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Abstract—Modularity and composability are essential proper-
ties to facilitate and scale the design of cyber-physical systems
from the specification of hybrid, discrete and continuous, com-
ponents. Modularity is essential to break down a system model
into comprehensible and manageable component specifications.
Composability is essential to design a system from component
models while preserving their verified properties, expressed as
assume-guarantee contracts.

In this paper, we address the specification of hybrid system
using Platzer’s differential dynamic logic (dL). Our contribu-
tion is threefold: (1) We define a new composition operator
in dL and prove that it is associative and commutative (AC).
Prior notions of composition in dL were not associative. (2) We
provide a theorem which characterizes necessary conditions
to automate the proof that composed components satisfy the
composition of their individual contracts, enabling modular
and compositional verification. (3) We case-study our AC
composition operator by considering the modular and detailed
specification of a cruise controller in KeYmaera X, the latest
implementation of dL, to demonstrate the proof automation
capability of our contribution and exemplify a compositional
design methodology.

1. Introduction

The problem of verifying the safety properties of an
hybrid system is complex. It subsumes the problem of
verifying that of its discrete control program, which is itself
undecidable. It is hence desirable to seek abstraction and
modularity in order to gain tractability and scalability. An
approach to tame system verification complexity is to break
down the system model into sub-systems and components:
to conceive each functional part of the system separately and
relate them using contracts expressing logical assumptions
and guarantees between a component and its environment.
To support a compositional design method, it is desirable to
carry out the proof of composed components automatically
from the composition of contracts that they were proved
to individually satisfy. This can be done by defining a
composition operator b in a manner algebraically suitable
to the logic under consideration.

In this paper, we consider differential dynamic logic,
dL, proposed by Platzer et al. [1] to specify and verify
hybrid system models. dL is an extension of Pratt’s dynamic
logic [2] (DL) with ordinary differential equations (ODEs):
DL allows specifying the behavior of discrete programs
and express their safety and liveness properties, while dL
additionally allows to define time-continuous variables. It
also provides an extension of a sequent calculus to prove
properties about them. The sequent calculus of dL provides
an important theoretical contribution to the field of hybrid
system design, as it enable automated proof reasoning to
verify large hybrid system specifications, as we will attempt
to demonstrate in this paper.

1.1. Related work

Despite the inherent expressive capability of dL and
its sequent calculus, some additional features need to be
introduced in order to address the modular verification of
large hybrid systems.

To prove that a system in dL satisfies some safety or
liveness property, one straightforward approach is to express
it as a formula, and then try to prove this formula correct.
For a large system, the deductive process involved in the
automation of such a proof leads to the generation of proof
obligations, which can potentially be numerous, larger, and
complex (to correlate with the initial problem), gradually
making the ultimate system proof a lot more complex. This
necessary deductive and proof automation process can hence
possibly limit scalability of dL as a logical method to prove
hybrid systems, and refrain non-experienced user from using
it.

To alleviate this issue, a recent paper by Müller et al.
[3] introduces a notion of composition in dL. The approach
proposed in that paper consist of breaking down a system
model into independent functional parts or components, to
prove the properties of these components, expressed by the
mean of contract, and compose the components to obtain
the system. However, the composition operator proposed
in [3] is not associative. As a consequence, one has to
define the whole system at once, as a structured composition
of components, and then prove each of its components’
properties.



In this paper, we contribute to dL with a composition
operator that additionally enjoys associativity. This property
permit a more flexible design, and coupled with our theorem
that we can under some conditions automate the proof of a
composed system from the proof of the components, permit
a more scalable proof method.

In turn, our composition operator is largely inspired
by Actions Systems [4]. Action Systems theory has also
inspired Event-B to design and prove systems by refinement
(which was our initial aim). Ronkko et al. [5], [6] have
already proposed hybrid extensions to the framework of
Action Systems and introduced Hybrid Action Systems.
Hybrid Action Systems provide an AC composition operator
which greatly inspired our contribution. By combining AC-
composition with dL, we aim to take advantage of the best
of both theories which, furthermore, is a promising prospect
toward a refinement-based design methodology.

It is also worth mentioning recent developments on
Event-B [7] to define the so-called Hybrid Event-B. This
formalism is also greatly inspired by hybrid action systems,
and follows the spirit of the B method in the sense that
it is founded on set theory, which seems not algebraically
expressive or structured enough to scale large systems.

1.2. Contributions

Our work has been conducted, specified and proven
using the interactive theorem prover KeYmaera X, which
implements the dL logic. In this paper, we address the
specification of hybrid system in Platzer’s differential dy-
namic logic and define a new composition operator that we
prove associative and commutative (AC). Then, we provide
a theorem which characterizes the necessary conditions to
automate the proof that composed components satisfy the
composition of their contracts.

To exemplify and test-case our result, we have defined
a detailed, modular, specification of a cruise controller [3]
in dL, which we use to demonstrate the proof automation
capability of our contribution and exemplify a compositional
design methodology.

2. Differential Dynamic Logic (dL)

This section briefly introduces the differential dynamic
logic (dL), defined by A. Platzer [1]. As in DL, system
properties in dL are expressed in classical logic, but they
are interpreted over the reals, due to the continuous nature
of systems under consideration. Additionally, dL supports
a proof system, which is implemented in the interactive
theorem prover Keymaera X.

In dL , the notation 9X � θ&H denotes an ODE where
9X � θ is a system of n equations of the form 9x1 � θ1,

. . . , 9xn � θn and H is the characterization of the domain
of the ODE. Derivative variables are identified using the
convention of Physics, i.e. 9xi, in order to emphasize that
derivation is done with respect to time, denoted by the
reserved variable t. The body θi of each equation is a real

arithmetic term. The domain of the ODE restricts the validity
domain of the ODE solutions, which is Rn at most. The
semantic of an ODE is given by his solution f : r0, rs Ñ R.
The states reachable by an ODE are the fprq, denoted now
by fr, for any r.

Example 1. The ODE 9t � 1 & t ¥ 0 describes how the
time t evolves. The domain restriction t ¥ 0 ensures that
we don’t consider negative values for the time.

Definition 1 (Syntax of dL).

α, β ::� x :� θ |?ϕ | α;β | αY β | α� | 9x � θ &H (specs)
θ ::� x | 0 | 1 | θ � θ | θ � θ | θ � θ | θ � θ (terms)
ϕ,ψ ::� θ1 � θ2 | K | ϕÑ ψ | @xϕ | rαsϕ (formulas)

where � P t ,¤,�,¥,¡u

Hybrid program specifications, Def. 1, consist of assign-
ments and tests inductively combined using sequences, non
deterministic choices and an arbitrary but finite number of
iterations (α�), for the discrete part, and an ODE, for the
continuous part. Terms are interpreted using real arithmetic.
In a formula, the modal operator rαsϕ means ϕ holds after
any valid execution of α. The other logical connectives have
the usual encoding (e.g.  ϕ � ϕÑ K).

A state ν is a mapping from variables to Rn. We denote
the value of a term θ in ν by vθwν . The set of states is
noted S. The semantic of hybrid programs is a semantic of
reachability, Def. 2.

Definition 2 (Semantic of hybrid programs). Assuming α,
β are hybrid programs, ρνpαq inductively defines the set of
the reachable states from ν by α:

ρνpx :� θq � tω | ω � ν except that vxwω � vθwνu
ρνp?ϕq � tν | ν |ù ϕu
ρνp 9x � θx &Hq� tfprq | frp0q � ν and frptq |ù 9x � θ

and frptq |ù H for any duration ru
ρνpαY βq � ρνpαq Y ρνpβq
ρνpα;βq �

�
ωPρνpαq

ρωpβq

ρpα�q �
�
nPN ρpα

nqwithα0�?J
and αn�1�αn;α

The run of an hybrid program may modify some vari-
ables and may only read some other variables. This distinc-
tion is useful to characterize the interaction of a running
program with its context. The notion of free and bound
variables of an hybrid program are introduced for this
purpose: let V arpαq be the set of all variables that occur in
the hybrid program α. Bound variables can be updated by
α whereas free variables are read at most.

Definition 3 (Free and Bound Variables). The set BV pαq
of any hybrid program α, defines are the variables that may
be updated by assignements (e.g. x :� 10) or ODEs (e.g.
9x � 3). The free variables, FV pαq � V arpαqzBV pαq, are
the variables read by α, but never modified by α.

The behavior of a cyber-physical system can be modeled
using this language and its properties are expressed as
formulas.
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Definition 4 (Semantic of formulas). The satisfiability of
formulas is provided for any state ν:

ν |ù θ1 � θ2 ô vθ1wν � vθ2wν , � P t ,¤,�,¥,¡u
ν |ù ϕÑ ψ ô ν |ù ϕñ ν |ù ψ
ν |ù @x ϕ ô ω |ù ϕ,@ω| @z, z � xñ vzwω � vzwν
ν |ù rαsϕ ô @ω P ρνpαq, ω |ù ϕ
ν * K

The logic dL enjoys a proof calculus [1], [8], [9].
Its base rules are these of a classical first-order sequent
calculus. A second set of rules is dedicated to the proof
of goals of the form rαsφ. They support straightforward
reasoning on any hybrid program α by deconstruction. The
last set of rules is dedicated to iteration and differential
equations.

3. Design framework for the specification of
component

This section defines a notion of component together with
an operator of composition, along with the proofs of some
properties of it. To gain in clarity, we partition specifications
α into their discrete and continuous parts discα and contα.

Definition 5. The general form of a component α consists
of its partition into a continuous part contα, of the form
?ψX ; 9X � θX &HX , and the discrete part discα.

Notice that the discrete part of a system discα is itself
defined by the union of discrete, functional, components.
We additionally define the inputs and outputs of a compo-
nent. The free (the used) variables FV pαq of a component,
defined in the previous section, are regarded as its inputs.
Conversely, the bound (the defined) variables BV pαq of
a component are interpreted as its outputs and internal
variables.

Example 2. We model the discrete controller of a cruise
control system that is responsible for delivering a targeted
speed to the vehicle engine (e.g. a car).

psctrl :� �; ?p0 ¤ sctrl ¤ S ^ |sctrl � stach| ¤ δqq�

It chooses an arbitrary value for sctrl, the targeted speed,
and checks if it is in the desired range r0, Ss, where S is the
speed limit. It additionally checks that the difference between
the speed measured by the tachymeter, stach, and the target
speed, sctrl, is not too high, in order to ensure that the
acceleration set by the throttle is not too brutal and/or within
the capabilities of the engine. Next, we model the continuous
acceleration of the engine by a guarded derivative:

?pathro �
sctrl � stach

ε
^ seng � stachq; 9seng � athro

The guard checks that the acceleration athro given by the
throttle conforms to limits and that the value of the speed
measured by the tachymeter, stach, is equal to the actual
value of speed of the engine, seng. The guarded action is a

differential equation describing the evolution of speed by a
function of the acceleration over time.

We define the composition ` of two continuous com-
ponents.

Definition 6. Let α � 9X �?ψX ; θX & HX and β � 9Y �
?ψY ; θY &HY be two continuous components (ODEs) such
that they do not share any bound variables ( 9X X 9Y � H) :

α` β �?ψX ^ ψY ; 9X, 9Y � θX , θY & pHX ^HY q

To illustrate, assume that we want to set a time limit to
our vehicle engine component.

Example 3. To set a time limit, we need to make time
explicit in our system, by using the variable t, and the rep-
resentation of the passing of time is achieved by introducing
the ODE 9t � 1. We add the formula t ¤ ε in the evolution
domain 9t � 1 & t ¤ ε, where ε is the desired limit. By
composing this proposition with our example, we obtain the
timed model:

?ψ; 9seng � athro, 9t � 1 & pt ¤ εq

where ψ is athro � sctrl�stach
ε ^ seng � stach.

Our notion of composition between two ODEs differs
from the one of Ronkko et al. [5] in that we just restrict
the behaviors of components on the intersection of their
domains, andd we require for a separation between their
bounded variables.

Given that slight refinement, it is nonetheless possible
to prove that composition is associative and commutative.

Property 1 (Commutativity of `). @α, β, α`β � β`α.

Property 2 (Associativity of `).

@α, β, γ, pα` βq ` γ � α` pβ ` γq

We define the composition of two components in two
cases: the composition of two continuous components and
between hybrid ones (discrete and/or continuous).

Definition 7. Let α and β be two components. If α and β
are continuous components, then:

αb β � α` β

If α and β are of the general form, then:

αb β � ppdiscα Y discβq Y pcontα ` contβqq�

We exemplify the composition of general component,
with both discrete and continuous part, by considering the
composition of the previous engine with a tachymeter. The
role of a tachymeter is to be the interface between the
physical world and the discrete world. In our model, it just
consist of pstach :� sengq

�, i.e. it measures repeatedly the
speed value.

Example 4. The composition of the engine and the
tachymeter is:

Engine b Tachymeter � ppstach :� sengq Y
p?athro �

sctrl�stach
ε ^ seng � stach; 9seng � athroqq

�
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Property 3 (Commutativity of b).

@α, β, αb β � β b α

Property 4 (Associativity of b).

@α, β, γ, pαb βq b γ � αb pβ b γq

We have presented a definition of component in dL as
a syntactical composition operator along with its algebraic
properties. We now have a way to model systems and
compose them together. The next step addresses ways to
express properties on such systems and prove them.

4. Composition theorem

We consider a notion of contract to associate component
specifications α with a pair of formulas pA,Gq. A, the
assumption, defines valid conditions for executing α. G, the
guarantee, describes the properties ensured by the execution
of α when A is satisfied. In dL, the satisfiability of a contract
pA,Gq by a component α is expressed as A Ñ rαsG. In
the rest of the paper, we will use a calculus on logically
equivalent sequents A $ rαsG. To achieve proofs of such
sequents, we need to consider the whole context of α by
considering its initial state and defining its parameters: we
build a logical context Γ which includes the assumption A,
the formulas for the initialization and parameters of α. This
leads us to the notation Γ $ rαsϕ where A � Γ and G � ϕ.

Example 5. The engine contract is based on the assumption
Aeng : 0 ¤ stach ¤ S^0 ¤ sctrl ¤ S. Moreover, the engine
is parametrized by ε ¡ 0 and S ¡ 0. Those additional
hypotheses are generally required to complete proofs: Γ �

Aeng ^ ε ¡ 0^ S ¡ 0.

To illustrate our approach, let us consider two com-
ponents α and β, and two proofs Pα and Pβ for the
sequents Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2, respectively. Our
objective is to automatically derive a proof for the sequent
Γ1,Γ2 $ rαb βsϕ1 ^ ϕ2.

Whereas this is generally not possible, automatic deriva-
tion of a proof requires α and β not to share any bound
variables. Having BV pαq X BV pβq � H means that α
and β cannot modify the same variable. Otherwise, the
execution of α b β may make no sense and the sequent
Γ1,Γ2 $ rαb βsϕ1 ^ ϕ2 may also be invalid.

Example 6 (Invalid property composition). Let α � px :�
10q� and β � px :� 100q� be two hybrid programs. We
can easily prove rαspx ¤ 15q and rβspx ¤ 100q, but not
prα b βsqpx ¤ 15 ^ x ¤ 100q. As soon as the last loop
iteration assigns 100 to x, the left-handside px ¤ 15q of the
formula does not hold anymore.

This example provides us with a first necessary condition
toward automated derivation of proof trees for the compo-
sition of components. Another condition is that variables
occurring in ϕ1 should not be bound in β as well. Indeed,
this would mean for ϕ1 to depend on the behavior of β,
which doesn’t seem to be a good design either. Last, we

will make use of skolemization of formulas. That notion
will be needed in the sequent calculus and used as a logical
abstraction to ensure soundness of logical rules.

Definition 8. We denote by @αϕ the skolemization of a
formula with respect to the bound variables of its hybrid
program α. (In the paper, we will use the shorter notation
ϕα where unambiguous).

Example 7. Let α � Engine b Tachymeter. The
skolemization by α of the formula ϕ is ϕα � @stach athro, ϕ.

Lemma 1 (Separation). Let α be a component and ϕ
a formula such that BV pαq X V arpϕq � H. Then the
skolemization ϕα is equivalent to ϕ, i.e. ϕα Ø ϕ.

Proof. Given a proof of ϕα, we can obtain a proof of ϕ.
The reverse direction is a bit more difficult, the idea is
that skolemized variables are not present in ϕ: the universal
quantification is thus irrelevant.

Based on the above, we can now present an important
step regarding the composition of purely continuous pro-
grams.

Theorem 1. Let α and β be two continuous components
and assume that we have two proof trees of Γ1 $ rαsϕ1

and Γ2 $ rβsϕ2 respectively. Furthermore, assume that
paq BV pαq XBV pβq � H,
pb1q BV pαq X V arpϕ2q � H and
pb2q BV pβq X V arpϕ1q � H.
Then it exists a proof tree of Γ1,Γ2 $ rα` βspϕ1 ^ ϕ2q.

Theorem 1 makes intensive use of the separation be-
tween bound and output variables. The first assumption paq
assumes components to have separate internal variables and
requires them to define disjoint output variables (i.e. unique
definitions), which essentially amounts to good modeling
practice. The second assumption (b1) requires the safety
property ϕ1 to guard the behavior of the system α, i.e.
its outputs, and of course not βs, it hence seems natural
to require its separation with ϕ2. The third equation (b2)
defines a symmetric assumption of separation between ϕ1

and β.

Proof. Let α and β be two continuous components, of the
form α � 9X � θX & HX and β � 9Y � θY & HY , and
assume that we have a proof tree Pα of Γ1 $ rαsϕ1 and
a proof tree Pβ of Γ2 $ rβsϕ2. The composition is still a
continuous component and we want a proof tree of Γ1,Γ2 $
rαb βspϕ1 ^ ϕ2q using the proofs tree Pα and Pβ .

To ensure that such a tree exists, we inspect all the rules
that can be applied in Pα to prove the sequent Γ1 $ rαsϕ1

(resp. for the proof tree Pβ of Γ2 $ rβsϕ2) and for each
particular association, we provide a proof of Γ1,Γ2 $ rαb
βspϕ1 ^ ϕ2q.

We will abbreviate sequents of the form Γ $ r?ψX ; 9X �
θX sϕ by Γ, ψX $ r 9X � θX sϕ. Indeed, we can exchange
between the first and second form by successive application
of rules p; q, p?q and Ñr.
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PHX

Γ1,Γ2, HX , HY $ ϕ1

PHY

Γ1,Γ2, HX , HY $ ϕ2 ^r
Γ1,Γ2, HX , HY $ ϕ1 ^ ϕ2

P 1
α

Γ1,Γ2, H
α
X , H

β
Y $ pϕ

1α
1 q

θX
9X

P 1
β

Γ1,Γ2, H
α
X , H

β
Y $ pϕ

1β
2 q

θY
9Y ^r

Γ1,Γ2, H
α
X , H

β
Y $ pϕ

1α
1 q

θX
9X
^ pϕ1β2 q

θY
9Y (ii)

Γ1,Γ2, H
α
X , H

β
Y $ pϕ

1α
1 ^ ϕ

1β
2 q

θX θY
9X 9Y Ñr,^l

Γ1,Γ2 $ Hα
X ^H

β
Y Ñ pϕ1α1 ^ ϕ

1β
2 q

θX θY
9X 9Y (i)

Γ1,Γ2 $ pHX ^HY Ñ pϕ11 ^ ϕ
1
2q
θX θY
9X 9Y

qαbβ

(DI)
Γ1,Γ2 $ r 9X, 9Y � θX , θY &HX ^HY spϕ1 ^ ϕ2q

Figure 1. Proof tree for the (DI) case

We can apply the following rules to the sequent Γ1 $
r 9X � θX sϕ1: differential invariant (DI), ODE solution
(ODESolve), differential weakening (DW), differential cut
(DC), differential auxiliaries (DA), cut (Cut) and generaliza-
tion (Gen). The rules differential cut, differential auxiliaries,
cut and generalization do not decompose the ODE since
we still have to prove rαsϕ1 in one of the premises. For
example, the rule cut applied to Γ1 $ rαsϕ1 leads to:

Γ1,Γ2 $ C Γ1, C $ r 9X � θX &HX sϕ1 (Cut)
Γ1 $ r 9X � θX &HX sϕ1

The next goal is r 9X � θX & HX sϕ1. If one of these
rules that does not decompose the ODE is applied in the
proof tree Pα or Pβ , we will apply it also in the general
proof tree.

This careful inspection shows that there are only three
rules to consider: (DI), (ODESolve) and (DW). We first treat
the case for which Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2 are proved
by the rule (DI). For the two other rules, (ODESolve) and
(DW), we show how to build the proof tree using (DI) rule
too.

(rule DI). If Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2 are proved by
using rule (DI), then we have a proof tree of this form for
Pα:

PHX

Γ1, HX $ ϕ1

P 1
α

Γ1, H
α
X $ pϕ

1α
1 q

θX
9X Ñr

Γ1 $ Hα
X Ñ pϕ1α1 q

θX
9X (DI)

Γ1 $ r 9X � θX &HX sϕ1

The notation ϕθX
9X

stands for the formula ϕ where all
the occurrences of 9X are replaced by θX . The left branch,
PHX , corresponds to a proof that ϕ1 holds at the initial-
isation. The right branch P 1

α denotes the induction step.
We have a similar proof tree for Γ2 $ rβsϕ2. By re-
using the branches PHX (resp. PHY q and P 1

α(resp. P 1
βq, we

achieve the proof tree in Figure 1 for Γ1,Γ2 $ r 9X, 9Y �
θX , θY &pHX , HY qspϕ1 ^ ϕ2q.

We close the branches PHX and PHY in Figure 1,
because we know that we already have some proofs for

Γ1, HX $ ϕ1 and Γ2, HY $ ϕ2. Similarly, we are able to
complete the proofs of P 1

α and P 1
β .

Lemma 1 justifies the step (i). Indeed, the conditions (b1)
and (b2) of Theorem 1 allows to apply the lemma and so
ensures the soundness of this step. For step (ii), one has to
remember that 9X does not occur in β (resp. 9Y does not
occur in α), thanks to the condition (a). Then, we restrict
the substitution of 9X by θX to the sole formula ϕ1α1 .

(rule ODESolve). We consider the case where Γ1 $ r 9X �
θX &HX sϕ1 is proved by the use of the rule (ODESolve),
which means that we find an explicit solution w.r.t. time to
the ODE and we replace each occurrence of X in ϕ1 by
this solution. We show that, given a proof using the rule
(ODESolve), we can derive a proof using the differential
invariant rule (DI). This leads us back to the previous
situation. We do the proof with only one variable, X . It
is easy to generalize it to a system of ODEs. Our reasoning
is inspired from [10, p.247]. By hypothesis, we have the
following rule for (ODESolve):

Γ1 $ @t ¥ 0p@0 ¤ t̃ ¤ t, pHXq
ypt̃q
X q Ñ pϕ1q

yptq
X

Γ1 $ r 9X � θX &HX sϕ1

yptq is the solution of the ODE 9X � θX . Let us
introduce a fresh variable t to stand for time in the ODE. It
will be evaluated after the rule (DI) by using the differential
auxiliaries rule (DA).

Γ1 $ r 9X � θX , 9t � 1 &HX sϕ1 (DA)
Γ1 $ r 9X � θX &HX sϕ1

Also, the solution of the ODE shall contain an oc-
currence of the initial value. To remember it, we use the
auxiliary variable rule (IA).

Γ1 $ rX0 :� Xsr 9X � θX , 9t � 1 &HX sϕ1 (IA)
Γ1 $ r 9X � θX , 9t � 1 &HX sϕ1

The proof tree of Γ1 $ rαsϕ1 using the rule (DI) is in
Figure 2. To introduce the solution as an invariant, we use
the generalization rule (Gen).
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ax
Γ1, HX $ X � yp0q

ax
Γ1, HX $ θX � θX (i)

Γ1, HX $ pX � yptqq1θX 1
9X 9t Ñr

Γ1 $ HX Ñ pX � yptqq1θX 1
9X 9t @r

Γ1 $ @X,HX Ñ pX � yptqq1θX 1
9X 9t (DI)

Γ1 $ r 9X � θX , 9t � 1 &HX sX � yptq

Π1

Γ1, X
0 � ypt0q $ ϕ0

1 Ñr
Γ1 $ X0 � ypt0q Ñ ϕ0

1 @r
Γ1 $ @X@t,X � yptq Ñ ϕ1 (Gen)

Γ1 $ r 9X � θX , 9t � 1 &HX sϕ1

Figure 2. Proof tree for the (ODESolve) case

By hypothesis, we assume a proof P of $ ϕ
ypt0q
X , which

is derived from the goal @t ¥ 0p@0 ¤ t̃ ¤ t, pHXq
ypt̃q
X q Ñ

pϕ1q
yptq
X by a straightforward application of the rules @r and

Ñr. Here, t0, X0 and ϕ0 are fresh variables consequently
introduced by the rule @r. for the branch Π1, we apply the
same rules than for P . There is no matter with the logical
connectives, since we build proof tree having a logical
structure which is similar to between the assumed proof tree.
However, arithmetic over reals may be more technical. Let’s
assume that we have proved ypt0q ¤ θX in P . We need to
prove X0 ¤ θ in the proof of ϕ0

1 (resulting from the rule @r
in the most-right branch in Figure 2). Fortunately, we know
that X0 � yptq by definition: the conclusion is immediate.

For the left premise of rule (DI), we should remember
that it is here to prove the initial condition: the property at
time t � 0, i.e. to ensure that the initials conditions prove the
(inductive) property. Since the value of X is exactly yp0q,
we conclude with the axiom rule. For the right premise, we
perform the substitution and the step (i) is justified by the
same reasoning as for (DI).

(rule DW). We still need to prove the differential weakening
case. The proofs are of the following form:

Pα

Γ1 $ pHX Ñ ϕ1q
α

(DW)
Γ1 $ r 9X � θX &HX sϕ1

This rule is used when the evolution domain character-
ization is sufficient to deduce the goal.

If Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2 are both proved by
the mean of differential weakening, then the proof of the
composition is the following:

Pα

Γ1,Γ2, H
α
X , H

β
Y $ ϕα1

P β

Γ1,Γ2, H
α
X , H

β
Y $ ϕβ2 ^r

Γ1,Γ2 $ Hα
X ^H

β
Y Ñ ϕα1 ^ ϕ

β
2 (i)

Γ1,Γ2 $ pHX ^HY Ñ ϕ1 ^ ϕ2q
α b β

(DW)
Γ1,Γ2 $ rα` βsϕ1 ^ ϕ2

It is a very simple case, where the evolution domains are
sufficient to prove the safety properties. The step (i) is the
same as when we have proved the theorem for the rule (DI).

Now, let’s assume that Γ1 $ rαsϕ1 have been proved
with the rule (DI) and Γ2 $ rβsϕ2 with the rule (DW). The
idea is to add ϕ1 into the evolution domain of αb β using
the differential cut rule (DC).

(DI)
Γ $ r. . .&Hsϕ1

(DW)
Γ $ r. . .&H ^ ϕ1sϕ1 ^ ϕ2 (DC)

Γ1,Γ2 $ r. . .&HX ^HY sϕ1 ^ ϕ2

Thanks to the condition (b2), the component β cannot
impact the validity of ϕ1: the first premise amounts to prove
the sequent Γ1 $ rαsϕ1. The second premise is proved by
using the rule (DW).

We have proved our theorem only for the continuous
case. The next result extends it to the general form of hybrid
discrete/continuous specifications.

Theorem 2. Let us assume that we have a proof tree of
Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2, for α and β components of
the general form. Furthermore, assume that
paq BV pαq XBV pβq � H,
pb1q BV pαq X V arpϕ2q � H,
pb2q BV pβq X V arpϕ1q � H.
Then we have an automatic derivation of Γ1,Γ2 $ rα b
βspϕ1 ^ ϕ2q.

Because Theorem 2 is applied in the conditions than
Theorem 1, it relies on the same assumptions.

Proof. We have proved our result for the case of the com-
position of two continuous component thanks to Theorem 1.
Next, we focus the general case including discrete behaviors.

Let’s assume α
.
� rpα0 Y . . . Y αn Y contαq�s and

β
.
� rpβ0 Y . . . Y βm Y contβq�s are two hybrid pro-

grams respecting the conditions above. Let α b β be their
composition. As in Theorem 1, giving some proofs for the
sequents Γ1 $ rαsϕ1 and Γ2 $ rβsϕ2, we want to prove
the sequent for the system obtained by composition, i.e. to
prove Γ1,Γ2 $ rαb βsϕ1 ^ ϕ2.

First, if we have proved Γ1 $ rpα0 Y . . . Y αn Y
contαq�sϕ1, we also have a proof of rαisϕ1, i P t0, nu.
Indeed, we just look up in the proof tree of Γ1 $ rαsϕ1

until the application of the pYq rule with the goal rαisϕ1 in
premise.
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Π3

Γ $ ϕ1 ^ ϕ2

Π4

Γ, ϕα1 , ϕ
β
2 $ rα0sϕ

α
1

Γ, ϕα1 , ϕ
β
2 , pϕ

α
1 q
α0 $ pϕα1 q

α0 ^ pϕβ2 q
α0

Γ, ϕα1 , ϕ
β
2 $ pϕ

α
1 q
α0 Ñ pϕα1 q

α0 ^ pϕβ2 q
α0

@r
Γ, ϕα1 , ϕ

β
2 $ @

α0pϕα1 q Ñ pϕα1 q ^ pϕ
β
2 q (Gen)

Γ, ϕα1 , ϕ
β
2 $ rα0sϕ

α
1 ^ ϕ

β
2 Π5

pYq
Γ, ϕα1 , ϕ

β
2 $ r sϕ

α
1 ^ ϕ

β
2 Ñr

Γ $ pϕ1 ^ ϕ2q
αbβ Ñ r spϕ1 ^ ϕ2q

αbβ

@r
Γ $ @αbβpϕ1 ^ ϕ2 Ñ r sϕ1 ^ ϕ2q (Ind)

Γ $ rpα0 Y . . .Y αn Y β0 Y . . .Y βm Y contαbβq�sϕ1 ^ ϕ2

Figure 3. Proof tree for the general form

To close the branch Π3 in Figure 3, we need a proof of
both Γ1 $ ϕ1 and Γ2 $ ϕ2. When we look at the proof of
Γ1 $ rαsϕ1, it has the following form:

...
Γ1 $ ϕ1 . . .

(Ind)
Γ1 $ rαsϕ1

We already have a proof of Γ1 $ ϕ1. We do exactly the
same for Γ2 $ ϕ2 which concludes this part.

The last point closes the branch Π4. From this proof, we
show how to extract a proof tree for each discrete subpart
in the proof tree for a general component. By repeating the
discrete subpart isolation (using the rule pYq) followed the
extraction approach (same as for Π4), we easily complete
the proof for the whole discrete part.

5. Methodology for a use case

We have a notion of component and contract. We also
have a syntactic composition operator and a theorem which
give us a proof of the contract of a composition given
the proofs of the contracts of each components, under
some conditions. To illustrate our theory and to present our
methodology, we studied a cruise controller system.

5.1. Presentation of the cruise controller

This example is inspired from [3]. We present it fol-
lowing the A-D (Analogic-Digital) paradigm of the control
theory, widely used in industrial contexts [11]. This rep-
resentation of the system is easily achieved thanks to the
associativity of our composition operator.

The typical modeling of system in control theory is
based on the analogic digital paradigm. The general scheme
is presented in Figure 4. It is composed of a D-A (digital-
to-analog) component, called actuator, and an A-D (analog-
to-digital) component, called sensor, which are interfaces
between the physical world and the digital world. The
control part monitors the system and decides actions to
perform, according to the data collected from the physical
(continuous) part by the sensor.

Plant

A-D

Controller

D-A

Figure 4. A-D paradigm

Engine

Tachymeter

Controller

Throttle

seng

stach

sctrl

athro

Figure 5. Cruise controller system

Figure 5 shows how we instantiate the paradigm for a
cruise controller system. It regulates the speed of a vehicle
as the following: the vehicle’s speed seng obeys to the
differential equation 9seng � athro, where athro is the
acceleration. The tachymeter measures the actual speed at
least every ε units of time and saves it as stach. Then, the
controller chooses the speed order, sctrl, i.e. the maximum
speed reachable by the vehicle before the next sampling. The
controller also checks that the vehicle does not overcome the
maximum speed allowed, S. According to the speed order,
the throttle modifies the acceleration that the vehicle applies
during the next period.

Whereas our model perfectly fits the modeling scheme
of the control theory, directly applying our composition
operator with these components does not result the model
as we would expect. For instance, we implicitly suppose
that the controller executes after the sensor such that the
controller takes decision once the tachymeter measured the
speed. We need to add sequentialization in the model,
whereas our composition operator allows the execution of
the controller in parallel of the tachymeter. To solve this
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problem, we present a way to synchronize components using
a notification mechanism.

5.2. Sequencing using notifications

The cruise controller is executed during the time period
ε. The model execution is based on the infinite repetition of
this execution cycle. In order to define a temporal reference,
we introduce the variable t denoting the time elapsed in the
current cycle. Intuitively, t can evolve in the time interval
r0, εs.

For sequencing every component of the cruise system,
we need to identify the time when every component has
been executed. This time is saved into a fresh variable. For
instance, once the tachymeter has been executed, we set
the variable ttach to the current time t. This is done by
appending the statement ttach :� t to the specification of
the tachymeter: pstach :� seng; ttach :� tq�. Similarly, we
introduce the variables tctrl and tthro for the controller and
the throttle respectively.

We have a mechanism to notify when a component
was executed. Then, we need a mechanism to trigger the
next executable component according to the sequencing.
For instance, the controller is the next component to ex-
ecute after the tachymeter. We prefix its specification by a
guard checking that the tachymeter has just been executed,
i.e. ttach � t. We obtain the following specification for
the controller: p?ttach � t; sctrl :� �; ?p0 ¤ sctrl ¤
S^|sctrl�stach| ¤ δq; tctrl :� tq�. Because the reachability
semantics of hybrid programs in dL, the guard blocks the
execution of the controller until it is is satisfied. Similarly,
the throttle is executed, once both tachymeter and controller
are executed. So the throttle specification is prefixed by the
guard ?pt � ttach ^ t � tctrlq.

To ensure the interleaving between the continuous part
and the digital part, we introduce a guard of the form
?pt ¡ ttach � ε0q where ε0 is the minimal execution time
of the cruise controller, which cannot be instantaneous. As
consequence, the vehicle engine is free to run at least during
ε0 without any interaction from the cruise controller. This
guard is added to the starting component of system: the
sensor specification is finally p?pt ¡ ttach � ε0q; stach :�
seng; ttach :� tq�.

Following this approach we are now able to provide
sequencing of our components that is compatible with our
composition framework.

5.3. The contracts for components and composition

We associate contracts to components and induce the
contracts resulting for their composition.

The engine contract.

Ceng �

"
Aeng : 0 ¤ stach ¤ S ^ 0 ¤ sctrl ¤ S
Geng : 0 ¤ seng ¤ S

To obtain the dL sequent representing this component,
we have to add the characterization of parameters like S ¡
0, 0   ε. The behavior of engine is specified as:

Engine �?pathro �
sctrl�stach

ε ^ seng � stachq;
9seng � athro & pt� ttach ¤ ε

^ t� tctrl ¤ ε
^ t� tthro ¤ εq

We obtain the following sequent:

0 ¤ stach ¤ S ^ 0 ¤ sctrl ¤ S
^ t � ttach ^ t � tctrl ^ t � tthro $ rEnginesGeng
^ ε ¡ 0^ S ¡ 0^ seng � stach

The proof is automatically done thanks to the prover
KeYmaera X. We give a possible sketch to manually prove
it in KeYmaera X. We first apply the rule p?q thus, the rule
p; q to treat the guard. We have to reason on the ODE. We
notice it is a linear ODE; providing a solution is easy. We
put this solution (seng � t � athro) in the ODE evolution
domain using the differential cut rule. We apply a differen-
tial weakening rule, i.e. that the formulas in the evolution
domain are sufficient to prove the safety conditions. At this
point, it remains one goal which is a formula of the real
arithmetic. It can be discharged by automatic reasoning.

We provide below a representation of the contracts on
inputs and outputs.

Engine
0 ¤ seng ¤ S0 ¤ stach ¤ S

0 ¤ sctrl ¤ S

The tachymeter contract.

Ctach �

"
Atach : 0 ¤ seng ¤ S
Gtach : 0 ¤ stach ¤ S

The contract is associated to the component tachymeter
specified as the following:

Tach � p?t ¡ ttach � ε0; stach :� seng; ttach :� tq�

By combining the specification and its contract, we build
the corresponding sequent:

Atach ^ ε0 ¡ 0^ S ¡ 0^ stach � 0 $ rTachsGtach

KeYmaera X is also able to automatically prove this
sequent. The proof is indeed straightforward where the for-
mula 0 ¤ stach ¤ S can be directly used as a loop invariant
for the rule pIndq. After applying the corresponding hybrid
programs rules, it leads to a rewriting of stach by seng in
the 0 ¤ stach ¤ S which becomes the hypothesis provided
by Atach.

Tach
0 ¤ stach ¤ S0 ¤ seng ¤ S

By composing the engine and the tachymeter, we obtain
the following component:

Engineb Tach � pdiscTach Y contEngineq
�
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The composition contract. The composition result, sum-
marized in 6, can be considered as new component which
can be composed with other component, the controller and
the throttle.

Engine Tachymeter
seng

stach

sctrl

stach

Engine b Tachymeter

Figure 6. Composition of the engine and the tachymeter

The contract of the resulting component is the following

Cb

"
A : Aeng ^Atach
G : Geng ^Gtach

Similarly, by composing it successively with the con-
troller and the throttle, we are able to produce the contract
for the complete system because their respective contracts
are also compatible with Theorem 2. Providing that con-
troller and throttle are respectively mapped to the contracts

CController

"
Actrl : 0 ¤ stach ¤ S
Gctrl : 0 ¤ sctrl ¤ S

and

CThrottle

"
Athro : J
Gthro : J

the whole contract is:

CCruise

"
A : Aeng ^Atach ^Actrl ^Athro
G : Geng ^Gtach ^Gctrl ^Gthro

and there is a proof of it thank to Theorem 2.

6. Conclusion, future work

We have presented a syntactic composition operator for
differential dynamic logic dL. We have proved associativity
and commutativity properties about this composition oper-
ator together with a theorem on proof compositionality by
means of component contracts. To finish, we have exem-
plified our methodology with the detailed case study of a
cruise controller system. This allowed us to evaluate our
theoretical expectations in a practical context.

We believe that the composition operator we propose
for dL offers promising applications. Additionally, we al-
ready identified some possible ways to relax some of the
syntactic limitations of Theorem 2 to make it of more
versatile usability. By evaluating our framework on more
complex use cases, we identified some additional leverages
to tackle. They are essentially related to explicitly consider

time in component interactions. Integrating the execution
cycle issued from the control theory will strongly increase
the application impact of Theorem 2: it will permit to
prove contracts that are more intimately related to the timed
behavioral properties of components.

From a theoretical point of view, design by composition
is hard to scale up, because each composition step build new
contracts by merging contracts of the sub-components: for
large-systems the contracts computed at top level may hence
become huge. Refinement and abstraction mechanisms will
be essential tools to tackle those issues, filtering relevant
properties from lower-level to higher-level contracts. They
will bring more flexibility in the design phase and hopefully
reduce the effort needed to prove system.

Future Work

To establish our results, we navigate between the theory
and the practice thanks to our use case. It permit to raise a
lot of troubles, but also to ask interesting questions. Some
of them are still not solved, and are good lines for future
research.


 We plan to inquire a system of contracts on top of dL
logic.


 We need a way to perform refinement between systems,
i.e. a vertical mechanism in our design methodologies.
It will bring more flexibility in the design phase, and
hopefully also in the proof phase. It should be natural
to have such mechanism since our original idea is taken
from Action Systems.
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