
HAL Id: hal-01615000
https://inria.hal.science/hal-01615000

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Attribute-Value Block Based Method of Acquiring
Minimum Rule Sets: A Granulation Method to

Construct Classifier
Zuqiang Meng, Qiuling Gan

To cite this version:
Zuqiang Meng, Qiuling Gan. An Attribute-Value Block Based Method of Acquiring Minimum Rule
Sets: A Granulation Method to Construct Classifier. 9th International Conference on Intelligent
Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. pp.3-11, �10.1007/978-3-319-
48390-0_1�. �hal-01615000�

https://inria.hal.science/hal-01615000
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Attribute-value Block based Method of Acquiring

Minimum Rule Sets: A Granulation Method to Construct

Classifier

Zuqiang Meng, Qiuling Gan

College of Computer, Electronics and Information, Guangxi University

Nanning, Guangxi, 530004, China

zqmeng@126.com

Abstract. Decision rule acquisition is one of the important topics in rough set

theory and is drawing more and more attention. In this paper, decision logic

language and attribute-value block technique are introduced first. And then

realization methods of rule reduction and rule set minimum are relatively

systematically studied by using attribute-value block technique, and as a result

effective algorithms of reducing decision rules and minimizing rule sets are

proposed, which, together with related attribute reduction algorithm, constitute an

effective granulation method to acquire minimum rule sets, which is a kind

classifier and can be used for class prediction. At last, related experiments are

conducted to demonstrate that the proposed methods are effective and feasible.

Keywords: rule acquisition, attribute-value blocks, decision rule set, classifier

1 Introduction

Rough set theory [1], as a powerful mathematical tool to deal with insufficient,

incomplete or vague information, has been widely used in many fields. In rough set

theory, the study of attribute reduction seems to attract more attention than that of rule

acquisition. But in recent years there have been more and more studies involving the

decision rule acquisition. Papers [2,3] gave discernibility matrix or the discernibility

function-based methods to acquire decision rules. These methods are able to acquire all

minimum rule sets for a given decision system theoretically, but they usually would

pay both huge time cost and huge space cost, which extremely narrow their

applications in real life. In addition, paper [4] discussed the problem of producing a set

of certain and possible rules from incomplete data sets based on rough sets and gave

corresponding rule learning algorithm. Paper [5] discussed optimal certain rules and

optimal association rules, and proposed two quantitative measures, random certainty

factor and random coverage factor, to explain relationships between the condition and

decision parts of a rule in incomplete decision systems. Paper [6] also discussed the

rule acquisition in incomplete decision contexts. This paper presented the notion of an

approximate decision rule, and then proposed an approach for extracting non-redundant

approximate decision rules from an incomplete decision context. But the proposed

method is also based on discernibility matrix and discernibility function, which

determines that it is relatively difficult to acquire decision rules from large data sets.

Attribute-value block technique is an important tool to analyze data sets [7,8].

Actually, it is a granulation method to deal with data. Our paper will use the attribute-

value block technique and other related techniques to systematically study realization

methods of rule reduction and rule set minimum, and propose effective algorithms of

reducing decision rules and minimizing decision rule sets. These algorithms, together

with related attribute reduction algorithm, constitute an effective solution to the

acquisition of minimum rule sets, which is a kind classifier and can be used for class

prediction.

The rest of the paper is organized as follows. In Section 2, we review some basic

notions linked to decision systems. Section 3 introduces the concept of minimum rule

sets. Section 4 gives specific algorithms for rule reduction and rule set minimum based

on attribute-value blocks. In Section 5, some experiments are conducted to verify the

effectiveness of the proposed methods. Section 6 concludes this paper.

2 Preliminaries

In this section, we first review some basic notions, such as attribute-value blocks,

decision rule sets, which are prepared for acquiring minimum rule sets in next sections.

2.1 Decision systems and relative reducts

A decision system (DS) can be expressed as the following 4-tuple: DS = (U, A = C ∪

D, V = 
Aa

aV


, {fa}), where U is a finite nonempty set of objects; C and D are condition

attribute set and decision attribute set, respectively, and C ∩ D = ; Va is a value

domain of attribute a; fa: U →V is an information function from U to V, which maps an

object in U to a value in Va.

For simplicity, (U, A = C ∪ D, V = 
Aa

aV


, {fa}) is expressed as (U, C ∪ D) if V and

fa are understood. Without loss of generality, we suppose D is supposed to be

composed of only one attribute.

For any B  C, let U/B = {[x]B | x U}, where [x]B = {y U | fa(y)= fa(x) for any a 

B}, which is known as equivalence class. For any subset X  U, the lower

approximation BX and the upper approximation BX of X with respect to B are defined

by: }][|{ XxUxBX B  , }.][|{  XxUxBX B  And then the concepts of

positive region POSB(X), boundary region BNDB(X) and negative region NEGB(X) of X

are defined as: BXXPOSB )(, BXBXXBNDB )(, BXUXNEGB )(.

Suppose that U/D = {[x]D | x  U} = {D1, D2, ..., Dm}, where m = |U/D|, Di is a

decision class, i  {1,2,...,m}. Then for any B  C, the concepts of positive region

POSB(D), boundary region BNDB(D) and negative region NEGB(D) of a decision

system (U, C ∪ D) can be defined as follows:

).()()(

),(...)()()(

),(...)()()(

21

21

DBNDDPOSUDNEG

DBNDDBNDDBNDDBND

DPOSDPOSDPOSDPOS

BBB

mBBBB

mBBBB













With the positive region, the concept of reducts can be defined as follows: given a

decision system (U, C∪D) and B  C, B is a relative reduct of C with respect to D if

the following conditions are satisfied: (1) POSB(D) = POSC(D), and (2) for any a  B,

POSB-{a}(D) ≠ POSB(D).

2.2 Decision logic and attribute-value blocks

Decision rules are in fact related formulae in decision logic. In rough set theory, a

decision logic language depends on a specific information system, while a decision

system (U, C ∪ D) can be regarded as being composed of two information systems: (U,

C) and (U, D). Therefore, there are two corresponding decision logic languages, while

attribute-value blocks just act as a bridge between the two languages. For the sake of

simplicity, let IS(B) = (U, B, V = 
Aa

aV


, {fa}) is an information system with respect to B,

where B  C or B  D. Then a decision logic language DL(B) is defined as a system

being composed of the following formulae [3]:

(1) (a, v) is an atomic formula, where a  B, v  Va;

(2) an atomic formula is a formula in DL(B);

(3) if φ is a formula, then ~φ is also a formula in DL(B);

(4) if both φ and ψ are formulae, then φ∨ψ, φ∧ψ, φ→ψ, φ≡ψ are all formulae;

(5) only the formulae obtained according to the above Steps (1) to (4) are formulae

in DL(B).

The atomic formula (a, v) is also called attribute-value pair [7]. If φ is a simple

conjunction, which consists of only atomic formulae and connectives ∧, then φ is

called a basic formula.

For any x∈U, the relationship between x and formulae in DL(B) is defined as

following:

(1) x |= (a, v) iff fa(x) = v;

(2) x |= ~φ iff not x |= φ;

(3) x |= φ∧ψ iff x |= φ and x |= ψ;

(4) x |= φ∨ψ iff x |= φ or x |= ψ;

(5) x |= φ→ψ iff x |= ~φ∨ψ;

(6) x |= φ≡ψ iff x |= φ→ψ and x |=ψ→φ.

For formula φ, if x |= φ, then we say that the object x satisfies formula φ. Let [φ] =

{ x  U | x |= φ}, which is the set of all those objects that satisfy formula φ. Obviously,

formula φ consists of several attribute-value pairs by using connectives. Therefore, [φ]

is so-called an attribute-value block and φ is called the (attribute-value pair) formula

of the block. For DL(C) and DL(D), they are distinct decision logic languages and have

no formulae in common. However, through attribute-value blocks, an association

between DL(C) and DL(D) can be established. For example, suppose φ  DL(C) and ψ

 DL(D) and obviously φ and ψ are two different formulae; but if [φ]  [ψ], we can

obtain a decision rule φ→ψ. Therefore, attribute-value blocks play an important role in

acquiring decision rules, especially in acquiring certainty rules.

3 Minimum rule sets

Suppose that φ  DL(C) and ψ  DL(D). Implication form φ→ψ is said to be a

(decision) rule in decision system (U, C∪D). If both φ and ψ are basic formula, then

φ→ψ is called basic decision rule. A decision rule is not necessarily useful unless it

satisfies some given indices. Below we introduce these indices.

A decision rule usually has two important measuring indices, confidence and support,

which are defined as: conf(φ→ψ) = |[φ]∩[ψ]|/|[φ]|, sup(φ→ψ) = |[φ]∩[ψ]| / |U|, where

conf(φ→ψ) and sup(φ→ψ) are confidence and support of decision rule φ→ψ,

respectively.

For decision system DS = (U, C∪D), if rule φ→ψ is true in DL(C∪D), i.e., for any

xU x|= φ→ψ, then rule φ→ψ is said to be consistent in DS, denoted by |=DS φ→ψ; if

there exists at least object xU such that x |=φ∧ψ, then rule φ→ψ is said to be

satisfiable in DS. Consistency and satisfiability are the basic properties that must be

satisfied by decision rules.

For object xU and decision rule r: φ→ψ, if x|=r, then it is said that rule r covers

object x, and let coverage(r) = {xU | x|= r}, which is the set of all objects that are

covered by rule r; for two rules, r1 and r2, if coverage(r1)  coverage(r2), then it is said

that r2 functionally covers r1, denoted by r1  r2. Obviously, if there exist such two

rules, then rule r1 is redundant and should be deleted, or in other words, those rules that

are functionally covered by other rules should be removed out from rule sets.

In addition, for a rule φ→ψ, we say that φ→ψ is reduced if [φ]  [ψ] does not hold

any more when any attribute-value pair is removed from φ. And this is just known as

rule reduction, which will be introduced in next section.

A decision rule set


 is said to be minimal if it satisfies the following properties [3]:

(1) any rule in


 should be consistent; (2) any rule in


 should be satisfiable; (3) any

rule in


 should be reduced; (4) for any two rules r1, r2 , neither r1  r2 nor r2  r1.

In order to obtain a minimum rule set from a given data set, it is required to complete

three steps: attribute reduction, rule reduction and rule set minimum. This paper does

not introduce attribute reduction methods any more, and we try to propose new

methods for rule reduction and for rule set minimum in next sections.

4 Methods of acquiring decision rules

4.1 Rule reduction

Rule reduction is to keep the minimal attribute-value pairs in a rule such that the rule is

still consistent and satisfiable by removing redundant attributes from the rule. For the

convenience of discussion, we let r(x) denote a decision rule that is generated with

object x, and introduce the following definitions and properties.

Definition 1. For decision system DS = (U, C∪D), B = {a1, a2, ..., am}  C and x 

U, let pairs(x, B) =))(,(
11 xfa a ))(,(

22 xfa a  ...))(,(xfa
mam and let block(x, B) =

[pairs(x, B)] = [))(,(
11 xfa a ))(,(

22 xfa a  ... ))(,(xfa
mam], and the number m is

called the lengths of pairs(x, B) and block(x, B), denoted by | pairs(x, B)| and |block(x,

B)|, respectively.

Property 1. Suppose B1, B2  C with B1  B2, then block(x, B2)  block(x, B1).

The proof of Property 1 is straightforward. According to this property, for an

attribute subset B, block(x, B) increases with removing attributes from B, but with the

prerequisite that block(x, B) does not "exceed" the decision class [x]D, to which x

belongs. Therefore, how to judge whether block(x, B) is still contained in [x]D or not is

crucial for rule reduction.

Property 2. For decision system DS = (U, C∪D) and B  C, block(x, B)  [x]D

(=block(x, D)) if and only if fd(y) = fd(x) for all y  block(x, B).

The proof of Property 2 is also straightforward. This property shows that the

problem of judging whether block(x, B) is contained in [x]D becomes that of judging

whether fd(y) = fd(x) for all y  block(x, B). Evidently, the latter is much easier than the

former. Thus, we give the following algorithm for reducing a decision rule.

Algorithm 1: an algorithm for reducing a decision rule

Input: decision system (U, C∪D) and object x  U, where C = {a1, a2, ..., an}, n =

|C|, D = {d}

Output: reduced decision rule r(x)

Begin

Step 1. Let B = C;

Step 2. For i = 1 to |C| do

Step 3. Let B = B-{ai};

Step 4. Compute block(x, B);

Step 5. For each y  block(x, B) do

Step 6. If fd(y) ≠ fd(x) then { Let B = B∪{ai}; break; }

Step 7. Let φ = pairs(x, B) and ψ = (d, fd(x));

Step 8. Let r(x) =φ→ψ;

Step 9. return r(x);

End.

The time-consuming step in this algorithm is to compute block(x, B), whose

comparison number is |U||B|. Therefore, the complexity of this algorithm is O(|U||C|
2
)

in the worst case. According to Algorithm 1, it is guaranteed at any time that block(x, B)

 [x]D =block(x, D), so the confidence of rule r(x) is always equal to 1.

4.2 Minimum of decision rule sets

Using Algorithm 1, each object in U can be used to generate a rule. This means that after

reducing rules, there are still |U| rules left. Obviously, there must be many rules that are

covered by other rules, and hereby we need to delete those rules which are covered by

other rules.

For decision system (U, C∪D), after using Algorithm 1 to reduce each object x  U,

all generated rules r(x) constitute a rule set, denoted by RS, i.e., RS = {r(x) | x  U}.

Obviously, |RS| = |U|. Our purpose in this section is to delete those rules which are

covered by other rules, or in other words, to minimize RS such that each of the

remaining rules is consistent, satisfiable, reduced, and is not covered by other rules.

Suppose Vd = {v1, v2, ..., vt}. We use decision attribute d to partition U into t

attribute-value blocks (equivalence classes): [(d, v1)], [(d, v2)], ..., [(d, vt)]. Let
ivU = [(d,

vi)], and thus 
},...,2,1{ ti

vi
U



= U and
ji vv UU  = , where i ≠ j, i,j  {1,2,...,t}.

Accordingly, let
ivRS = {r(x) | x 

ivU }, where i  {1,2,...,t}. Obviously, {
ivRS | i 

{1,2,...,t}} is a partition of RS. According to Algorithm 1, for any r′
ivRS and r″

jvRS , where i ≠ j, neither r′  r″ nor r″  r′, because coverage(r′) 
ivU while

coverage(r″) 
jvU and then coverage(r′) ∩ coverage(r″) = . This means that a rule in

ivRS does not functionally covers any rule in
jvRS . Thus, we can independently

minimize each
ivRS , and the union of all the generated rule subsets is the final

minimum rule set that we want.

Let independently consider
ivRS , where i  {1,2,...,t}. For r(x) 

ivRS , if there exists

r(y) 
ivRS such that r(x)  r(y) (r(y) functionally covers r(x)), where x ≠ y, then r(x)

should be removed from
ivRS , otherwise it should not. Suppose after removing, the set

of all remaining rules in
ivRS is denoted by

ivSR  , and thus we can give an algorithm for

minimizing
ivRS , which is described as follows.

Algorithm 2: an algorithm for minimizing
ivRS

Input:
ivU = {x1, x2, ..., xq} and

ivRS = {r(x1), r(x2), ..., r(xq)}

Output:
ivSR 

Begin

Step 1. Let


 =
ivRS ;

Step 2. For j = 1 to q do // q = |
ivRS |

Step 3. Let


 =


-{r(xj)};

Step 4. Let flag = 1;

Step 5. For each r 


 do

Step 6. If xj  coverage(r) then { flag = 0; break; }

Step 7. If flag = 1 then


 =
∪{r(xj)};

Step 8. Let
ivSR  =


;

Step 9. Return
ivSR  ;

End.

In Algorithm 2, judging if xjcoverage(r) takes at most |C| comparison times. But

because all rules in
ivRS have been reduced by Algorithm 1, the comparison number

should be much smaller than |C|. Therefore, the complexity of Algorithm 2 is O(q
2
·|C|)

= O(|
ivU |

2
·|C|) in the worst case.

4.3 An algorithm for acquiring minimum rule sets

Using the above proposed algorithms and related attribute reduction algorithms, we now

can give an entire algorithm for acquiring a minimum rule set from a given data set. The

algorithm is described as follows.

Algorithm 3: an algorithm for acquiring a minimum rule set from a data set

Input: decision system DS = (U, C∪D)

Output: a minimum rule set, minRS

Begin

Step 1. Use an attribute reduction algorithm to find a reduct of DS, and

 suppose the reduct is R;

Step 2. Compute U/R, and then select one object in each equivalence class

 in U/R to constitute a new decision system (U′, R∪D);

Step 3. Reduce each object (rule) in (U′, R∪D) using Algorithm 1, and

 suppose the obtained rule set is denoted by RS;

Step 4. Use decision attribute set D to partition U′ into several decision

 classes:
1v

U  ,
2vU  , ...,

tvU  , and then let
ivRS = {r(x) | x 

ivU  },

 where i  {1,2,...,t};

Step 5. In turn or in parallel minimize
1v

RS ,
2vRS , ...,

tvRS using Algorithm

 2, and suppose corresponding results are
1v

SR  ,
2vSR  , ...,

tvSR  ;

Step 6. Let minRS =
1v

SR  ∪
2vSR  ∪...∪

tvSR  ;

Step 7. Return minRS;

End.

In Algorithm 3, there are three steps used to "evaporating" redundant data: Steps 2, 3,

5. These steps also determine the complexity of the entire algorithm. Actually, the

newly generated decision system (U′, R∪D) in Step 2 is completely determined by

Step 1, which is attribute reduction and has the complexity of about O(|C|
2
|U|

2
). The

complexity of Step 3 is O(|U′|
2
|C|

2
) in the worst case. Step 5's complexity is O(|

1v
U 

|
2
·|C|) + O(|

2vU  |
2
·|C|) + ... + O(|

tvU  |
2
·|C|). Because this step can be performed in

parallel, so it can be more efficient under parallel environment. Generally, after

attribute reduction, the size of a data set would greatly decrease, i.e., |U′| << |U|.

Therefore, computation time of Algorithm 3 is mainly determined by Step 1, so it has

the complexity of O(|C|
2
|U|

2
) in most cases.

5 Experiment analysis

This section aims to verify the effectiveness of the proposed methods through

experiments. There are four UCI data sets (http://archive.ics.uci.edu/ml/datasets.html)

used in our experiments, and they are outlined in Table 1. For missing values, they were

replaced with the most frequently occurring value on the corresponding attribute.

We executed Algorithm 3 on the four data sets to obtain minimum rule sets. Suppose

that the set of finally obtained decision rules on each data set is denoted by minRS. The

indices that we are interesting in and their meanings are as follows.

 Number of rules: |minRS|, i.e., the number of decision rules in minRS

 Average value of support: 
minRSr

rsup
minRS

)(
||

1
, and minValue =

)}(min{ rsup
minRSr

, maxValue =)}(max{ rsup
minRSr

 Average value of confidence: 
minRSr

rconf
minRS

)(
||

1

 Evaporation ratio: the ratio of removed items (attribute values) to all items

(all attribute values)

 Running time: the running time of Algorithm 3, which includes attribute

reduction, rule reduction and minimum of decision rule sets, and this index is

measured in seconds.

 The experimental results on the four data sets are shown in Table 2.

Table 1. Description of the four data sets.

No. Data sets Abbreviation |U| |C| |Vd|

1 Dermatology Database Dermatology 366 34 6

2 Tic-Tac-Toe Endgame database Tic-Tac-Toe 958 9 2

3 Mushroom Database Mushroom 8124 22 2

4 Nursery Database Nursery 12960 8 5

Table 2. Experimental results on the four data sets

Data set
Number

of rules

Average value of

support (minValue,

maxValue)

Average

value of

confidence

Evaporation

ratio

Running time

(Sec.)

Dermatology 72
0.0146

(0.0027, 0.1257)
1 0.9794 0.14

Tic-Tac-Toe 176
0.0066

(0.0010, 0.0940)
1 0.9072 0.16

Mushroom 17
0.0689

(0.0010, 0.2166)
1 0.9998 2.37

Nursery 305
0.0031

(0.00008, 0.3333)
1 0.9831 31.34

From Table 2, it can be found that the obtained rule sets on the four data sets all have

very high evaporation ratio, and each rule in these rule sets has certain support.

Specially, there are averagely 0.0689*8124 = 560 objects supporting each rule in the

rule set obtained on Mushroom. This shows that these rule sets have relatively strong

generalization ability. Furthermore, the running time of Algorithm 3 on each data set is

not long and hereby can be accepted by users. In addition, Algorithm 1 can guarantee at

any time that block(x, B)  [x]D =block(x, D) for all x  U, so the confidence of each

rule is always equal to 1, or in other words all the obtained decision rules are

deterministic. All these results demonstrate Algorithm 3 is effective and has better

application value.

6 Conclusion

Acquiring decision rules from data sets is an important task in rough set theory. This

paper conducted our study through the following three aspects so as to provide an

effective granulation method to acquire minimum rule sets. Firstly, we introduced

decision logic language and attribute-value block technique. Secondly, we used

attribute-value block technique to study how to reduce rules and to minimize rule sets,

and then proposed effective algorithms for rule reduction and rule set minimum. Thus,

together with related attribute reduction algorithm, the proposed granulation method

constituted an effective solution to the acquisition of minimum rule sets, which is a

kind classifier and can be used for class prediction. Thirdly, we conducted a series of

experiments to show that our methods are effective and feasible.

Acknowledgements
 This work is supported by the National Natural Science Foundation of China (No.

61363027), the Guangxi Natural Science Foundation (No. 2015GXNSFAA139292).

References

1. Pawlak, Z.: Rough Set. International Journal of Computer of Computer and

Information Sciences, 11(5): 341-356 (1982)

2. Guan, Y.Y., Wang, H.K., Wang, Y., and Yang, F.: Attribute Reduction and

Optimal Decision Rules Acquisition for Continuous Valued Information Systems.

Information Sciences, 179(17): 2974-2984 (2009)

3. Meng, Z.Q., Jiang, L., and Chang, H.Y.: A Heuristic Approach to Acquisition of

Minimum Decision Rule Sets in Decision Systems. IFIP 8th International

Conference on Intelligent Information Processing (IIP2014), Hangzhou, China

(2014)

4. Hong, T.P., Tseng, L.H., and Wang, S.L.: Learning Rules from Incomplete

Training Examples by Rough Sets. Expert Systems with Applications, 22(4):

285-293 (2002)

5. Leung, Y., Wu, W.Z., and Zhang, W.X.: Knowledge Acquisition in Incomplete

Information Systems: A Rough Set Approach. European Journal of Operational

Research 168(1): 164-180 (2006)

6. Li, J.H., Mei, C.L., and Lv, Y.J.: Incomplete Decision Contexts: Approximate

Concept Construction, Rule Acquisition and Knowledge Reduction. International

Journal of Approximate Reasoning, 54(1): 149-165 (2013)

7. Grzymala-Busse, J.W., Clark, P. G., and Kuehnhausen, M.: Generalized

Probabilistic Approximations of Incomplete Data. International Journal of

Approximate Reasoning, 55(1): 180-196 (2014)

8. Patrick, G.C., Grzymala-Busse, J.W.: Mining Incomplete Data with Attribute-

Concept Values and “Do Not Care” Conditions. IEEE International Conference

on Big Data, IEEE (2015)

