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Abstract

Brain decoding relates behavior to brain activity through predictive models. These are also used to identify brain
regions involved in the cognitive operations related to the observed behavior. Training such multivariate models is a
high-dimensional statistical problem that calls for suitable priors. State of the art priors –eg small total-variation–
enforce spatial structure on the maps to stabilize them and improve prediction. However, they come with a hefty
computational cost. We build upon very fast dimension reduction with spatial structure and model ensembling to achieve
decoders that are fast on large datasets and increase the stability of the predictions and the maps. Our approach, fast
regularized ensemble of models (FReM), includes an implicit spatial regularization by using a voxel grouping with a
fast clustering algorithm. In addition, it aggregates different estimators obtained across splits of a cross-validation loop,
each time keeping the best possible model. Experiments on a large number of brain imaging datasets show that our
combination of voxel clustering and model ensembling improves decoding maps stability and reduces the variance of
prediction accuracy. Importantly, our method requires less samples than state-of-the-art methods to achieve a given
level of prediction accuracy. Finally, FreM is highly parallelizable, and has lower computation cost than other spatially-
regularized methods.

Keywords: fMRI; supervised learning; decoding; bagging; MVPA

1. Introduction: decoding needs stability

Decoding models predict stimuli or behavior from brain
images. These models have become a standard tool in neu-
roimaging data analysis (Haynes and Rees, 2006; Norman
et al., 2006; Varoquaux and Thirion, 2014). In clinical ap-
plications, they can be used to perform diagnosis or prog-
nosis (Demirci et al., 2008; Fan et al., 2008). They are also
used as evidence of the link between distributed activity
patterns and an observed behavior (Haxby et al., 2001).
Additionally, decoding used on a large variety of cogni-
tive processes grounds a form of reverse inference (Pol-
drack, 2011; Schwartz et al., 2013). An appeal of decoding
procedures is that they avoid multiple voxel-wise test and
perform an omnibus test: “Can one predict the behavioral
outcome from brain activity?”

Identifying the brain activity patterns that drive pre-
diction of behavior is crucial for brain mapping and un-
derstanding (Gramfort et al., 2013; Mourão-Miranda et al.,
2005). However achieving reliable and stable decoder maps
is challenging due to the dimensionality of the problem:
the number of samples is small –hundreds or less– whereas
the number of features is typically the number of voxels in
the brain –up to hundreds of thousands. Linear models,
e.g. linear support vector machines (SVM), are often used
(Pereira et al., 2009), as they have shown a good perfor-
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mance in a small-sample regime. In addition, their classi-
fication/regression weights form brain maps used for inter-
pretation of the discriminative pattern (Mourão-Miranda
et al., 2005).

However, the high dimensionality of the problem leads
to multiple weight maps yielding the same predictive
power, and some form of regularization has to be ap-
plied (Hastie et al., 2000). In across-subject settings, com-
plex spatial and sparse penalties such as total-variation
(TV) (Baldassarre et al., 2012; Michel et al., 2011) and
Graph-net (Grosenick et al., 2013) help the decoder to cap-
ture the important brain regions shared across subjects.
TV and its variants are considered as the state-of-the-art
regularizers for brain images, as they handle local correla-
tions present in the data. The main drawback of spatially-
structured sparsity as in TV and related penalties is their
computational cost.

A much cheaper alternative to these structured estima-
tors is to use spatially-constrained clustering algorithms to
perform voxel grouping. In decoding, voxel grouping is of-
ten used as part of the pipeline for stability selection of
correlated voxels (Gramfort et al., 2012; Varoquaux et al.,
2012; Wang et al., 2015). Additionally, it helps to im-
prove the conditioning of the estimation problem. How-
ever, voxel grouping introduces high bias, as the patterns
are constrained by the clusters shape.

One way to mitigate this bias is to use model ag-
gregation or ensembling. These approaches have been
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used to reduce the variability of the output of the de-
coder (Kuncheva and Rodŕıguez, 2010; Kuncheva et al.,
2010a; Zhou, 2012). The central idea is to build a de-
coder by averaging the output of several “good” models.
In particular, averaging linear models boils down to aver-
aging weight maps. One way to estimate multiple models
is to use bootstrap resampling to generate different train-
ing sets to fit the decoder, and then aggregate them. This
approach is known as Bagging1 (Breiman, 1996). It is easy
to run in parallel, training each model independently. Yet,
naive application of bagging to neuroimaging data induces
high computational cost as the data are high dimensional,
and parameters have to be set by internal cross-validation.

Decoding calls not only for hyperparameter selection,
but also for model validation. Both tasks require a mea-
sure of the predictive power of the decoder. In practice,
one runs two cross-validation loops –one inside the other–
where each loop assesses prediction accuracy respectively
for model selection and validation. Thus, investigators
often train the decoder many times. These repeated cal-
culations entail computational costs that limit day-to-day
work on standard workstations. This is particularly prob-
lematic for more advanced decoders such as those with
spatial regularizations that are beneficial to neuroimaging
data (e.g. Grosenick et al., 2013; Michel et al., 2011; Mohr
et al., 2015). In the face of growing data size, to enable
good validation and ease of use on most hardware, a good
decoder should be sparing on computation resources.

Contributions. Here, we propose a fast scheme to train
regularized ensembles of models, FReM. It reduces the
variance of the weight maps of the decoder, while ensur-
ing high prediction accuracy. The core of this approach is
to average the estimator with the best predictive power
per loop inside the nested cross-validation. To benefit
from spatial regularization while keeping fast run times,
we show how an optional voxel-clustering can be included
in the ensembling, bringing stable spatial patterns. We
perform a series of classification experiments on several
MRI datasets to demonstrate that ensembling regularized
models gives state-of-the-art decoders. In particular, we
show that they compare favorably to existing decoders in
terms of prediction performance, weight-map stability, and
computation time.

2. Background and prior art

2.1. Brain decoding

In neuroimaging, a decoder is a predictive model that,
given n brain images, fits an external variable y. In prac-
tice, we arrange n observed brain images composed of p
voxels in a matrix X ∈ Rn×p. Linear predictive models,
at the core of most decoders in neuroimaging, are then
written (Hastie et al., 2009):

1Bagging stands for Bootstrap aggregating

y = f(Xw + ε), (1)

where y denotes a target variable giving the experimental
condition or health status of subjects, f represents the
decision function in the classification; w ∈ Rp denotes the
weight vector/map, and ε ∈ Rn is a random error term.

In spite of a recently growing effort on the accumu-
lation of neuroimaging data (Poldrack and Gorgolewski,
2015), the number n of samples per-class remains in the
order of a few hundreds, whereas p can be hundreds of
thousands of voxels (p≫ n). In this high-dimensional set-
ting, there are many equivalent solutions and some form
of regularization or prior is necessary to restrict model
complexity. A standard approach relies on solving the fol-
lowing optimization problem:

ŵ(λ) = argmin
w∈Rp

{L(y,X;w) + λΩ(w)} , λ > 0, (2)

where L is a data-fidelity term, a loss function that mea-
sures the quality of the estimator (e.g. logistic or hinge
loss); Ω denotes the penalty/regularization term, and λ is
the parameter that controls the amount of regularization.
Two of the most often used penalties are: 1) the `2-norm,
that penalizes large w coefficients, and yields non-sparse
solutions; 2) the `1-norm, that promotes a small number of
non-zero w coefficients, and yields sparse solutions (Tib-
shirani, 1994).

Nevertheless, as neuroimaging data exhibit strong
correlations between the columns of X, the `1-penalty
yields unstable solutions as it tends to arbitrarily se-
lect only one among the correlated variables (Varoquaux
et al., 2012; Yu, 2013). One way to tackle this is the
use of additional spatially-informed penalties as Graph-
net (Grosenick et al., 2013) or TV (total variation) (Eick-
enberg et al., 2015; Michel et al., 2011).

2.2. Model validation and selection

In high-dimensional settings, the number of candidate
models is much larger than the number of samples. There-
fore, we use regularization to constrain the complexity of
the solution, and this penalization is controlled by the λ
regularization parameter. The ensuing problem is then
to find an optimal value for λ (i.e. finding the best bias-
variance trade-off), yielding a model that exploits the rich-
ness of the data. One typically uses the predictive power of
the decoder to choose the right amount of regularization.

Hyperparameters selection. In general, the setting of the
hyperparameter is a data-specific choice, as it is gov-
erned by the amount of data and their signal-to-noise-
ratio (SNR). The most common approach to set it is to
use cross-validation to measure the predictive power for
various amounts of regularization and retain the value
that maximizes the predictive power across several cross-
validation folds (Varoquaux et al., 2017). To assess pre-
dictive power in addition, the standard scheme is nested
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Figure 1: Illustration of nested cross-validation: Two cross-
validation loops are run one inside the other. The inner loop is used
to set the hyperparameters, whereas the outer loop is used to assess
the predictive power of the decoder.

cross-validation, that consists of two cross-validation loops
run one inside the other: an outer loop is used to assess
the predictive power of the decoder, and an inner/nested
loop is used to set the hyperparameter(s) (see Fig. 1): the
train set is used to fit the decoder, while the test and vali-
dation sets are used to measure its ability to generalize to
new data.

In most of the non-parametric approaches to select a
regularization parameter, a suitable and finite set of l hy-
perparameters, λ ∈ [λ1, . . . , λl] is first defined. For each
cross-validation fold, one fits the decoder with all hyper-
parameters, and measures their prediction error on the
test set. Then, one choses the λi value that maximizes the
predictive power across folds.

2.3. Ensembling methods for better stability

Another desired characteristic of decoding algorithms
is the stability to data perturbations. Stability is defined
as the amount of change in the output of the decoder as
a function of small changes in the data on which the de-
coder is trained (Shalev-Shwartz et al., 2010). These small
changes or perturbations usually mean either deleting one
example or replacing it with another one2. Stability im-
plies that small variations in the data yield a commensu-
rate variation in the prediction and the weight map of the
decoder.

In neuroimaging, another approach to improve the sta-
bility of the estimators is to train the base estimator on
several random partitions of the feature space, then select
representative features according to a consensus. These
partitions can be defined using various criteria, for in-
stance: i) random voxels selection (Kuncheva et al., 2010b;
Rondina et al., 2014); ii) using clustering (Varoquaux
et al., 2012). Yet, these decoders need to fit more models,
to accumulate selection statistics, and hence entail exces-
sive computational costs given the number of models to
fit.

2These perturbations are defined as sampling from the underlying
distribution or replicating the experiment for a new set of data.

Model averaging. Model selection can run into some is-
sues due to instability in the choice of the model, as any
perturbation of the original data entails the selection of a
completely different hyperparameter (Arlot and Celisse,
2010). Model averaging mitigates this problem by aggre-
gating the output of several suitable models (Nemirovski,
2000). This method improves the predictive power of the
base estimator, reducing the variance if the models are
sufficiently uncorrelated (see Appendix A).

In particular, averaging linear models boils down to:

ŵbagg(λ) =
1

b

b

∑
j=1

ŵ(j)
(λ), (3)

where b denotes the number of models to average; it is of-
ten chosen as 50 or 100, depending on the sample size
and on the computation cost to train the estimator ŵ
(Bühlmann and Yu, 2002). The weight map of the bagged
estimator3 displays less variance if the weight maps of the
base estimators are sufficiently uncorrelated. Note that
λ has to be set, requiring another nested loop of cross-
validation (see Fig. 2a). Hence, choosing the parameter of
the aggregated model is computationally expensive.

3. Materials and methods

3.1. Dimension reduction by feature agglomeration

In neuroimaging, dimension reduction is routinely used
to alleviate problems due to high-dimensionality. A com-
mon way to select features is univariate feature screening,
which uses a score (e.g. statistical test, correlation) to re-
move non-predictive variables. In particular, the method
proposed by Dohmatob et al. (2015) operates as follows:
The data (X,y) are standardized so that y has unit vari-
ance and zero mean, likewise each row of the design matrix
X. Additionally, X is smoothed with a Gaussian filter for
the screening of voxels, but not during the fitting of the es-
timator. Then, for each voxel j one computes the absolute
dot-product of y and the jth column of X, ∣XT

j y∣. Finally,

one selects the voxels with the highest ∣XT
j y∣ values.

However, this method does not take into account the
spatial structure of brain images. Instead, we can reduce
the dimension of the data by grouping similar neighboring
voxels, moving from the voxel-space to a parcel-space. To
do this, we can use anatomical/functional atlases or data-
driven approaches.

Here we rely on a voxel grouping approach, where we
use a fraction of the training data to train a clustering algo-
rithm, finding suitable groups of features or parcellations.
Then, we use these parcels on the remaining data to work
at a parcel level. Formally, we define a feature-grouping
matrix Φ ∈ Rp×k, where k ≪ p, and each column has a
constant value with support at each parcel4. We normal-
ize each column to have unit `2-norm (Hoyos-Idrobo et al.,

3The bagged estimator is a Monte-Carlo approximation of E[w].
4The feature-grouping matrix is orthogonal.
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2016). To reduce the dimension, we multiply the data by
the feature-grouping matrix, Xreduced = XΦ. We can also
build an approximation5 of the data, Xapprox = XΦΦ T.

This approach increases the SNR at the expense of
spatial resolution without excluding potentially informa-
tive variables. It is often used in combination with sparse
methods to alleviate their unstability when dealing with
correlated variables (Bühlmann et al., 2013; Varoquaux
et al., 2012).

3.2. Fast regularized ensemble of models (FReM)

Setting the hyperparameters of ensembles of models
can be computationally expensive, as a single aggregated
estimator requires fitting a base estimator m × l × b times.
This corresponds to three loops: i) m cross-validation
loops to select the model, ii) l for the hyperparameters,
and iii) b to find the base estimators to average (see
Fig. 2a). To tackle this computational bottleneck, we aver-
age weight vectors of nested cross-validation folds at best
performing hyperparameter values (in the sense of predic-
tive power). By doing this, we can reduce the number of
required fits to l × b, where the number of estimators b is
the number of cross-validation folds. Thus, this scheme
uses one loop less than the standard bagging. In addition,
we add an implicit spatial constraint using clustering of
features, applying it at each fold to increase the random-
ness of the clusters shapes. For completeness we detail the
proposed strategy in Algorithm 1 and Fig. 2b.

4. Empirical studies: stable brain decoding

In this section, we conduct a series of experiments to
highlight the practical aspects of FReM in brain decoding.
We use several MRI datasets to investigate their prediction
performance, weight-map stability, and computation time.

4.1. Experiments on real neuroimaging data

To achieve reliable empirical conclusions, we consider
a large number of different neuroimaging studies. We in-
vestigate FReM in several binary classification problems
based on 8 fMRI datasets. We perform within-subject dis-
crimination across sessions between various types of visual
stimuli on the Haxby dataset (Haxby et al., 2001). In ad-
dition, we discriminate in an across subjects setting: i)
different categories of visual stimuli from Duncan et al.
(2009); ii) conditions with different levels of affective con-
tent with data from Wager et al. (2008); iii) mental-
ization with data from Moran et al. (2012); iv) famous,
familiar, and scrambled faces from a visual-presentations
dataset (Henson et al., 2002); v) left and right saccades in
data from Knops et al. (2009); vi) relational and emotion
processing, language, and gambling protocols from the hu-
man connectome project (HCP) (Essen et al., 2012); vii)

5This approximation can be seen as the application of an
anisotropic smoothing.

response inhibition on openfMRI ds009 (Poldrack et al.,
2013). We use the trial-by-trial (Z-score) maps computed
in a first-level GLM to perform all across-subject predic-
tions. Additionally, we predict the gender from VBM maps
using the OASIS dataset (Marcus et al., 2007).

Standard preprocessing and first-level analysis were ap-
plied using SPM. The data were variance-normalized and
spatially smoothed at 6 mm FWHM for fMRI data and 2
mm FWHM for VBM data.

Experimental setup. In all classification tasks, we use
nested cross-validation for an accurate measure of the pre-
dictive power. We repeatedly split the data into a valida-
tion set and a decoding set. We choose validation sets of
20% the data, respecting the sample dependence structure
(leaving out subjects or sessions). We set 10 folds for the
outer cross validation loop.

As is standard practice in fMRI decoding (Pereira
et al., 2009), we use univariate feature selection on the
training set to select 20% of voxels and train the decoder
on the selected features. We compare several decoders,
split into two groups:

• Non-ensembles: Graph-net (Grosenick et al., 2013),
TV-`1 (Michel et al., 2011), Log-enet (Zou and
Hastie, 2005)6, SVM-`1, and SVM-`2.

• Ensembles: FReM of SVM-`1, SVM-`2, both, with
and without clustering. These estimators are fitted
using the proposed scheme –see Algorithm 1.

We use scikit-learn (Pedregosa et al., 2011) for the Log-
enet, and the SVM with `1 and `2 penalties. We use
nilearn (Abraham et al., 2014) for Graph-net and TV-`1.
When clustering is applied, we set the number k of clus-
ters to 10% of the number p of voxels7. We rely on the
fast agglomerative clustering presented in Hoyos-Idrobo
et al. (2016). In brief, this algorithm iteratively performs
1-nearest neighbor grouping, reduces the graph at each it-
eration, then averages the input features and repeats the
process until it reaches the desired number of clusters.

Regarding the ensembles of models, we use 50% of
decoding sets to train the decoder8.

In the first experiment, we empirically validate the
performance of various decoders on different discrimina-
tion tasks. In particular, we measure the prediction score,

6We don’t use an SVM with elastic net penalty, as none of the
solvers have an implementation, and using our own implementation
will lead to unfair comparisons.

7We consider a useful dimension reduction range, k ∈ [
p
20
, p
10

].
This regime gives a good trade-off between computational efficiency
and data fidelity (Hoyos-Idrobo et al., 2016).

8In the standard bootstrap the whole dataset is resampled. How-
ever, it can be approximated with a subsampling of 50% of the data
(Dümbgen et al., 2013; Praestgaard and Wellner, 1993; Shah and
Samworth, 2013)
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Algorithm 1 Fast regularized ensemble of models (FReM)

Require: Training data X ∈ Rn×p, the desired number k of clusters, the sampling parameter m, the number b of estimators
to aggregate, the set of l hyperparameters [λ1, . . . , λl], the regularizer Ω and the loss L.

Ensure: ŵbagg

1: for j = 1 to b do
2: Build pseudo-dataset: {(X∗,y∗)} ← {(Xi,yi)}

m
i=1 , where X∗ ∈ Rm×p, and y∗ ∈ Rm.

{draw m samples from (X,y) at random.}
3: Split into a training set and a testing set: (X∗

train,y
∗
train) , (X

∗
test,y

∗
test).

{Select ⌊m
2
⌋ samples at random (without replacement).}

4: Build feature-grouping matrix: Φ(j) ∈ Rp×k {use Hoyos-Idrobo et al. (2016).}
5: Dimension reduction: X̃red ←X∗

train Φ(j), where X̃red ∈ R⌊m
2 ⌋×k.

6: Univariate feature selection: {use Dohmatob et al. (2015).}
7: for i = 1 to l do
8: Estimate weight map: ŵ

(i)
red = argmin

w∈Rp

{L(y∗, X̃red;w) + λiΩ(w)}, ŵ
(i)
red ∈ R

k.

9: end for
10: Select the best model : ŵ

(j)
best ← the ŵ

(i)
red, i ∈ [0, . . . , l] with the best performance on the test set.

11: Return to voxel-space: ŵ
(j)
approx = ŵ

(j)
bestΦ

(j)T, where ŵapprox ∈ Rp.
12: end for

13: return ŵbagg ←
1
b

b

∑
j=1

ŵ
(j)
approx

a) Bagging
b) Fast regularized ensemble of models (FReM)

Figure 2: Regularized ensemble of models: Fast regularized ensemble of models uses one loop less than bagging.

computation time, and the correlation across folds (sta-
bility). In a second experiment, we explore the training
speedup of decoders in a multi-core setting. Then we eval-
uate the similarity between weight maps obtained using all
the data and the ones obtained for different sample sizes
(small-sample recovery).

5. Results: evaluating decoder performance

5.1. Comparing FReM to bagging

We explore the performance of FReM and bagging
on two discriminative tasks: discrimination of famous
and scrambled faces from the Henson (2006) dataset, and
discrimination of response inhibition on openfMRI ds009
(Poldrack et al., 2013). The regularization parameters of
bagging are set by 10-fold inner cross validation.

Fig. 3 summarizes the relative performance of FReM
and bagging with respect their base estimators across dis-
criminative tasks. FReM of `2-penalized models with and
without clustering display better weight map stability than
bagging of SVM-`2. FReM of `1-penalized models without
clustering has worst prediction accuracy, with a loss of 2%
with respect to bagging. Regarding FReM with cluster-
ing, it has the same prediction accuracy as bagging, and
it displays better weight map stability. For both penal-
ties, FReM yields computation speedups, > 5 times faster,
while preserving the gains in prediction accuracy.

5.2. Benchmarking decoders

For all discriminative conditions, we measure the pre-
diction error on several left-out validation sets to assess
the predictive power of the decoders. Additionally, we
measure the correlation between the weight maps obtained
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Figure 3: Comparison of the performance
of FReM and bagging: Comparison on two
discriminative tasks, discrimination of famous
and scrambled faces from the Henson (2006)
dataset, and discrimination of response inhibi-
tion on openfMRI ds009 (Poldrack et al., 2013).
(top) Relative performance to SVM-`2. (bot-
tom) Relative performance to SVM-`1. For
both penalties, FReM improves the stability
of weight maps, and it is > 5 times faster than
bagging.

0% 5%
Relative prediction score

Bagging SVM­ 2

FReM SVM­ 2

FReM SVM­ 2
 + clustering

0.00 0.25 0.50
Relative weight stability

2x 4x 6x 8x 10x
Relative computation time

Bagging SVM­ 1

FReM SVM­ 1

FReM SVM­ 1
 + clustering

in each cross-validation fold, and the computation time
required to train the decoder. To perform this analysis,
we separate the datasets into two types: within-subject
and across-subject. Throughout this experiment, we set
the number b of estimators used in FReM to 50. This
choice is discussed in Fig. 8.

Fig. 4 summarizes the relative performance with
respect to the mean across decoders per discriminative
task. In within-subject settings, all sparse methods
have good prediction performance. Decoding using the
standard SVM with both `1 and `2 penalty is fast, but the
weight maps are less stable than the ones found by sparse
structured methods –i.e. Graph-net and TV-`1. However,
these complex penalties come with higher computation
costs. As expected, using FReM reduces the variance of
the prediction, while increasing the stability of the weight
maps. This effect is enhanced when including a clustering
step. The computation time of FReM with or without
clustering is less than that of structured sparse classifiers.

For the discriminative task across subjects, FReM
consistently improves prediction accuracy as well as the
stability of the weight maps, while keeping a computation
cost less than structured sparse classifiers. In addition,
the use of spatial clustering has a beneficial impact on
the spatial stability. In all the presented cases, FReM im-
proves stability of the weight maps of the base estimator,
while preserving the prediction accuracy. Note however
that, for the combination of the SVM-`2 and clustering,
it does not display any additional benefit.

Table 1 shows the comparison between each decoder
and the decoder displaying the best prediction accuracy,
namely FReM of SVM-`1 for within-subject problems,
and FReM of SVM-`2 with clustering for across-subjects
problems. These results confirm the above observations.

Experiments on simulated data. Unlike brain imaging
datasets, simulations open the door to measuring the ac-
tual support of a decoder, as well as its prediction accu-
racy. Briefly, we generate data with 2 classes and 1728 vox-
els with temporally auto-correlated Gaussian noise (more
details in Appendix B). The dataset contains a decoding

set of 200 samples. We choose validation sets of 20% the
data. We set 10 folds for the outer cross validation loop.
We assess the support recovery of each decoder by building
the precision-recall curve. This curve is generated by com-
paring the ground truth weight maps with the coefficients
of the decoder after applying different thresholds.

Fig. 5 shows the prediction accuracy of each decoder
across cross-validation folds on simulated data. FReM
SVM-`1 with and without clustering have the best pre-
diction accuracy on simulated data, followed by SVM-`1,
and Graph-net. TV-`1 display slightly worst performance.
Log-enet, SVM-`2, FReM SVM-`2 with and without clus-
tering have a low predictive performance. FReM of `1
models increase the prediction accuracy, whereas for `2
models this remains similar.

Regarding the computation time, SVM-`2, FReM of
SVM-`2 with and without clustering are the fastest meth-
ods to train, followed by SVM-`1, FReM of SVM-`1 with
and without clustering. Log-enet, and Graph-net are
slightly slower, whereas TV-`1 is at least 4 times slower
than Graph-enet. On simulated data, FReM requires the
same computation time than its base estimator.

Fig. 6 displays the precision-recall curve, which serves
as an indicator of support recovery of the underlying spa-
tial activation map. FReM of SVM-`1 with clustering,
FReM of SVM-`2 with clustering, and TV-`1 display have
the best support recovery. They are followed by Graph-
net, SVM-`2, and FReM SVM-`2. In this experiment, Log-
enet and SVM-`1 both fail to recover the support of the
activation signal. We can see that FReM consistently im-
proves the support recovery of base estimators. In partic-
ular, FReM of SVM-`1 with clustering displays the best
trade-off between prediction accuracy and support recov-
ery. It has a predictive performance similar to Graph-net,
and a support recovery close to TV-`1.

5.3. Delineating brain regions

An important question regarding brain decoders is
whether they segment well the brain regions that support
the decoding. The validation of this question is hard, yet
there is evidence that relying on ensembles of models is
a good approach (Leung and Barron, 2006; Zhou, 2012).
Fig. 7 displays the decoder maps for the face-recognition
tasks. For these tasks, we expect prediction to be driven
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a) Within-subject discrimination
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Figure 4: Relative performance: Relative prediction accuracy, weight stability and computation time for different classification tasks.
Values are displayed relative to the mean over all the classifiers. a) FReM improves prediction accuracy, and when applied with clustering it
also reduces the variability. The ensembles of models consistently improves the weights stability, with a computation time smaller than TV-`1
and Graph-net. b) FReM with and without clustering slightly improves the prediction accuracy, while significantly improving the stability.
Note that the computation time is obtained using a single CPU, see Figure 9 for parallel-computing timings. Results without smoothing are
presented in Figure C.2.

a) Within-subject discrimination

Classifier
prediction weight computation

score stability time
Graph-net 1.4e-3 > 1.6e-4 > 7.8e-14 <

TV-`1 6.3e-5 > 8.3e-3 > 7.8e-14 <
Log-enet 5.9e-3 > 7.8e-14 > 7.8e-14 >
SVM-`2 1.4e-9 > 8.9e-12 > 7.8e-14 >
SVM-`1 2.4e-3 > 7.8e-14 > 7.8e-14 >

SVM-`2 1.5e-8 > 1.7e-4 < 2.1e-13 <
SVM-`1 Reference
SVM-`2

+ clustering
2.8e-7 > 3.1e-6 < 1.1e-8 <

F
R
eM

SVM-`1
+ clustering

9.3e-3 > 1.3e-3 < 5.2e-6 <

b) Across-subjects discrimination

Classifier
prediction weight computation

score stability time
Graph-net 5.2e-14 > 1.4e-33 > 2.1e-5 <

TV-`1 8.8e-17 > 1.4e-33 > 1.4e-33 <
Log-enet 1.3e-15 > 2.7e-30 > 2.7e-30 >
SVM-`2 1.1e-7 > 1.5e-33 > 1.4e-33 >
SVM-`1 6.3e-14 > 6.3e-32 > 6.3e-32 >

SVM-`2 0.7 > 1.2e-6 < 1.4e-24 >
SVM-`1 0.5 > 1.4e-33 > 1.4e-33 >
SVM-`2 Reference

+ clusteringF
R
eM

SVM-`1
+ clustering

0.7 > 1.4e-33 > 1.6e-3 >

Table 1: Comparison of performance: Each decoder is compared with a reference. The values correspond to Bonferroni-corrected p-values
obtained by paired Wilcoxon rank test. The direction in the parenthesis denotes the sign of the mean difference, and bold text denotes a
significant results (p < 10−10). Results without smoothing are presented in Table C.2.

by the functional areas of the visual cortex (Grill-Spector
and Malach, 2004). Indeed, the maps outline regions in

known visual areas –e.g. the fusiform face area (PPA).
In both within-subject and across-subject datasets, the
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Figure 5: Behavior on simulated data: FReM of SVM-`1 with
and without clustering display the best predictive performance, fol-
lowed by SVM-`1, Graph-net, and TV-`1. Log-enet and `2 penal-
ized methods display low performance. `2 methods are the fastest to
compute, followed by SVM-`1, FReM of SVM-`1 with and without
clustering, Log-enet, and Graph-net. TV-`1 is the slowest method.
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Figure 6: Support recovery on simulated data: Evaluation of
support recovery for different decoders. The average precision (AP)
is presented in parenthesis. FReM of SVM-`1 with clustering, FReM
of SVM-`2 with clustering, and TV-`1 have the best recovery per-
formance. They are followed by Graph-net, SVM-`2, and FReM of
SVM-`2 without clustering. Log-enet and SVM-`1 fail to recover the
ground truth. FReM generally improves the performance of base
estimators.

SVM-`1 maps are unstructured, and even if using FReM
of this model improves the stability of the weight maps,
these maps remain scattered with a large number of small
clusters. However, the use of clustering yields less and
larger clusters, with maps that are qualitatively similar to
TV-`1 maps. Graph-net and SVM-`2 display similar be-
havior, yielding various small clusters around large clus-
ters of activation. In the case of SVM, the use of FReM
can reduce the number of small clusters. The combination
with clustering enhances this effect. Note that setting the
threshold to visualize regions is difficult task as the noise
level is unknown.

5.4. Setting the number of estimators to ensemble

The choice of the number b of estimators to combine
also affects the stability of the weight maps and the run-
ning time. The number b can be interpreted as a “smooth-
ing” parameter (Bühlmann and Yu, 2002), and the com-
putation time that one is willing to pay to train a de-
coder. We measure the performance of ensembles of clas-
sifiers on three different datasets and across 10 folds of
cross-validation. In practice, we often use a number of es-
timators between 50 and 100, but to verify if the model
converges, we consider here a range from 10 to 640 esti-
mators.

Fig. 8 shows that for ensembles of classifiers, prediction
accuracy does not depend on the number of estimators,
whereas the computation time is almost linear (t ∝ bγ ,
where γ ≈ 1). We use the running time as a constraint to
finally set the number of estimators to 50, as the weight
stability of non-sparse classifiers are at least 95% of the
asymptotic optimum. In addition, this is a good compro-
mise between stability and computation cost. Hence, we
use this number of estimators throughout all experiments.

6. Results: parallel computing of brain decoders

One important feature of ensembling models is scalabil-
ity, as these methods can be trained in parallel in a multi-
core, shared-memory environment. This corresponds to
current standard workstations, which frequently have a
large number of CPUs9. Here, we measure the training
time of various decoders across 5 folds of cross-validation.
We perform face-discrimination tasks on two datasets with
different sizes.

Fig. 9 shows that, in general, there is not an ideal de-
crease in the computation time as more CPUs are added.
The SVM with `1 and `2 penalty are the fastest. In con-
trast, TV-`1 is the slowest, followed by Graph-net. In both
datasets, FReM displays most of the speed up at 10 CPUs,
and reaches a minimum at 20. These methods are much

9Parallel computation was run using joblib https:

//pythonhosted.org/joblib/ to use multiple cores on a single
computer with Python “multiprocessing”. Benchmarks were done
on Intel Xeon E5-2697 CPUs, clocked at 2.7GHz, with 12 cores per
CPUs, on a single Linux (Ubuntu 16.04) computer.
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a) Within-subject discrimination
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Figure 7: Qualitative comparison of decoder weight maps: Weight maps for different discriminative tasks on the Haxby and HCP
datasets. The maps are thresholded at the 99 percentile for visualization purposes. In both dataset, (top) illustration of weight maps for
the face-recognition task; (bottom) outlines of the other tasks. The weight maps obtained with TV-L1 and FReM methods with clustering
display a prediction driven by the functional areas of the visual mosaic, such as: primary visual areas, lateral occipital complex, the face and
place specific regions in the fusiform gyrus. An example of the difference of outlines between FReM and its base estimator see Figure D.3.
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Figure 8: Tuning curve of FReM:
Quality of FReM classifiers as a func-
tion of the number of estimators. For
each decoder, prediction accuracy is al-
most constant, hence it does not depend
on the number of estimators. The use
of clustering slightly improve the weight
stability of the SVM-`2. In contrast,
SVM-`1 consistently obtains higher sta-
bility when it is combined with cluster-
ing. Regarding computation time, the
ensembles of models are almost linear
in the number of estimators (t ∝ bγ ,
where γ ≈ 1). Therefore, setting the
number b of estimators depends on the
computational resources available. The
vertical dashed line denotes 50 estima-
tors, which gives a good trade-off across
performance metrics and datasets.
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faster that Graph-net. The combination of FReM with
clustering does not increase computation cost as we use a
fast clustering algorithm.

7. Results: small-sample recovery behavior of de-
coders

In fMRI, despite growing efforts in data accumulation
(Essen et al., 2012; Poldrack et al., 2013), the sample size
remains small in comparison with the number of voxels.
Therefore, an important aspect of the brain decoders is
their sample complexity –i.e. the number of samples re-
quired to bound the estimation error. Yet, assessing the
recovery of weight maps is difficult, as we do not have
access to the asymptotic result. To bypass this problem,
we measure the similarity between the weight maps ob-
tained with different sample sizes and the ones obtained
using the whole dataset. This gives us an intuition on the
small-sample recovery capacity.

Fig. 10 shows that across datasets, FReM of SVM-`2
with and without clustering, and FReM of SVM-`1 with
clustering are consistently the best. In contrast, the SVM-
`1 and Log-enet fail to recover the final weight maps. TV-
`1, Graph-net, and SVM-`2 have a good performance on
both datasets. FReM of SVM-`1 outperforms these meth-
ods on the within-subject discrimination, as the weight
similarity rapidly increases. On across-subject datasets,
FReM of SVM-`1 with clustering has almost the same per-
formance as TV-`1, Graph-net, and SVM-`2, differing only
after using 80% of the data for training.

8. Discussion and conclusion: using FReM

We have introduced a fast strategy to train regularized
ensembles of models, FReM, that improves the stability
of brain decoders. This scheme is summarized as follows:
i) For each fold of the nested cross-validation loop, we
select the estimator with the best predictive power; ii)
we build an estimator by storing the models for all folds of
cross-validation and averaging them. This approach differs
from the stability selection methods (Meinshausen and
Bühlmann, 2010; Varoquaux et al., 2012), as here we use
the amplitude of predictive weight maps for the model
aggregation, and not only their support.

Using FReM. The predictive power of FReM is not very
dependent on the number of estimators used during the
aggregation step. On the other hand, the stability of the
resulting decoder improves as more estimators are used.
On across-subjects datasets, the use of clustering improves
the stability of sparse methods. In terms of computation
time, this scheme displays an almost linear complexity in
the number of estimators. Thus, setting the number of
estimators is an arbitrary choice, it depends only on the
computation resources available.

Comparing decoders. In both within and across subjects
datasets, FReM has shown an improvement of the perfor-
mance of the base estimator. This strategy reduces the
variance of predictive power and increases the stability of
weight maps of the base estimator. It also improves the
small-sample behavior of the base estimators, boosting the
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Figure 9: Computation time of
decoders: Total wall clock averaged
across 5-fold CV. In general, the speed-
up in computation time is not ideal:
it has a plateau. The fastest methods
are the Log-enet, SVM with `1 and `2
penalty, followed by the ensembles of
models, that display most of the speed-
up at 10 CPUs; past this value, the
computation time slowly reduces until
finally reaching a minimum at 20 CPUs.
In contrast, TV-`1 and Graph-net are
consistently the slowest methods.
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Figure 10: Small-sample recovery behavior of decoders: Evaluation of the correlation between decoder weight maps for each sample
size and the ones obtained using the full dataset. FReM of SVM-`2 with and without clustering have consistently the best small-sample
recovery performance, followed by TV-`1, Graph-net, and SVM-`2. Within-subject) FReM of SVM-`1 rapidly increase their weights similarity,
outperforming TV-`1 and Graph-net. Across-subjects) the combination of clustering and FReM of SVM-`1 has a performance as good as
TV-`1. In both discrimination tasks, SVM-`1 and Log-enet fail to recover the final decoder weight maps.

consistency of weight maps. In addition, this scheme leads
to qualitatively good brain regions delineation.

In terms of computation time, the use of FReM yields
decoders that are slower than the base estimators. But
they are faster than state-of-the-art decoders, namely TV-
`1 and Graph-net. Nevertheless, the speed-up of FReM
can be enhanced by parallelizing the training of each esti-
mator to aggregate. Thus, the training time is dominated
by the fitting of each decoder. However, this gain is not
ideal, and there is a plateau in the speed-up when the
number of CPUs increases.

Regarding the combination of FReM and clustering, it
has a spatial denoising effect on the resulting weight maps.
This is reflected in the reduction of the variability and an
increase in the prediction power. But, when the base esti-
mator is a sparse method, the averaging step reduces the
sparsity, and yields weight maps with many small values
instead.

Our extensive empirical validation (36 decoding tasks,
taken from 9 datasets) shows that the FReM, in particular
using a SVM-`2 with clustering, gives the best stability-
prediction trade-off, with a good qualitative delineation of
brain regions. Averaging several “good” estimators yields
a model that can adapt to the properties of the noise
present in the data. Hence, it is more robust to violations
of modeling assumptions. The application of this scheme
with clustering benefits to the spatial stability of weight
maps, a key requirement of any cross-population study of
functional imaging signals.
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Bühlmann, P., Rütimann, P., van de Geer, S., Zhang, C.H., 2013.
Correlated variables in regression: clustering and sparse estima-
tion. Journal of Statistical Planning and Inference 143, 1835–1871.
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Kuncheva, L.I., Rodŕıguez, J.J., Plumpton, C.O., Linden, D.E.,
Johnston, S.J., 2010a. Random subspace ensembles for fmri clas-
sification. IEEE transactions on medical imaging 29, 531–542.

Kuncheva, L.I., Rodriguez, J.J., Plumpton, C.O., Linden, D.E.J.,
Johnston, S.J., 2010b. Random subspace ensembles for fMRI clas-
sification. IEEE Transactions on Medical Imaging 29, 531–542.

Leung, G., Barron, A.R., 2006. Information theory and mixing least-
squares regressions. IEEE Transactions on information theory 52.

Marcus, D.S., Wang, T.H., Parker, J., et al., 2007. Open access series

of imaging studies (OASIS): cross-sectional MRI data in young,
middle aged, nondemented, and demented older adults. J Cogn
Neurosci 19, 1498.
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Appendix A. Bagging reduces the variance of the
base model

A learning problem can be cast as identifying the best
hypothesis in a space of hypotheses. Statistical issues arise
when the sample size is small compared to the size of the
hypothesis space. In this setting, there are several hypothesis
that give the same prediction accuracy on training data.
One can reduce the risk of choosing a “wrong” estimator by
averaging the output of several of these estimators (Dietterich,
2000).

Bagging in regression (Breiman, 1996): We present
Breiman’s proof of bagging regressors to demonstrate its ben-
efits. Let D be a training set which contains a sample of
independent (x, y) drawn from the distribution P . Define
h(x,D) to be prediction function based on the sample D. Let
haggr(x) = ED[h(x,D)] be an aggregate of prediction functions.

Take x to be a fixed predictor and y an output value. Then

ED[(y − h(x,D))2] ≥ ED[y − h(x,D)]2 (by Jensen’s inequality)

= y2 − 2yED[h(x,D)] + ED[h(x,D)]2

= (y − haggr(x))2.

Hence, the averaged predictor has lower mean-squared error
than the base predictor. This improvement depends on how un-
equal ED[h(x,D)2] ≥ ED[h(x,D)]2 are. The more the h(x,D)
vary with respect to each other, the more improvement the
aggregation may produce.

To understand the effect of averaging, let us assume the ex-
treme case where the models created by sampling are i.i.d. Let
the aggregation be the mean of the predicted values haggr(x) =
1
b ∑

b
i=1 hi(x,D), where hi(x,D) denotes the prediction function

based on the sample D. The predictions are i.i.d., and the vari-
ance of each of them is defined by ED[(y − hi(x,D))2] = σ2.
Hence, the variance of the aggregated estimator is:

ED[(y − haggr(x))2] =
1

b2
ED[(

b

∑
i=1
y − hi(x,D))2]

= 1

b2

b

∑
i=1

ED[(y − hi(x,D))2](by independence)

= 1

b
σ2.

We can see that averaging decreases the error as
√
b. Note

that the i.i.d. case studied here is the most favorable case.

Appendix B. Experiments on Simulated data

Appendix B.1. Dataset simulation

We use the same approach presented in Michel et al. (2011)
to simulate data satisfying the Eq. 1. The matrix X consists
of n = 100 images, and p = 1728 voxels (size 12× 12× 12). Each
image contains a set of five square Regions of Interest (ROIs)
(size 2 × 2 × 2), and each of the four ROIs has a fixed weight
in {−0.6,0.5,−0.6,0.5,0.5}. Let us denote S the support of
the ROIs (i.e. the 40 resulting voxels of interest), and wi,j,k

denotes the weights of the (i, j, k) voxel. The resulting images
are smoothed with a Gaussian kernel with a standard deviation
of 2 voxels, to mimic the correlation structure observed in real
fMRI data. To simulate the spatial variability between images
(inter-subject variability, movement artifacts in intra-subject
variability), we define a new support of the ROIs, Ŝ such as,
for each image l-th, 50% (randomly chosen) of the weights w
are set to zero. Thus, we have Ŝ ⊂ S. We simulate the target
y for the l-th image as:

yl = ∑
(i,j,k)∈Ŝ

wi,j,kXi,j,k,l + εl, (B.1)

with the signal in the (i, j, k) voxel of the l-th image simulated
as:

Xi,j,k,l ∼ N(0,1). (B.2)

ε ∼ N(0, γ), We choose γ in order to have a SNR of 5 dB.
Finally, we apply a sign function to Eq. B.1 to obtain a binary
targets.

Appendix C. Benchmarking results without
smoothing

Results without spatial smoothing of the voxels are given
in Fig. C.2. The results obtained with and without spatial
smoothing of the voxels are consistent. In within subject set-
tings, structured sparse methods display good prediction accu-
racy and stability of weight maps. However, the computation
time is slow. FReM of SVM-`1 yields to a better performance,
increasing prediction accuracy and weight map stability, while
reducing the computation time.

In between subject settings, FReM over performs other
methods. In particular, FReM of SVM-`2 with clustering.

Table C.2 shows the comparison between each decoder and
the mean performance across models. These results confirm
the above observations.

Appendix D. FReM improves brain regions delin-
eation

Fig. D.3 displays the difference between the outlines ob-
tained with FReM and its base model. The difference between
the outlined brain maps is characterized by small clusters. As
expected, this effect is higher for SVM-`1. FReM of SVM-`1
with clustering leads to greater brain activation areas that are
not found by the base estimator. On the other hand, FReM of
SVM-`2 with clustering displays a marginal difference with its
non-clustered counterpart.
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Figure B.1: Weight maps of the decoder: Weight maps for different decoders on simulated data. The values in parenthesis correspond to
the Pearson correlation to ground truth. Note that the maps are unthresholded.

a) Within-subject discrimination

Classifier
prediction weight computation

score stability time
Graph-net 2e-6 > 8.1e-8 > 7.8e-14 <

TV-`1 1 5.8e-2 > 7.8e-14 <
Log-enet 1 7.8e-14 > 7.8e-14 >
SVM-`2 4.5e-10 > 1.8e-12 > 7.8e-14 >
SVM-`1 1.7e-2 > 8.4e-14 > 7.8e-14 >

SVM-`2 1.8e-11 > 1 1
SVM-`1 Reference
SVM-`2

+ clustering
4.6e-6 > 9.5e-3 < 1

F
R
eM

SVM-`1
+ clustering

1 0.2 < 0.5 >

b) Across-subjects discrimination

Classifier
prediction weight computation

score stability time
Graph-net 5.4e-17 > 3.4e-22 > 9.9e-4 >

TV-`1 7.9e-19 > 4.7e-17 > 6.4e-32 <
Log-enet 1.3e-8 > 1.2e-28 > 1.2e-28 >
SVM-`2 3.6e-4 > 2.8e-14 > 6.3e-32 >
SVM-`1 3.5e-4 > 1.2e-28 > 1.2e-28 >

SVM-`2 1 1.8e-13 < 1.4e-22 >
SVM-`1 1 6.3e-32 > 6.3e-32 >
SVM-`2 Reference

+ clusteringF
R
eM

SVM-`1
+ clustering

1 3.6e-28 > 0.2 >

Table C.2: Comparison of performance: Each decoder is compared with a reference. The values correspond to Bonferroni-corrected
p-values obtained by paired Wilcoxon rank test. The direction in the parenthesis denotes the sign of the mean difference, and bold text
denotes a significant results (p < 10−10).
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Figure C.2: Relative performance: Relative prediction accuracy, weight stability and computation time for different classification tasks.
Values are displayed relative to the mean over all the classifiers.
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Figure D.3: Difference on delineated brain regions: Difference
on weight maps of various decoders.
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