Automatic Image Annotation Based on Semi-supervised Probabilistic CCA

Abstract : We propose a novel semi-supervised method for building a statistical model that represents the relationship between images and text labels (tags) based on a semi-supervised variant of CCA called SemiPCCA, which extends the probabilistic CCA model to make use of the labelled and unlabelled images together to extract the low-dimensional latent space representing topics of images. Real-world image tagging experiments indicate that our proposed method improves the accuracy even when only a small number of labelled images are available.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.211-221, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_22〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614988
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:57:41
Dernière modification le : vendredi 3 novembre 2017 - 22:24:06
Document(s) archivé(s) le : vendredi 12 janvier 2018 - 15:42:50

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Bo Zhang, Gang Ma, Xi Yang, Zhongzhi Shi, Jie Hao. Automatic Image Annotation Based on Semi-supervised Probabilistic CCA. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.211-221, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_22〉. 〈hal-01614988〉

Partager

Métriques

Consultations de la notice

50