R. Arisaka, A. Das, and &. L. Straßburger, On Nested Sequents for Constructive Modal Logic, LMCS, vol.11, issue.3, p.7, 2015.

S. N. Artemov, Operational modal logic, 1995.

S. N. Artemov, Abstract, Bulletin of Symbolic Logic, vol.16, issue.01, pp.1-36, 2001.
DOI : 10.2307/2964110

S. N. Artemov, Unified Semantics for Modality and ? -terms via Proof Polynomials, Algebras, Diagrams and Decisions in Language, Logic and Computation, CSLI Lecture Notes 144, pp.89-118, 2002.

S. N. Artemov, THE LOGIC OF JUSTIFICATION, The Review of Symbolic Logic, vol.31, issue.2, pp.477-513, 2008.
DOI : 10.1016/j.tcs.2006.03.015

S. N. Artemov, The Ontology of Justifications in the Logical Setting, Studia Logica, vol.43, issue.2, pp.17-30, 2012.
DOI : 10.1007/s00224-007-9057-y

S. N. Artemov and &. R. Iemhoff, Abstract, The Journal of Symbolic Logic, vol.49, issue.02, pp.439-451, 2007.
DOI : 10.1007/BF01186549

S. N. Artemov, E. L. Kazakov, and &. D. Shapiro, Logic of knowledge with justifications, 1999.

G. M. Bierman and &. V. De-paiva, On an Intuitionistic Modal Logic, Studia Logica, vol.65, issue.3, pp.383-416, 2000.
DOI : 10.1023/A:1005291931660

V. N. Brezhnev, On explicit counterparts of modal logics, 2000.

K. Chaudhuri, S. Marin, and &. L. Straßburger, Modular Focused Proof Systems for Intuitionistic Modal Logics, 1st International Conference on Formal Structures for Computation and Deduction, FSCD 2016 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp.1-1618, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01417603

E. Dashkov, Intuitionistic Logic of Proofs. Preprint 269, Logic Group Preprint Series, 2008.

M. Fitting, The logic of proofs, semantically, Annals of Pure and Applied Logic, vol.132, issue.1, pp.1-25, 2005.
DOI : 10.1016/j.apal.2004.04.009

M. Fitting, Modal logics, justification logics, and realization, Annals of Pure and Applied Logic, vol.167, issue.8, pp.615-648, 2016.
DOI : 10.1016/j.apal.2016.03.005

R. Goetschi and &. R. Kuznets, Realization for justification logics via nested sequents: Modularity through embedding, Annals of Pure and Applied Logic, vol.163, issue.9, pp.1271-1298, 2012.
DOI : 10.1016/j.apal.2012.02.002

B. Lellmann and &. D. Pattinson, Constructing cut free sequent systems with ontext restrictions based on classical or intuitionistic logic, pp.148-160, 2013.

M. Marti and &. T. Studer, Intuitionistic Modal Logic made Explicit, IfCoLog Journal of Logics and their Applications, vol.3, issue.5, pp.877-901, 2016.

M. Mendler and &. S. Scheele, Cut-free Gentzen calculus for multimodal <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi mathvariant="sans-serif">CK</mml:mi></mml:math>, Information and Computation, vol.209, issue.12, pp.1465-1490, 2011.
DOI : 10.1016/j.ic.2011.10.003

A. Simpson, The Proof Theory and Semantics of Intuitionistic Modal Logic, 1994.

G. Steren and &. E. Bonelli, Intuitionistic Hypothetical Logic of Proofs, Proceedings of the 6th Workshop on Intuitionistic Modal Logic and Applications (IMLA 2013) in association with UNILOG 2013, pp.89-103, 2013.
DOI : 10.1016/j.entcs.2013.12.013

L. Straßburger, Cut Elimination in Nested Sequents for Intuitionistic Modal Logics, FoSSaCS'13, pp.209-224, 2013.
DOI : 10.1007/978-3-642-37075-5_14

A. S. Troelstra and &. H. Schwichtenberg, Basic Proof Theory, second edition, 2000.

H. Wansing, Sequent Systems for Modal Logics, pp.61-145, 2002.
DOI : 10.1007/978-94-010-0387-2_2

D. Wijesekera, Constructive modal logics I, Annals of Pure and Applied Logic, vol.50, issue.3, pp.271-301, 1990.
DOI : 10.1016/0168-0072(90)90059-B