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Abstract. Decision rule acquisition is one of the important topics in rough set 

theory and is drawing more and more attention. In this paper, decision logic 

language and attribute-value block technique are introduced first. And then 

realization methods of rule reduction and rule set minimum are relatively 

systematically studied by using attribute-value block technique, and as a result 

effective algorithms of reducing decision rules and minimizing rule sets are 

proposed, which, together with related attribute reduction algorithm, constitute an 

effective granulation method to acquire minimum rule sets, which is a kind 

classifier and can be used for class prediction. At last, related experiments are 

conducted to demonstrate that the proposed methods are effective and feasible.  
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1 Introduction 

Rough set theory [1], as a powerful mathematical tool to deal with insufficient, 

incomplete or vague information, has been widely used in many fields. In rough set 

theory, the study of attribute reduction seems to attract more attention than that of rule 

acquisition. But in recent years there have been more and more studies involving the 

decision rule acquisition. Papers [2,3] gave discernibility matrix or the discernibility 

function-based methods to acquire decision rules. These methods are able to acquire all 

minimum rule sets for a given decision system theoretically, but they usually would 

pay both huge time cost and huge space cost, which extremely narrow their 

applications in real life. In addition, paper [4] discussed the problem of producing a set 

of certain and possible rules from incomplete data sets based on rough sets and gave 

corresponding rule learning algorithm. Paper [5] discussed optimal certain rules and 

optimal association rules, and proposed two quantitative measures, random certainty 

factor and random coverage factor, to explain relationships between the condition and 

decision parts of a rule in incomplete decision systems. Paper [6] also discussed the 

rule acquisition in incomplete decision contexts. This paper presented the notion of an 

approximate decision rule, and then proposed an approach for extracting non-redundant 

approximate decision rules from an incomplete decision context. But the proposed 

method is also based on discernibility matrix and discernibility function, which 

determines that it is relatively difficult to acquire decision rules from large data sets. 

Attribute-value block technique is an important tool to analyze data sets [7,8]. 



Actually, it is a granulation method to deal with data. Our paper will use the attribute-

value block technique and other related techniques to systematically study realization 

methods of rule reduction and rule set minimum, and propose effective algorithms of 

reducing decision rules and minimizing decision rule sets. These algorithms, together 

with related attribute reduction algorithm, constitute an effective solution to the 

acquisition of minimum rule sets, which is a kind classifier and can be used for class 

prediction.  

The rest of the paper is organized as follows. In Section 2, we review some basic 

notions linked to decision systems. Section 3 introduces the concept of minimum rule 

sets. Section 4 gives specific algorithms for rule reduction and rule set minimum based 

on attribute-value blocks. In Section 5, some experiments are conducted to verify the 

effectiveness of the proposed methods. Section 6 concludes this paper. 

2 Preliminaries 

In this section, we first review some basic notions, such as attribute-value blocks, 

decision rule sets, which are prepared for acquiring minimum rule sets in next sections. 

2.1 Decision systems and relative reducts 

A decision system (DS) can be expressed as the following 4-tuple: DS = (U, A = C ∪ 

D, V = 
Aa

aV


, {fa}), where U is a finite nonempty set of objects; C and D are condition 

attribute set and decision attribute set, respectively, and C ∩ D = ; Va is a value 

domain of attribute a; fa: U →V is an information function from U to V, which maps an 

object in U to a value in Va. 

For simplicity, (U, A = C ∪ D, V = 
Aa

aV


, {fa}) is expressed as (U, C ∪ D) if V and 

fa are understood. Without loss of generality, we suppose D is supposed to be 

composed of only one attribute.  

For any B  C, let U/B = {[x]B | x U}, where [x]B = {y U | fa(y)= fa(x) for any a  

B}, which is known as equivalence class. For any subset X  U, the lower 

approximation BX  and the upper approximation BX of X with respect to B are defined 

by: }][|{ XxUxBX B  , }.][|{  XxUxBX B  And then the concepts of 

positive region POSB(X), boundary region BNDB(X) and negative region NEGB(X) of X 

are defined as: BXXPOSB )( , BXBXXBNDB )( , BXUXNEGB )( .  

Suppose that U/D = {[x]D | x  U} = {D1, D2, ..., Dm}, where m = |U/D|, Di is a 

decision class, i  {1,2,...,m}. Then for any B  C, the concepts of positive region 

POSB(D), boundary region BNDB(D) and negative region NEGB(D) of a decision 

system (U, C ∪ D) can be defined as follows: 
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With the positive region, the concept of reducts can be defined as follows: given a 

decision system (U, C∪D) and B  C, B is a relative reduct of C with respect to D if 



the following conditions are satisfied: (1) POSB(D) = POSC(D), and (2) for any a  B, 

POSB-{a}(D) ≠ POSB(D).     

2.2 Decision logic and attribute-value blocks 

Decision rules are in fact related formulae in decision logic. In rough set theory, a 

decision logic language depends on a specific information system, while a decision 

system (U, C ∪ D) can be regarded as being composed of two information systems: (U, 

C) and (U, D). Therefore, there are two corresponding decision logic languages, while 

attribute-value blocks just act as a bridge between the two languages. For the sake of 

simplicity, let IS(B) = (U, B, V = 
Aa

aV


, {fa}) is an information system with respect to B, 

where B  C or B  D. Then a decision logic language DL(B) is defined as a system 

being composed of the following formulae [3]: 

(1) (a, v) is an atomic formula, where a  B, v  Va; 

(2) an atomic formula is a formula in DL(B); 

(3) if φ is a formula, then ~φ is also a formula in DL(B); 

(4) if both φ and ψ are formulae, then φ∨ψ, φ∧ψ, φ→ψ, φ≡ψ are all formulae; 

(5) only the formulae obtained according to the above Steps (1) to (4) are formulae 

in DL(B). 

The atomic formula (a, v) is also called attribute-value pair [7]. If φ is a simple 

conjunction, which consists of only atomic formulae and connectives ∧, then φ is 

called a basic formula.  

For any x∈U, the relationship between x and formulae in DL(B) is defined as 

following: 

(1) x |= (a, v) iff fa(x) = v; 

(2) x |= ~φ iff not x |= φ; 

(3) x |= φ∧ψ iff x |= φ and x |= ψ; 

(4) x |= φ∨ψ iff x |= φ or x |= ψ; 

(5) x |= φ→ψ iff x |= ~φ∨ψ; 

(6) x |= φ≡ψ iff x |= φ→ψ and x |=ψ→φ. 

For formula φ, if x |= φ, then we say that the object x satisfies formula φ. Let [φ] = 

{ x  U | x |= φ}, which is the set of all those objects that satisfy formula φ. Obviously, 

formula φ consists of several attribute-value pairs by using connectives. Therefore, [φ] 

is so-called an attribute-value block and φ is called the (attribute-value pair) formula 

of the block. For DL(C) and DL(D), they are distinct decision logic languages and have 

no formulae in common. However, through attribute-value blocks, an association 

between DL(C) and DL(D) can be established. For example, suppose φ  DL(C) and ψ 

 DL(D) and obviously φ and ψ are two different formulae; but if [φ]  [ψ], we can 

obtain a decision rule φ→ψ. Therefore, attribute-value blocks play an important role in 

acquiring decision rules, especially in acquiring certainty rules.  

3 Minimum rule sets 

Suppose that φ  DL(C) and ψ  DL(D). Implication form φ→ψ is said to be a 

(decision) rule in decision system (U, C∪D). If both φ and ψ are basic formula, then 



φ→ψ is called basic decision rule. A decision rule is not necessarily useful unless it 

satisfies some given indices. Below we introduce these indices. 

A decision rule usually has two important measuring indices, confidence and support, 

which are defined as: conf(φ→ψ) = |[φ]∩[ψ]|/|[φ]|, sup(φ→ψ) = |[φ]∩[ψ]| / |U|, where 

conf(φ→ψ) and sup(φ→ψ) are confidence and support of decision rule φ→ψ, 

respectively.   

For decision system DS = (U, C∪D), if rule φ→ψ is true in DL(C∪D), i.e., for any 

xU x|= φ→ψ, then rule φ→ψ is said to be consistent in DS, denoted by |=DS φ→ψ; if 

there exists at least object xU such that x |=φ∧ψ, then rule φ→ψ is said to be 

satisfiable in DS. Consistency and satisfiability are the basic properties that must be 

satisfied by decision rules.   

For object xU and decision rule r: φ→ψ, if x|=r, then it is said that rule r covers 

object x, and let coverage(r) = {xU | x|= r}, which is the set of all objects that are 

covered by rule r; for two rules, r1 and r2, if coverage(r1)  coverage(r2), then it is said 

that r2 functionally covers r1, denoted by r1  r2. Obviously, if there exist such two 

rules, then rule r1 is redundant and should be deleted, or in other words, those rules that 

are functionally covered by other rules should be removed out from rule sets. 

In addition, for a rule φ→ψ, we say that φ→ψ is reduced if [φ]  [ψ] does not hold 

any more when any attribute-value pair is removed from φ. And this is just known as 

rule reduction, which will be introduced in next section.  

A decision rule set 


 is said to be minimal if it satisfies the following properties [3]: 

(1) any rule in 


 should be consistent; (2) any rule in 


 should be satisfiable; (3) any 

rule in 


 should be reduced; (4) for any two rules r1, r2 , neither r1  r2 nor r2  r1. 

In order to obtain a minimum rule set from a given data set, it is required to complete 

three steps: attribute reduction, rule reduction and rule set minimum. This paper does 

not introduce attribute reduction methods any more, and we try to propose new 

methods for rule reduction and for rule set minimum in next sections.  

4 Methods of acquiring decision rules 

4.1 Rule reduction 

Rule reduction is to keep the minimal attribute-value pairs in a rule such that the rule is 

still consistent and satisfiable by removing redundant attributes from the rule. For the 

convenience of discussion, we let r(x) denote a decision rule that is generated with 

object x, and introduce the following definitions and properties. 

Definition 1. For decision system DS = (U, C∪D), B = {a1, a2, ..., am}  C and x  

U, let pairs(x, B) = ))(,(
11 xfa a  ))(,(

22 xfa a  ... ))(,( xfa
mam  and let block(x, B) = 

[pairs(x, B)] = [ ))(,(
11 xfa a  ))(,(

22 xfa a   ...  ))(,( xfa
mam ], and the number m is 

called the lengths of pairs(x, B) and block(x, B), denoted by | pairs(x, B)| and |block(x, 

B)|, respectively.  

Property 1. Suppose B1, B2  C with B1  B2, then block(x, B2)  block(x, B1).  

The proof of Property 1 is straightforward. According to this property, for an 

attribute subset B, block(x, B) increases with removing attributes from B, but with the 

prerequisite that block(x, B) does not "exceed" the decision class [x]D, to which x 



belongs. Therefore, how to judge whether block(x, B) is still contained in [x]D or not is 

crucial for rule reduction.  

Property 2. For decision system DS = (U, C∪D) and B  C, block(x, B)  [x]D 

(=block(x, D)) if and only if fd(y) = fd(x) for all y  block(x, B).  

The proof of Property 2 is also straightforward. This property shows that the 

problem of judging whether block(x, B) is contained in [x]D becomes that of judging 

whether fd(y) = fd(x) for all y  block(x, B). Evidently, the latter is much easier than the 

former. Thus, we give the following algorithm for reducing a decision rule. 

Algorithm 1: an algorithm for reducing a decision rule 

Input: decision system (U, C∪D) and object x  U, where C = {a1, a2, ..., an}, n = 

|C|, D = {d} 

Output: reduced decision rule r(x) 

Begin 

Step 1. Let B = C; 

Step 2. For i = 1 to |C| do                      

Step 3.       Let B = B-{ai}; 

Step 4.       Compute block(x, B); 

Step 5.       For each y  block(x, B) do                          

Step 6.              If fd(y) ≠ fd(x) then { Let B = B∪{ai}; break; }  

Step 7.       Let φ = pairs( x, B) and ψ = (d, fd(x)); 

Step 8. Let r(x) =φ→ψ;   

Step 9. return r(x);  

End.   

The time-consuming step in this algorithm is to compute block(x, B), whose 

comparison number is |U||B|. Therefore, the complexity of this algorithm is O(|U||C|
2
) 

in the worst case. According to Algorithm 1, it is guaranteed at any time that block(x, B) 

 [x]D =block(x, D), so the confidence of rule r(x) is always equal to 1.  

4.2 Minimum of decision rule sets 

Using Algorithm 1, each object in U can be used to generate a rule. This means that after 

reducing rules, there are still |U| rules left. Obviously, there must be many rules that are 

covered by other rules, and hereby we need to delete those rules which are covered by 

other rules.  

For decision system (U, C∪D), after using Algorithm 1 to reduce each object x  U, 

all generated rules r(x) constitute a rule set, denoted by RS, i.e., RS = {r(x) | x  U}. 

Obviously, |RS| = |U|. Our purpose in this section is to delete those rules which are 

covered by other rules, or in other words, to minimize RS such that each of the 

remaining rules is consistent, satisfiable, reduced, and is not covered by other rules.  

Suppose Vd = {v1, v2, ..., vt}. We use decision attribute d to partition U into t 

attribute-value blocks (equivalence classes): [(d, v1)], [(d, v2)], ..., [(d, vt)]. Let 
ivU = [(d, 

vi)], and thus 
},...,2,1{ ti

vi
U



= U and 
ji vv UU  = , where i ≠ j, i,j  {1,2,...,t}. 

Accordingly, let 
ivRS  = {r(x) | x 

ivU }, where i  {1,2,...,t}. Obviously, {
ivRS | i  

{1,2,...,t}} is a partition of RS. According to Algorithm 1, for any r′
ivRS and r″

jvRS , where i ≠ j, neither r′  r″ nor r″  r′, because coverage(r′)  
ivU while 



coverage(r″)  
jvU and then coverage(r′) ∩ coverage(r″) = . This means that a rule in 

ivRS does not functionally covers any rule in
jvRS . Thus, we can independently 

minimize each
ivRS , and the union of all the generated rule subsets is the final 

minimum rule set that we want.  

Let independently consider 
ivRS , where i  {1,2,...,t}. For r(x) 

ivRS , if there exists 

r(y) 
ivRS such that r(x)  r(y) (r(y) functionally covers r(x)), where x ≠ y, then r(x) 

should be removed from
ivRS , otherwise it should not. Suppose after removing, the set 

of all remaining rules in
ivRS is denoted by

ivSR  , and thus we can give an algorithm for 

minimizing
ivRS , which is described as follows.  

Algorithm 2: an algorithm for minimizing
ivRS   

Input: 
ivU = {x1, x2, ..., xq} and

ivRS = {r(x1), r(x2), ..., r(xq)} 

Output: 
ivSR    

Begin 

Step 1. Let 


 =
ivRS ; 

Step 2. For j = 1 to q do       // q = |
ivRS |             

Step 3.       Let 


 = 


-{r(xj)}; 

Step 4.       Let flag = 1; 

Step 5.       For each r  


 do             

Step 6.               If xj  coverage(r) then { flag = 0; break; }             

Step 7.               If flag = 1 then 


 = 
∪{r(xj)};      

Step 8.       Let
ivSR   = 


; 

Step 9. Return
ivSR  ; 

End.  

In Algorithm 2, judging if xjcoverage(r) takes at most |C| comparison times. But 

because all rules in
ivRS have been reduced by Algorithm 1, the comparison number 

should be much smaller than |C|. Therefore, the complexity of Algorithm 2 is O(q
2
·|C|) 

= O(|
ivU |

2
·|C|) in the worst case.  

4.3 An algorithm for acquiring minimum rule sets 

Using the above proposed algorithms and related attribute reduction algorithms, we now 

can give an entire algorithm for acquiring a minimum rule set from a given data set. The 

algorithm is described as follows.  

Algorithm 3: an algorithm for acquiring a minimum rule set from a data set 

Input: decision system DS = (U, C∪D)  

Output: a minimum rule set, minRS 

Begin 

Step 1. Use an attribute reduction algorithm to find a reduct of DS, and  

                     suppose the reduct is R; 

Step 2. Compute U/R, and then select one object in each equivalence class  



                     in U/R to constitute a new  decision system (U′, R∪D); 

Step 3. Reduce each object (rule) in (U′, R∪D) using Algorithm 1, and  

                     suppose the obtained rule set  is denoted by RS;  

Step 4. Use decision attribute set D to partition U′ into several decision  

                     classes: 
1v

U  ,
2vU  , ...,

tvU  , and then let 
ivRS  = {r(x) | x 

ivU  },  

                     where i  {1,2,...,t};  

Step 5. In turn or in parallel minimize
1v

RS ,
2vRS , ...,

tvRS using Algorithm  

                     2, and suppose corresponding results are
1v

SR  ,
2vSR  , ...,

tvSR  ; 

Step 6. Let minRS = 
1v

SR  ∪
2vSR  ∪...∪

tvSR  ; 

Step 7. Return minRS; 

End.  

In Algorithm 3, there are three steps used to "evaporating" redundant data: Steps 2, 3, 

5. These steps also determine the complexity of the entire algorithm. Actually, the 

newly generated decision system (U′, R∪D) in Step 2 is completely determined by 

Step 1, which is attribute reduction and has the complexity of about O(|C|
2
|U|

2
). The 

complexity of Step 3 is O(|U′|
2
|C|

2
) in the worst case. Step 5's complexity is O(|

1v
U 

|
2
·|C|) + O(|

2vU  |
2
·|C|) + ... + O(|

tvU  |
2
·|C|). Because this step can be performed in 

parallel, so it can be more efficient under parallel environment. Generally, after 

attribute reduction, the size of a data set would greatly decrease, i.e., |U′| << |U|. 

Therefore, computation time of Algorithm 3 is mainly determined by Step 1, so it has 

the complexity of O(|C|
2
|U|

2
) in most cases.  

5 Experiment analysis 

This section aims to verify the effectiveness of the proposed methods through 

experiments. There are four UCI data sets (http://archive.ics.uci.edu/ml/datasets.html) 

used in our experiments, and they are outlined in Table 1. For missing values, they were 

replaced with the most frequently occurring value on the corresponding attribute. 

We executed Algorithm 3 on the four data sets to obtain minimum rule sets. Suppose 

that the set of finally obtained decision rules on each data set is denoted by minRS. The 

indices that we are interesting in and their meanings are as follows.  

 Number of rules: |minRS|, i.e., the number of decision rules in minRS 

 Average value of support: 
minRSr

rsup
minRS

)(
||

1
, and minValue = 

)}(min{ rsup
minRSr

, maxValue = )}(max{ rsup
minRSr

 

 Average value of confidence: 
minRSr

rconf
minRS

)(
||

1
 

 Evaporation ratio: the ratio of removed items (attribute values) to all items 

(all attribute values) 

 Running time: the running time of Algorithm 3, which includes attribute 

reduction, rule reduction and minimum of decision rule sets, and this index is 

measured in seconds.  



    The experimental results on the four data sets are shown in Table 2. 

Table 1. Description of the four data sets. 

No. Data sets Abbreviation |U| |C| |Vd| 

1 Dermatology Database Dermatology 366 34 6 

2 Tic-Tac-Toe Endgame database Tic-Tac-Toe 958 9 2 

3 Mushroom Database Mushroom 8124 22 2 

4 Nursery Database Nursery 12960 8 5 

 

Table 2. Experimental results on the four data sets 

Data set 
Number 

of rules 

Average value of 

support (minValue, 

maxValue) 

Average 

value of 

confidence 

Evaporation 

ratio 

Running time 

(Sec.) 

Dermatology 72 
0.0146 

(0.0027, 0.1257) 
1 0.9794 0.14 

Tic-Tac-Toe 176 
0.0066 

(0.0010, 0.0940) 
1 0.9072 0.16 

Mushroom 17 
0.0689 

(0.0010, 0.2166) 
1 0.9998 2.37 

Nursery 305 
0.0031 

(0.00008, 0.3333) 
1 0.9831 31.34 

From Table 2, it can be found that the obtained rule sets on the four data sets all have 

very high evaporation ratio, and each rule in these rule sets has certain support. 

Specially, there are averagely 0.0689*8124 = 560 objects supporting each rule in the 

rule set obtained on Mushroom. This shows that these rule sets have relatively strong 

generalization ability. Furthermore, the running time of Algorithm 3 on each data set is 

not long and hereby can be accepted by users. In addition, Algorithm 1 can guarantee at 

any time that block(x, B)  [x]D =block(x, D) for all x  U, so the confidence of each 

rule is always equal to 1, or in other words all the obtained decision rules are 

deterministic. All these results demonstrate Algorithm 3 is effective and has better 

application value.      

6 Conclusion 

Acquiring decision rules from data sets is an important task in rough set theory. This 

paper conducted our study through the following three aspects so as to provide an 

effective granulation method to acquire minimum rule sets. Firstly, we introduced 

decision logic language and attribute-value block technique. Secondly, we used 

attribute-value block technique to study how to reduce rules and to minimize rule sets, 

and then proposed effective algorithms for rule reduction and rule set minimum. Thus, 

together with related attribute reduction algorithm, the proposed granulation method 

constituted an effective solution to the acquisition of minimum rule sets, which is a 

kind classifier and can be used for class prediction. Thirdly, we conducted a series of 

experiments to show that our methods are effective and feasible.     
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