Convolutional Neural Networks Optimized by Logistic Regression Model

Abstract : In recent years, convolutional neural networks have been widely used, especially in the field of large scale image processing. This paper mainly introduces the application of two kinds of logistic regression classifier in the convolutional neural network. The first classifier is a logistic regression classifier, which is a classifier for two classification problems, but it can also be used for multi-classification problems. The second kind of classifier is a multi-classification logistic regression classifier, also known as softmax regression classifier. Two kinds of classifiers have achieved good results in MNIST handwritten digit recognition.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.91-96, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_10〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614983
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:57:29
Dernière modification le : mercredi 11 octobre 2017 - 17:00:34

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Bo Yang, Zuopeng Zhao, Xinzheng Xu. Convolutional Neural Networks Optimized by Logistic Regression Model. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.91-96, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_10〉. 〈hal-01614983〉

Partager

Métriques

Consultations de la notice

32