]. T. Limited-]-g, S. T. For-the, and . Forum, The Hyperconnected Economy: Phase 2, Hyperconnected Organizations2025 Every Car Connected: Forecasting the Growth and OpportunityFuture Applications of VANETs, Pictures of the Future. Livable Megacities ? Moscow and St Vehicular ad hoc Networks, C. Campolo, A. Molinaro and R, 2007.

S. Hauser and W. T. Scherer, Geographic information systems for transportation in perspective Transportation Research Part C: Emerging TechnologiesData mining tools for real-time traffic signal decision support \& maintenanceTraffic monitoring at signal-controlled intersections and data mining for safety applications, Systems, Man, and Cybernetics IEEE International Conference on Intelligent Transportation Systems Proceedings. The 7th International IEEE Conference on, pp.525-544, 2000.

F. D. Salim, S. W. Loke, A. Rakotonirainy, B. Srinivasan, and S. Krishnaswamy, Collision Pattern Modeling and Real-Time Collision Detection at Road Intersections, 2007 IEEE Intelligent Transportation Systems Conference, 2007.
DOI : 10.1109/ITSC.2007.4357693

F. Wang, Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications, IEEE Transactions on Intelligent Transportation Systems, vol.11, issue.3, pp.630-638, 2010.
DOI : 10.1109/TITS.2010.2060218

K. N. Qureshi and A. H. Abdullah, A survey on intelligent transportation systems, Middle-East Journal of Scientific Research, vol.15, issue.5, pp.629-642, 2013.

W. He, T. Lu, and C. Q. Yu, A Novel Traffic Flow Forecasting Method Based on the Artificial Neural Networks and Intelligent Transportation Systems Data Mining, Advanced Materials Research, vol.842, pp.708-711, 2014.
DOI : 10.4028/www.scientific.net/AMR.842.708

Y. He, S. Blandin, L. Wynter, and B. Trager, Analysis and Real-Time Prediction of Local Incident Impact on Transportation Networks, 2014 IEEE International Conference on Data Mining Workshop, 2014.
DOI : 10.1109/ICDMW.2014.183

X. Zhang and J. A. Rice, Short-term travel time prediction, Transportation Research Part C: Emerging Technologies, vol.11, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0968-090X(03)00026-3

T. Rashed and C. Jurgens, Remote Sensing of Urban and Suburban Areas, pp.181-192, 2010.
DOI : 10.1007/978-1-4020-4385-7

U. Lee and M. Gerla, A survey of urban vehicular sensing platforms, Computer Networks, vol.54, issue.4, pp.527-544, 2010.
DOI : 10.1016/j.comnet.2009.07.011

M. Boban, J. Barros, and O. Tonguz, Geometry-Based Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation, IEEE Transactions on Vehicular Technology, vol.63, issue.9, pp.4146-4164, 2014.
DOI : 10.1109/TVT.2014.2317803

M. , N. Zarmehri, and C. Soares, Improving Data Mining Results by taking Advantage of the Data Warehouse Dimensions: A Case Study in Outlier Detection, Encontro Nacional de Inteligencia Artificial e Computacional, 2014.

M. , N. Zarmehri, and C. Soares, Using Data Hierarchies to Support the Development of Personalized Data Mining Models: a Case Study in Error Detection in Foreign Trade Transactions, 2016.

D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.
DOI : 10.1109/4235.585893

C. Giraud-carrier, R. Vilalta, and P. Brazdil, Introduction to the Special Issue on Meta-Learning, Machine Learning, pp.187-193, 2004.
DOI : 10.1023/B:MACH.0000015878.60765.42

P. Brazdil, C. Giraud-carrier, C. Soares, and R. Vilalta, Metalearning: Applications to Data Mining, pp.662-666, 2009.

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, Support vector machines Intelligent Systems and their Applications, IEEE, vol.13, issue.4, pp.18-28, 1998.

B. Scholkopf and A. Smola, Support Vector Machines, Encyclopedia of Biostatistics, vol.16, issue.9, 1998.
DOI : 10.1093/bioinformatics/16.9.799

Y. Amit and D. Geman, Shape Quantization and Recognition with Randomized Trees, Neural Computation, vol.1, issue.1, pp.1545-1588, 1997.
DOI : 10.1016/0031-3203(90)90098-6

L. Breiman, Random Forests, Machine Learning, pp.5-32

A. Liaw and M. Wiener, Classification and Regression by randomForest, R News, vol.2, issue.3, pp.18-22, 2002.

L. B. Olshen and C. J. , Stone and othersClassification and regression trees, p.101, 1984.

S. R. Safavian and D. Landgrebe, A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.3, pp.660-674, 1991.
DOI : 10.1109/21.97458

B. Ripley, tree: Classification and regression trees, 2014.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis, 2012.

M. , N. Zarmehri, and C. Soares, Advances in Intelligent Data Analysis XIV, 14th International Symposium, IDA 2015, Saint Etienne. France Proceedings," in Advances in Intelligent Data Analysis XIV, pp.205-216, 2015.

M. Zambrano-bigiarini, hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, 2014.

R. C. Team, R: A Language and Environment for Statistical Computing