self-Reported Measures). At the end of Part Two, they
choose the most helpful technique and explain their choice.

We took observational notes during all sessions and debriefed
participants after the final trial, with a particular focus on what
the participants liked and disliked about the techniques and
about their strategies for creating memorable gestures. We
consulted their written strategy descriptions to supplement our
understanding when necessary. The salient themes presented
in the Qualitative Results section emerged from regular dis-
cussions of the data among the research team, with frequent
checks back to the source data.

RESULTS

Quantitative Performance Measures
We collected a total of 2916 experimental trials (27 PARTICI-
PANT x 3 TECHNIQUE x 36 TRIALS). As described earlier, we
restrict the statistical analyses to the 1458 trials of between-
participants’ data from Part One. Similarly, we analyse only
the questionnaire responses from Part Two.

Using ANOVA, we first determined that there were no un-
wanted significant effects from the control variables (com-
mand category, command examples). We then ran a 3x3 mixed
analysis of variance with factors TECHNIQUE × BLOCK, fol-
lowed with Tukey HSD tests for post-hoc comparisons when
warranted.

FAILED ATTEMPTS: We use FAILED ATTEMPTS to exam-
ine gesture creation over time (see Fig. 6). We found a
main effect of BLOCK (F2,48 = 8.617, p = .0006). Block 1
(mean=2.69) produced significantly fewer failed attempts of
creating a new recognizable gesture than Block 2 (mean=4.36)
and than Block 3 (mean=5.019) (both p < .05). In terms of
TECHNIQUE, across all blocks, participants using the Field
technique (mean=3.05) failed fewer trials than those using
Path (mean=3.92) and None (mean=5.10). However, the dif-
ferences were not significant (F2,24 = 1.504, p = .242).

GESTURE LENGTH: We found a main effect of BLOCK
(F2,48 = 15.27, p < 0.0001) revealing that gestures get longer



Figure 6. FAILED ATTEMPTS represents a proxy measure for the proba-
bility of gesture collisions in the recognizer and thus task difficulty. Bars
indicate 95% confidence intervals.

over time. Those created in Block 1 (mean=2219 pixels) are
significantly shorter than those in both Blocks 2 (mean=2587
pixels) and 3 (mean=2766 pixels) (both comparisons p < .05).
A main effect of TECHNIQUE (F2,24 = 5.53, p = .01) reveals
that gestures created with Field (mean=2949 pixels) are sig-
nificantly longer than those created with None (mean=2338
pixels) and Path (mean=2285 pixels) (both p < .05). How-
ever, an interaction effect between BLOCK and TECHNIQUE
(F4,48 = 4.14, p = .0058) clarifies that gestures created with
Field only begin to get significantly longer than those with
None and Path starting in Block 2 (both p < .05).

USER-REJECTED GESTURES: Participants using the Field
technique (mean=1.2) rejected more gestures compared to the
None (mean=.7) technique. Participants in the Path condition
fell in between (mean=.9). However, these differences were
only at trend level (F2,24 = 3.6, p = .07). This requires follow-
up research.

RECALL ACCURACY: We found no significant differ-
ences (F2,24 = .26, p = .77) in recall accuracy among Field
(mean=1.97), None (mean=2.08) and Path (mean-1.86).

Quantitative Self-Reported Measures
In Part Two, participants were asked to rate four statements on
a 5-point Likert scale, from strongly disagree to strongly agree.
The statements asked whether the current technique helped
them to: A) think of new gestures, B) discover recognizable
gestures, C) discover memorable gestures, and D) adapt my
memorable gestures to make them recognisable. Three ques-
tions resulted in significant differences across technique, based
on analysis using a Friedman test:

Question/Technique Field Path None
A) Think of new gestures 4 3 3
B) Discover recognizable gestures 4 3 2
C) Discover memorable gestures 3 2 3
D) Adapt my memorable gestures
to make them recognizable 4 3 3

Table 2. Medians of the answers from the 5-point Likert-scale questions
about how much each technique helped on the listed aspects.

B. DISCOVER RECOGNIZABLE GESTURES: Participants
showed significantly stronger agreement (p = .019) for Field
compared to None; Path was in between but was not signifi-
cantly different from the other two: χ

2(2) = 9.16, p = .01.

C. DISCOVER MEMORABLE GESTURES: Participants showed
significantly stronger agreement (p = .016) for None compared

to Path; Field was in between but not significantly different
from the other two: χ

2(2) = 10.54, p = .005.

D. ADAPT MEMORABLE GESTURES TO MAKE THEM REC-
OGNIZABLE: Participants showed significantly stronger agree-
ment for Field compared to Path (p = .008) and to None
(p = .005): χ

2(2) = 15.02, p = .001.

Finally, participants picked the technique they most preferred
for creating memorable gestures. Field was most popular (15),
although many liked None (9). Very few preferred Path (3).

Qualitative Results and Discussion
In general, we found the qualitative findings were consistent
and complementary to the quantitative results.

Participants value memorability over recognizability
The most common strategy for creating gestures consisted of
thinking of a memorable shape and then, if necessary, tweak-
ing it to make it recognizable. For example, in the Fieldward
condition, P11 drew a smiley face for Play CandyCrush, and
extended the line representing the face until it showed blue un-
der her thumb. Some users did not mind that the extra segment
had no particular meaning – they just expected to memorize
it. For example, P4 used Fieldward to design a gesture for
Group-chat friends (see Fig.7): I started with a circle (remem-
bering my circle of friends) and then went to a [blue] corner
to make it distinguishable from other gestures.

Figure 7. P4 first tried a circle for Group-chat Friends, and used Field-
ward to continue the line towards a blue zone .

By contrast, other participants clearly wanted the extra seg-
ment to have meaning. For example, P11 using Pathward to
design a gesture for Next Episode said: Drawing a play but-
ton (triangle) [alone] didn’t work. Then I used the [triangle]
button followed by a path to add a little circle. In my mind
that meant ‘next thing’ (see Fig.8).

Figure 8. P11 added his own meaning (“the next thing”) to the add-on
segment suggested by Pathward for the Next Episode command.

Participants who had a particular gesture in mind would often
extend it to make it recognizable, which explains why the
Fieldward technique produced the longest gesture lengths.
Fieldward supports this strategy particularly well: when the
task got the hardest (final block), Fieldward produced the
longest gestures but at the same time had the fewest failed



attempts. That Fieldward was also the preferred technique,
despite the longer gesture lengths, indicates that participants
do not necessarily favour shorter gestures. However, this may
also be an artifact of the experimental setting. Over time,
if users must frequently execute gestures that are long, they
might decide to redefine them to make shorter versions.

In the questionnaire, participants ranked None highest for
helping find memorable gestures, in contrast to Fieldward that
ranked highest for discovering recognizable gestures. This
suggests a tension between efficiently finding recognizable
gestures and remembering them: Though it takes several times
to figure out a recognizeble gesture, it would be easier for me
to remember the gestures I created independently (P21).

Fieldward is preferable to Pathward
Participants appreciated the open-ended, flexible nature of
Fieldward, which supported thinking of a gesture first, then
considering recognizability. They also felt it gave them greater
creative control. P8 observed that: Fieldward is free enough
to help you to create a figure and remember it. (...) It’s hard to
follow a path and remember the figure you made. P7 noted this
limitation with Pathward: I get that the lines [in Pathward]
wanted to help me, but ... but they help you ‘step by step’,
and I had a complete gesture idea in my mind. Note that
professional gesture designers might feel differently if their
goal is to create coherent sets of gestures, such as with Flower
Menus. The Pathward technique could be adapted to follow
patterns specific to a particular goal or application.

From a usability standpoint, Pathward suffered more from
occlusion than Fieldward. Given the number of radiating
paths on the small screen, participants sometimes found it
difficult to see the available paths, or even the one they were
actively trying to follow. P11 said: The path was difficult to
see and follow sometimes, as it was occluded by my drawing.
As the Fieldward was on the background, the feedback was
easier to understand.

However, the Fieldward technique was not entirely immune to
occlusion. Occasionally, a small red zone might be hidden by
the finger. If the surrounding zone is blue, the user has the false
sense that the gesture is recognizable, and only realizes the
problem on touch up, when the gesture is rejected. This could
be corrected easily by displaying the colors hidden below the
finger as a small halo that surrounds it.

Feedforward techniques act as temporary scaffolding
Although the recognizer was treated as a black box, some
participants were able to use the feedforward techniques to
discern aspects of how it works. Some participants picked
up “tricks” from each technique, such as copying Pathward’s
tendency to add a curl to a gesture, or backtracking to retrace
the most recent segment, as revealed by Fieldward. Some par-
ticipants treated feedforward as a temporary scaffolding, after
which they felt sufficiently confident to no longer need it. For
example, P7 used No Feedforward for Check #TrafficAlert : I
represented a Traffic mess by doing a lot of circles on top of
each other. I remembered from using Fieldward that it looked
like a feasible option. P10 said: In the beginning, the Field-
ward was helpful to understand how to create recognizable

gestures, but once I learned, I could do fine with No Help [No
Feedforward]. These participants also indicated a preference
for No Feedforward at the end of the study.

Different strategies adopted to support memorability
We observed several interesting strategies, beyond starting
with a memorable gesture and tweaking it. A few participants
created their own grammar that they applied to subsets of
related commands. For example, P3 drew a curl gesture to
represent sharing (Forward parents), and a winky eye to rep-
resent a picture (Take selfie). He then re-used both gestures
as components of other compound commands involving either
pictures or sharing something (Tweet Photo) (see Fig.9). P3
noted: I developed a kind of system of images that makes sense
for me, and I tried to keep it consistent during the process.

Figure 9. P3 developed his own gesture grammar on the fly. a. For-
ward parents: Envelope, with a curl to indicate sharing. b. Take selfie:
Winky eye for “picture”. c. Tweet Photo: Winky eye with a curl gesture
for sharing a picture.

In a few cases, participants selected a gesture suggested by
a Fieldward technique and then – after the fact – assigned a
meaning to the result. For example, P20 described his strategy
for Take Selfie: I followed the blue [field] and found a gesture
that looked like a four, so that helped me to remember it.
Sometimes participants tried and missed drawing a particular
gesture. Rather than discarding it, they would designate a
meaning and keep it. For example, P3 wanted to draw a
network of three connected circles for Facebook share. After
drawing it, reminded him of male genitals. He still decided to
keep the gesture, since he was not very fond of Facebook.

Figure 10. Different mnemonics for Close all include: a. Cross (com-
mon for Western users) b. Crossed circle (common for Asian users) c.
Four “swipe right” gestures (Android gesture to close apps) d. “W” (Ma-
cOS keyboard shortcut, <CMD>-W, to close windows).

We also observed several cultural differences (see Fig. 10).
For example, most Western users represented Close all with
an ‘X’, whereas most Asian users represented it with a crossed
circle. Some gestures reflected previous interactions with
computers or smartphones. For example, P13 described his
gesture for Close all: 4 swipes to the right as if I was closing
the apps on Android. For the same command, P7 based her
gesture on a related keyboard shortcut: In my computer I close
apps with <CMD>-W so I did something similar to a W.

For commands involving other people, participants created
gestures that represent their personal relationships. For exam-
ple, Call Mom evoked a diverse set of gestures: P24: When I
call mom I’m very happy. I did a circle for my face, and then



another curve for my smile. P5: It’s a bag because my mom
likes bags. P27: A bow, that was the Charades code for my
Mom when I was young.

The results with respect to the research questions posed earlier
can be summarized as follows:

1. Can dynamic guides help participants create memorable
gestures that are also easy for the system to recognize?
Yes. Both techniques help users discover recognizable ges-
tures, with Fieldward helping significantly more than No
Feedforward and Pathward in between. Fieldward is signifi-
cantly more helpful than Pathward for adapting memorable
gestures to make them recognizable, with No Feedforward
in between.

2. Do participants prefer Fieldward or Pathward?
Participants clearly preferred Fieldward for most qualitative
and quantitative measures. Surprisingly, some participants
preferred No Feedforward to Pathward, which was only
preferred when participants sought ideas for new gestures.

3. Which strategies do users use to define personal gestures,
and are they affected by the choice of technique?
Participants prefer to create a gesture they find memorable,
and then adapt it to make it recognizable, with the help of
the dynamic guide. In some cases, the dynamic guide can
also inspire new strategies for creating gestures, or reveal
aspects of how the recognizer works.

Discussion
Fieldward preferred, but No Feedforward also well liked
While Fieldward was the most preferred technique, No Feed-
forward also had reasonable support (9/27). Some of the users
who preferred No Feedforward were those who no longer de-
sired or needed the feedforward scaffolding, as noted above.
For others it seemed that they simply preferred complete auton-
omy over the process. Creating gestures with no support (No
Feedforward) resulted in more failed trials (initial attempts) ,
but also gestures that were shorter in length. This appears to
have been a reasonable trade-off for some users. For example,
P5 preferred No Feedforward and explained: While using no
help, I adapted my gestures by trying variations on how to
draw the same shape. Adapting the gesture with the field lead
[sic] to finding a recognizable gesture similar to my idea faster,
but it lead [sic] to more complicated gestures.

Need to support individual differences
We observed many individual differences in strategies and
preferences, indicating the lack of a one-size-fits-all solution.
However, users do not need one: providing options for dif-
ferent types of dynamic guides would allow users to take
advantage of them only only when needed.

Gesture creation in the wild
If users had gesture-creation capabilities on their devices today,
we doubt that many would create 42 gestures in one sitting, as
imposed by this experiment. Instead, they would probably add
gestures as needed, and modify them later if they were difficult
to remember. Although we did not see an effect of technique
on immediate recall accuracy in our study, more research “in
the wild” is needed to determine their effects on gesture recall

over time. Similarly, it will be interesting to see which users
take advantage of gesture creation. Will they be mostly “power
users” (who create their own shortcuts), or will this be adopted
by a broader audience? Finally, how important is gesture
length in the wild? We expect that users will not notice length
for infrequent gestures, but will probably optimize for length
for frequent ones. Even so, the ability to create personally
meaningful gestures likely outweighs slightly greater lengths.
A field deployment is necessary to clarify these issues.

Hybrid approach of designers and users working together
Although the experiment focused on participants who are
novices with respect to understanding gesture recognition,
the feedforward techniques themselves may also be of interest
to app designers who want to incorporate gesture-based inter-
action. Designers could generate an initial set of command-
gesture pairs and then allow users to personalize those gestures.
For example, imagine an app designed for a noisy concert set-
ting that relies on eyes-free, one-handed interaction to vote for
the current band or song. Users could add personal gestures to
perform personalized actions suited to that setting.

CONCLUSION AND FUTURE WORK
Our goal is to help users create their own gestures on mobile
devices, such that they are both personally memorable and
reliably recognized by the system. We introduced a novel
type of dynamic guide that visualizes the negative space of
possible gestures as the user interacts with the system. We
implemented two novel feedforward techniques Fieldward and
Pathward, which address different design trade-offs.

Participants strongly preferred the Fieldward technique, which
offers a more open-ended picture of the immediate future rela-
tive the current state of the user’s gesture. In contrast, Path-
ward provides shorter, more efficient gestures, that are easy to
recognize, but not always easy for the user to remember.

We conducted both a between-participants and a within-
participants experiment to compare these two techniques with
a non-feedforward condition. We found that users discovered
a wide variety of strategies for creating memorable gestures
in partnership with the system, especially when using the
Fieldward technique.

In the future, we would like to conduct a longitudinal study
to see how people evolve their gestures over time. We also
plan to investigate extensions to our implementations for sup-
porting multi-touch and multi-stroke gesture input. The two
feedforward techniques serve as the foundation for a series
of techniques that will allow app developers to enable rich
end-user personalizations to their mobile apps, and end users
to create their favorite gesture shortcuts within particular app
or across different applications.
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