p-Spectral Clustering Based on Neighborhood Attribute Granulation

Abstract : Clustering analysis is an important method for data mining and information statistics. Data clustering is to find the intrinsic links between objects and describe the internal structures of data sets. p-Spectral clustering is based on Cheeger cut criterion. It has good performance on many challenging data sets. But the original p-spectral clustering algorithm is not suitable for high-dimensional data. To solve this problem, this paper improves p-spectral clustering using neighborhood attribute granulation and proposes NAG-pSC algorithm. Neighborhood rough sets can directly process the continuous data. We introduce information entropy into the neighborhood rough sets to weaken the negative impact of noise data and redundant attributes on clustering. In this way, the data points within the same cluster are more compact, while the data points between different clusters are more separate. The effectiveness of the proposed NAG-pSC algorithm is tested on several benchmark data sets. Experiments show that the neighborhood attribute granulation will highlight the differences between data points while maintaining their characteristics in the clustering. With the help of neighborhood attribute granulation, NAG-pSC is able to recognize more complex data structures and has strong robustness to the noise or irrelevant features in high-dimensional data.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.50-58, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_6〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01615003
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:58:23
Dernière modification le : vendredi 3 novembre 2017 - 22:24:06
Document(s) archivé(s) le : vendredi 12 janvier 2018 - 15:44:31

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Shifei Ding, Hongjie Jia, Mingjing Du, Qiankun Hu. p-Spectral Clustering Based on Neighborhood Attribute Granulation. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.50-58, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_6〉. 〈hal-01615003〉

Partager

Métriques

Consultations de la notice

157