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Abstract. Around 1922-1938, a new permutation model of set theory
was defined. The permutation model served as a counterexample in the
first proof of independence of the Axiom of Choice from the other axioms
of Zermelo-Fraenkel set theory. Almost a century later, a model intro-
duced as part of a proof in abstract mathematics fostered a plethora
of research results, ranging from the area of syntax and semantics of
programming languages to minimization algorithms and automated ver-
ification of systems. Among these results, we find Lawvere-style algebraic
syntax with binders, final-coalgebra semantics with resource allocation,
and minimization algorithms for mobile systems. These results are also
obtained in various different ways, by describing, in terms of category
theory, a number of models equivalent to the permutation model.

We aim at providing both a brief history of some of these developments,
and a mild introduction to the recent research line of “nominal compu-
tation theory”, where the essential notion of name is declined in several
different ways.

1 Introduction

In 1922, Fraenkel [16] provided the first proof of independence of the Axiom of
Choice. Such proof was based on constructing a model of set theory respecting
all axioms except the Axiom of Choice. The used model was called permutation
model. The permutation model diverts from classical set theory in the fact that
it fixes an infinite set of urelements, or atoms, that are not sets, since they do
not not have elements of their own. In all respects, this proof is very abstract,
and people who are not acquainted with mathematics may even think that such
developments are not terribly useful by themselves. One may wonder why is
it important to prove independence of an axiom, among many others, of an
abstract theory, dealing with possibly infinite sets, whose existence in nature is
even questionable. And if in order to do so, we need to resort to a model that
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in some sense violates the original intuition, is it really worth the effort to study
these results?

Indeed, there are plenty of good arguments in favour of learning and teaching
Fraenkel’s proof, the permutation model, any important or beautiful mathemat-
ical proof, and in general, abstract mathematics. But there is more. It is frequent
in science that a mathematical result, designed to play a well-defined role in an
abstract proof, finds important applications of its own way after publication.
This is also the case for the permutation model. After almost 80 years from its
original formulation, the model was used to provide an elegant solution to yet
another theoretical problem, that of incorporating variable binding in abstract
syntax. This seminal result fostered more research, leading to consistent adoption
of the permutation model as a richer set theory than classical Zermelo-Fraenkel
sets, providing solid foundations to the study of a number of phenomena in
computer science. Nowadays, almost a century after the publication of the orig-
inal proof by Fraenkel, the theory of computation in the permutation model,
called nominal computation, has turned into a respectful subject, spanning over
different areas of theoretical computer science.

In this paper, we aim at providing a mild introduction to nominal compu-
tation theory, and some evidence of its relevance in computer science. For this
purpose, we propose a brief historical perspective, and some technical details,
on three research lines, making use of the permutation model in the areas of
abstract syntax, programming language semantics, and automata theory. We de-
liberately omit other important subjects (notably, among others, nominal logics
and nominal unification). For a more complete overview of the field, we invite the
interested reader to look at the book by Pitts [39], that constitutes a complete,
detailed reference for the theory of nominal computation.

The structure of the paper is as follows. In Section 2 we set the scene, by
providing a brief account of Fraenkel’s permutation model, and a mild intro-
duction to the proof of independence of the Axiom of Choice. In Section 3 we
describe the work of Gabbay and Pitts, studying abstract syntax with variable
binding in the setting of the permutation model. In Section 4, we discuss how
the very same permutation model is also used to provide an uniform account
of the operational semantics of programming languages where new resources
can be generated at runtime (e.g., dynamic channels in a network topology, or
fresh object creation in object-oriented programming languages). In Section 5
we deal with some recent developments in automata theory, introducing regu-
lar languages with infinite alphabets and memory registers, that have been also
recognised as automata in the permutation model. In Section 6 we see how sev-
eral different theories of names are actually the same theory, by an equivalence
formulated in the language of category theory. In Section 7 we draw conclusions
and sketch some directions for future work.
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2 Urelements and the Axiom of Choice

The so-called Zermelo-Fraenkel axioms (ZF ) are a mathematical theory describ-
ing the usual notion of a set, that is, a uniquely determined collection of elements.
The theory itself does not make a distinction between a set and an element, sim-
plifying the definition of sets whose elements are, in turn, sets (e.g., the set of
all subsets of a set).

The axiom of choice (AC ), was first implicitly formulated by Zermelo in 1904
(see [33] for a detailed account of the history of AC ). Zermelo subsequently stated
this principle in 1908, calling it the “postulate of choice”:

A set S that can be decomposed into a set of disjoint parts A,
B, C, . . . , each containing at least one element, possess at least
one subset S′ having exactly one element in common with each
of the parts A, B, C, . . . considered.

(PC )

Nowadays, AC is usually formulated in terms of “choice functions”, as follows.

For each set S whose elements are pairwise disjoint sets, there
is at least one choice function f , that is, a function f from S to
the union of all the elements of S, such that, for each set A in
S, we have f(A) ∈ A

(AC )

Equivalently, by noting that, in ZF , one can also take the image S′ of a
choice function f , AC is also stated as described below:

For each set S of pairwise disjoint sets, one can form a set S′

containing exactly one element for each set in S.
(AC ′)

Even though the first formalisation of AC is from 1904, it was only in 1922
that independence of AC from ZF was proved by Fraenkel [16]. Such proof was
developed by introducing a mathematical model of the axioms of ZF , where AC
does not hold. The model of Fraenkel, which is a form of permutation model, was
later perfected by Mostowski [34], and called “Fraenkel-Mostowski sets” (FM -
sets). The permutation model is based on a rather different model than ZF set
theory. It introduces an infinite set of urelements or atoms, that are elements
different from the empty set, and having no proper element in turn. Urelements,
therefore, are not sets at all. However, urelements are used to form sets, much
in the same way as the empty set. Furthermore, urelements are equipped with
a group of permutations, whose action is extended to arbitrary sets.

It turns out that AC does not hold in FM . In the remainder of this section,
we will attempt to provide a mild technical introduction to the matter. The
reader who is not interested in the technical matters of our presentation may
skip this part, and continue reading from Section 3, where the developments in
abstract syntax based on FM -sets are presented.

In modern terminology, a concise description of FM -sets is given by finitely
supported permutation actions:
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FM -sets = finitely-supported actions of a group of permutations
of a countable set.

(FM )

The above definition (we will discuss finite support in a moment) expands to
the following idea: after fixing a countable set A of atoms, and a set of bijections
of the form π : A → A, objects of the model are pairs (X, −̂) where X is a ZF
set, and −̂ is an interpretation of permutations as functions from X to X, so that,
for each π, π̂ : X → X is the interpretation, or action, of the permutation π; such
interpretation is required to preserve the identity permutation, and composition
of permutations. Furthermore, such permutation actions are required to have
finite support for each element, meaning that, for each element x, there is a
minimal, finite set of atoms s, such that only for permutations π that affect s it
may happen that π̂(x) is different from x.

Example 1. A canonical way to instantiate the model is to consider the natural
numbers N as A. Let us introduce also two particular sets: the set P(N) of all
finite subsets of natural numbers, and the set N∗ of all finite sequences of natural
numbers. So, for example, we have {1, 2} ∈ P(N) and [1, 2, 2] ∈ N∗. We will define
an interpretation of permutations of N on these two sets, turning them into two
FM -sets. A natural choice on both P(N) and N∗, is to simply apply π element-
wise. Consider the permutations π(1,2), swapping 1 with 2 (and acting as the
identity on each natural number other than 1 or 2), and π(2,3), swapping 2 with
3. We have π̂(1,2)({1, 2}) = {1, 2}, whereas π̂(1,2)([1, 2, 2]) = [2, 1, 1]. Note that
also the set of atoms N has a canonical permutation action, such that π̂(x ∈ N)
is just π(x) itself. Therefore, also the set of atoms is a (canonical) FM -set.

To complete the definition of a model of ZF , one also needs to define func-
tions. In FM -sets, so-called equivariant functions are considered. When X and
Y are sets equipped with permutation actions, a function from X to Y is called
equivariant whenever for all x in X, we have f(π̂(x))) = π̂(f(x)).

Example 2. The function head : N∗ → N mapping a sequence in N∗ to its first
element is equivariant, as permuting a sequence also permutes its first element,
whereas the function sum : N∗ → N mapping a sequence to the sum of its
elements is not equivariant. To see this, consider the permutation π swapping 3
with 5. We have π̂([1, 2]) = [1, 2], and π̂(3) = 5. Thus we have sum(π̂([1, 2])) =
sum([1, 2]) = 3 6= π̂(sum([1, 2]) = π̂(3) = 5.

Indeed, it is possible to prove that all the axioms of ZF hold in FM with
equivariant functions; but the most interesting bit for us is to see a counterex-
ample to the axiom of choice in FM , proving that FM is not a model of AC .
Consider the set of sets {A} containing just one element, the set of atoms A
itself. The permutation action associated to sets of sets is element-wise, just as
in the case of finite sets. A choice function f for {A} has type f : {A} → A, and
in order to fully specify f , it is sufficient to give the value of f(A), since A is
the only element of {A}. However, no matter what value x we fix in f(A) = x,
the resulting function is not equivariant. To see this, first note that, for every
permutation π, we have π̂(A) = A. Now consider a permutation π such that



From urelements to computation 5

π(x) 6= x. Then we have f(π̂(A)) = f(A) = x 6= π̂(x) = π̂(f(A)). Since we did
not make any assumption on f , except equivariance, this is an example (out of
infinitely many) of an FM -set where AC can not be used.

3 Abstract syntax in FM -sets

Abstract syntax is among the most important subjects in theoretical computer
science. Applications span across a wide number of topics, such as parsing and
compiler construction, abstract data types, linguistics, graph theory and so on.
The syntactic form of an abstract syntax tree (AST ) is especially aimed at the
application of definitions and proofs, by the principle of induction on the struc-
ture of terms. AST s cater for a simple and intuitive definition of terms and data
structures, witnessed by their widespread application for data representation,
especially in the style of functional programming.

However, the simplicity of the AST approach to representation of terms
is lost when dealing with variable binding. Variable binding happens when a
syntactic construct introduces a variable (which is bound in the scope of the
construct), aimed at denoting a yet-unknown, arbitrary entity within a given
scope. For example, the “for all” and “exists” constructs of first-order logic are
binding constructs (or binders). The bound variable x in “for all x” denotes
an arbitrary entity satisfying a certain property, and whose meaning is well-
established only in the scope of the “for all” construct. In computer science, the
prototypical example of a language with binders is the lambda calculus [5], where
binding is used to introduce variables denoting arguments of functions. The most
prominent feature of binders is the alpha-equivalence relation: any bound variable
may be substituted with another fresh variable, without changing the intended
meaning of a term. Here, “fresh” means that the variable chosen to replace the
bound one must not appear as a free variable in the scope of the binder. Ideally,
two terms that are alpha-equivalent should be identified, so that any function
defined (e.g., by induction) on terms can not distinguish alpha-equivalent terms.
However, in order to do so, the simple representation of AST becomes more
technically involved, and the elegance of inductive definitions is hindered by
freshness constraints on variables. In fact, mainstream functional languages do
not possess forms of binding in their abstact data type definitions1.

In order to recover a purely inductive style in definitions and proofs about
terms with binders, Gabbay and Pitts, in their seminal paper [17], used induc-
tion principles on FM -sets to describe abstract syntax with binders. The richer
setting of FM -sets allowed the authors to define a novel set constructor (comple-
menting traditional product, union, complementation, etc.) called abstraction,
whose equational laws mimic alpha-conversion. When proofs are done in FM -
sets, there is no need to choose fresh names and substitute variables, as binding
is internal to the model.

1 It is worth noting that after the adoption of the nominal methods that we are
discussing in this section, several extensions of traditional functional languages ap-
peared, where binding and alpha-equivalence are part of the language; see e.g. [41].
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One way to make sense of this idea is to think at FM -sets (equipped with
equivariant functions as explained in Section 2) as an enhancement of classical
set theory, where each element of a set has a finite set of urelements attached,
subject to the action of permutations2. Such finite set coincides with the finite
support that we mentioned in Section 2. In classical set theory, elements can
only be compared for equality; in FM -sets, on the other hand, urelements serve
as a basic “labelling” mechanism that relates different elements to each other in
new and interesting ways.

A set such that every element has an empty support is a classical set; any
function between such sets is trivially equivariant. By this observation, classical
set theory is embedded in FM -sets. On the other hand, elements with non-
empty support are similar to terms with free variables, in that they have an open
“interface” (the finite set of urelements in the support). For example, in abstract
syntax within FM -sets, terms of a language with variables and binding form an
FM -set. Urelements in the support of each term represent its free variables.
The abstraction operator defined by Gabbay and Pitts is able to hide a free
variable, making it bound. The inductive construction of terms with binding is
simply done by adding abstraction as one of the allowed set constructors, in the
traditional inductive definition of terms.

In this context, it is also worth recalling the so-called De Bruijn indices no-
tation, representing terms of the lambda calculus using natural numbers instead
of variables, and choosing a fresh number, namely the least natural number that
has not yet been used, when introducing a bound variable. It is not difficult to
prove [7] that the De Bruijn notation can be also obtained by algebraic construc-
tions in FM -sets, using natural numbers as the set of atoms. This also requires
a definition of abstraction which is different from that of Gabbay and Pitts,
taking care of the choice of a least natural number that we mentioned above.
However, the two notions of abstraction turn out to be isomorphic (thus, these
are essentially the same notion, with a different concrete representation).

We can summarise the point of view introduced by [17] with the slogan

urelements are names (slogan)

Since [17], a FM -set obeying to the finite support condition is called a nomi-
nal set, and the adjective “nominal” has been used to qualify any mathematical
construction that existed in classical set theory, when lifted to nominal sets in
order to cater for binding. Some prominent examples, besides nominal abstract
syntax, are “nominal algebra” [25], “nominal logic” [38], “nominal unification”
[43], “nominal automata theory” [10,2], and “nominal Kleene algebra” [18,24].

2 Additionally, in FM -sets it may happen that the action of some (but not all) per-
mutations affecting urelements in the support of an element leave such element
unchanged. By this, FM -sets also exhibit symmetry (see e.g. [39,8] for more details).
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4 Program semantics in FM -sets

In [29], Milner explained the relevance in computer science of what Needham [36]
had called pure names. A pure name is an entity that has no defined operation,
and can only be compared for identity. That essay is part of an extensive research
programme, following the introduction of the Pi-calculus [30] to assign semantics
to networks of systems with dynamic communication topology.

In the tradition of programming language semantics, the semantic interpre-
tation function, or simply semantics, typically accepts as input a program, its
input data, and some context (such as the definition of global functions and
variables), and returns a value computed by the program upon termination, so
that a program denotes a context-dependent function from input to output. In
this view, the semantics is very often a partial function. The fact that a program
may not terminate is considered the same as the semantics being not defined
on that particular configuration of program, input, and context. However, this
view is limiting when considering interactive systems, where the meaning of
a program is more often defined by the interaction possibilities with the ex-
ternal world, rather than by a function computed by the program itself. The
prototypical example is that of services (e.g., in an operating system, or in a
client/server application scenario). A service is typically not intended to termi-
nate at all. Rather, the functionality that it offers is well-defined by the way
client requests are processed, results are computed and sent back to clients. In-
teractive semantics of systems that communicate has been successfully tackled
by associating to each program a transition system. The semantics of a pro-
gram is given by transitions, defining interaction with the outside world, and
a semantic equivalence induced by these interactions, often called behavioural
equivalence. This was done for the Calculus of Communicating Systems (CCS )
[28], a prototypical parallel programming language. The CCS features constructs
for: synchronous communication on named channels, interleaving parallel exe-
cution, non-deterministic choice, and hiding of channels to make these private
to a sub-process. The behavioural equivalence of choice in the CCS is called
bisimilarity. Based on this type of semantics, so-called finite state methods can
be used for full automatic verification of properties of programs. Procedures for
minimization up-to bisimilarity, mostly based on partition refinement, permit
one to decide semantic equivalence of finite-state programs. Formulas expressed
in the language of modal logics can be machine-checked using classical results in
the area of model checking.

The Pi-calculus is an extension of the CCS that permits dynamic reconfigu-
ration of the communication topology of a program, by unifying communication
channels and data. Processes are allowed to transmit channels, that can subse-
quently be used for communication by the receiving process. The semantics of a
process must therefore cater for the fact that the received channel may have been
private to another process, before communication. To all practical matters, this
is the same as considering the transmitted channel fresh in the receiving process.
If there is a clash between the name of a private channel which is going to be
transmitted, and an existing channel in the receiving process, the transmitted
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channel can be renamed in the receiving process, as soon as a fresh name is cho-
sen. This machinery is strongly reminiscent of alpha-equivalence (see Section 3),
except that the binding operation happens along a transition, rather than in
the syntax of a process. Furthermore, channels of the Pi-calculus can only be
tested for equality, making a channel nothing more than a pure name. By this,
names, and fresh name generation, are the crucial aspects of the semantics of
the Pi-calculus. Side-conditions related to freshness of channels are part of the
definition of the transition system and behavioural equivalence of the language,
resulting in a non-standard theory, where classical finite-state methods such as
minimization and model checking cannot be applied.

In the nineties, a plethora of influential papers appeared, in a research line
aimed at a mathematical theory of the semantics of languages with fresh names,
in such a way that classical results could be easily re-formulated. In this paper,
will not attempt to mention all of them, but rather focus on just two results that
are very relevant for our discussion.

In [15], presheaf categories are used to provide a fully abstract account of the
semantics of the Pi-calculus. We will relate this result to applications of nomi-
nal sets in Section 6. In [31], Montanari and Pistore introduced a semantics for
the Pi-calculus, based on history-dependent automata (HDA) [37]. This work,
strongly oriented to practical applications such as the definition of a minimiza-
tion procedure [12], also led to the implementation of a model checking tool
[11]. HDA are a kind of transition systems featuring a finite set of local regis-
ters3 for each state. Along transitions, names (including those that are freshly
generated) can be stored into registers, and later retrieved. Bisimilarity of HDA
only refers to registers, rather than the names they contain, which is the crucial
step towards a decision procedure. The most interesting bit for our discussion,
relating AC with nominal sets, nominal abstract syntax, and the Pi-calculus,
is that FM -sets were used in [31], under the name of permutation algebras, as
an intermediate representation, when mapping the Pi-calculus into HDA. More
precisely, the semantics of the Pi-calculus is defined in the setting of FM -sets,
by the means of mathematical structures called coalgebras [40], that generalise
transition systems. Coalgebras are equipped with a standard notion of bisimilar-
ity, which in this case encompasses and internalises the side-conditions related
to freshness that Milner had introduced. Recalling our slogan from Section 3,
namely that urelements are names, this is probably not surprising. The men-
tioned coalgebras in the permutation model could as well have been called just
nominal transition systems, and the related behavioural equivalence could have
taken the name of nominal bisimilarity.

3 And a group of permutations on the registers, which is required for minimization
purposes; we are deliberately hiding this aspect under the carpet as it is too technical
for the scope of this paper, but we leave this remark as a pointer for the reader
interested in symmetry in computation (see [8] for more details).



From urelements to computation 9

5 Automata theory in FM -sets

Finite-state automata on finite words (just called automata for brevity, from
now on) are a classical type of finite-state machine in computer science. By the
means of a simple acceptance process, any automaton accepts a regular language,
that is, an automaton denotes a possibly infinite set of finite sequences, or words,
drawn from a finite set of symbols, called alphabet. Even though these structures
describe infinite sets, (languages of) automata are closed under Boolean opera-
tions, and such operations can be performed automatically, and efficiently, on the
corresponding automata. By this, automata are ubiquitous in computer science,
and play an essential role in compilers and interpreters, databases, dictionaries,
text analysis, control systems, network routing, and several other widespread
applications. The theory of automata is complemented by the language of reg-
ular expressions, which provides an intuitive way to specify automata. For each
regular expression there is an automaton implementing the specification, and for
each automaton there is a regular expression specifying it.

A limitation to the expressiveness of automata is finiteness of the alphabet.
This is not a problem in the (classical) applications we mentioned so far, where
the alphabet is intrinsically finite. However, sometimes it would be desirable to
apply the methods of automata and regular expressions to domains where the
alphabet is infinite. One example is attempting to characterise sequences of op-
erations of a system, where each operation depends on the user performing it,
and the set of users may change over time. Another example is trying to de-
note the set of possible traces of an entity moving in an unknown (unbounded,
possibly infinite) space, and communicating its location every now and then.
A third example is the idea, typical of networking security, of defining regular
expressions that discard or accept messages in a node of a network, based on
a finite portion of the previous history of received messages, and on comparing
the content of messages, which is dynamic by its own nature, with previously
stored data. Yet another example is provided by the specification of admissible
executions of security protocols, where the possible observations on the system
depend upon freshly generated, unique nonces, drawn from a theoretically in-
finite domain. Finally, consider protocols for network communication based on
packets, where freshly generated session identifiers are used to separate the (in-
terleaved) communication streams of independent pairs of actors communicating
on the same physical channel.

In [21], Francez and Kaminski defined finite-memory automata (FMA). These
automata accept words drawn from an infinite alphabet, using a global, finite set
of memory registers apt to store symbols of the alphabet. Along the acceptance
process, a word is read symbol by symbol; each symbol is compared to those
that are in the registers; if a new symbol is found, the automaton may store it
in a register, replacing another symbol. One thing that should be noted is that
these machines do not possess finite states in the classical sense, as the possible
register assignments along the acceptance process are unknown and not bounded
a priori. Nevertheless, FMA retain good decidability properties. In particular,
for the sub-class of deterministic FMA, decidability of all boolean operations
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is retained, in machines that accept and use previously unknown data. We can
make sense of decidability in this context by observing that an FMA is a ma-
chine with two different kinds of memory: one stores the state of the automaton,
belonging to a finite set; the other assigns identity to data that the machine
knows at runtime. In order to intersect or join two FMA, it is only necessary
to reason about states, as memory assignments can be dealt with in a symbolic
way using registers.

Since [21], research on finite memory automata and their variants, belonging
to the family of register automata, is still ongoing. However, from what we said
about registers, and decidability, it is clear that there is some resemblance, that
we are going to discuss below, between FMA and HDA. Furthermore, symbols
of the alphabet in FMA can only be compared for equality, and the acceptance
process can not make a distinction between different fresh symbols, since it can
only recognise that a symbol is unknown, and then store it in a specific register.
In other words, symbols behave like pure names, and fresh symbols are subject
to a form of alpha-equivalence. Again, recalling that urelements are names, it
does not come as a surprise that, as shown in [10,2], finite-memory automata are
equivalent to automata defined in FM -sets, having the set of atoms as alphabet.
Referring to our previous examples, the symbols of such an alphabet may denote
names of users, names of locations, data pointers, nonces, session identifiers, etc.

However, it is worth noting that automata defined in FM -sets are not finite,
as the action of permutations forces any non-trivial FM -set to be infinite; but
it was also proved in [10] that one may equip HDA with an acceptance process,
and with decision procedures for boolean operations, so that the obtained class
of automata is equivalent to FMA. Some results on regular expressions already
appeared (see e.g., [18], [24], [26]), even though quite a number of classical results
in automata theory still have to be explored in the new setting.

6 Category theory as a unifying framework

We mentioned concepts like “abstract syntax in FM -sets”, “program seman-
tics in FM -sets” and “automata theory in FM -sets”. But what does it mean,
that some mathematical concept is “in FM -sets”? To a first approximation, it
means that “the same” constructions are done in the new model, but how is
this formalised? One could go ahead and say that “the same” means that, in the
mathematical definition of every concept of a given theory, the words “set” and
“function” should be replaced by “named set” and “equivariant function”. This
is still unsatisfactory, for example because the already mentioned name abstrac-
tion operation is not available in set theory. Thus nominal abstract syntax as
defined by Gabbay and Pitts has not been obtained by merely replacing “set”
with “nominal set”. There is a gap between the two models and still there is
some similarity. The mathematical language of category theory comes to help,
by providing general machinery to describe concepts, which can be instantiated
in different categories. Examples of categories in our context are: ZF -sets and
ordinary functions, nominal sets and equivariant functions, named sets, presheaf
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categories. In category theory, for example, one describes abstract syntax using
algebras [27], or program semantics using coalgebras [40]. Algebras and coalge-
bras instantiated in classical sets correspond to classical abstract syntax and
to labelled transition systems, respectively. Algebras and coalgebras in nominal
sets, on the other hand, provide abstract syntax with binding, and program se-
mantics with generation of fresh names. Coalgebras in named sets correspond to
history-dependent automata.

Let us zoom out a little bit and look at some results in this area. The work by
Fiore, Plotkin and Turi [13] uses so-called presheaf categories to provide abstract
syntax with binders. Roughly, a presheaf category is a typed set theory, often
with infinite types. To each type is associated a set of elements of that type4.
For the case of binding, finite sets (of variables) are used. For each finite set s
of variables, elements of type s are terms having their free variabiles included
in s. Presheaf categories where also used for the semantics of the Pi-calculus
in [15]. We already mentioned the results of [31,12], about partition refinement
algorithms to decide semantic equivalence. In these papers, HDA are formulated
as coalgebras in the category of named sets, faithfully representing semantics of
the Pi-calculus.

These developments can be all considered part of the nominal computation
framework. For this, one first needs to keep in mind that a complete description
of Fraenkel’s permutation model is not just (FM ) as given in Section 2. As
typical in category theory, morphisms must be considered, leading to a more
thorough formulation:

FM -sets = finitely-supported actions of a group of automor-
phisms of a countable set, with permutation-preserving-and-
reflecting functions as morphisms.

(FM ′)

After this, several conclusions follow. First of all, nominal sets, named sets,
and the sheaves in one of the categories used in [15] are the same model, by
a category-theoretical equivalence (see [19,14] for details). A categorical equiv-
alence between two categories of models C and D establishes that, for every
model M in C, there is a model M (D) in D, and that for each model N in D
there is a model N (C) in C, so that M is isomorphic to (M (D))(C) and N is
isomorphic to (N (C))(D). In other words, the two models can be translated to
each other back and forth without loss of information.

The significance of such result is two-fold. On the one hand, choosing one of
many equivalent models does not change the features of the models that can be
expressed. On the other hand, different specification formalisms may have differ-
ent applications. In fact, nominal sets may be very convenient for specification
purposes, given their resemblance to ordinary sets. A nominal set is a collection
of elements, with the added notion of permutation action, and an equivariant
function is just a function obeying to specific constraints. However, it is only

4 There also are operations mapping a type to another, playing the same role as
permutations in FM ; in our mild introduction, we omit the technical details, referring
the interested reader to the references for more details.
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when resorting to named sets that finite representations, suitable for algorithms,
are obtained. Neither presheaf categories nor nominal sets are well-suited for the
purpose. A thorough discussion of finite representability of algebraic and coalge-
braic constructions in nominal sets, by the means of named sets, can be found in
[8]. Presheaf categories, on the other hand, have the advantage of generality. As
we said, a presheaf model is a typed set theory, and nominal sets are equivalent
to a specific kind of presheaf model, typed by finite sets. But the types can be
richer, yielding theories with more features than just pure names. For example,
in [3], finite graphs, that is, relations, are used as types to represent syntax and
semantics in the presence of so-called explicit fusions, that is, explicit constraints
in a language that make two names denote the same entity. Names are no longer
pure, as they may be related to each other by this basic form of aliasing. One
may wonder if finite representations similar to named sets and HDA are avail-
able also for these richer theories. This is not possible for all sorts of presheaf
categories, but in some interesting cases, that include finite graphs and relations,
it is done, by resorting to basic building blocks known as representable objects,
and to permutation groups over them (see [6]). These finite representations are
used in [32,4] to provide formal semantics and finite representations of explicit,
dynamic network topologies in a novel variant of the Pi-calcululs, and causal
relationships between events in Petri nets. Similarly, in [2], in the context of
automata, generalised forms of nominal sets are defined, where different kinds
of permutation models give rise to different notions of name, equipped e.g., with
partial orders, or relations, and the same finite representations of [6] are used to
cater for automata-theoretic decision procedures.

Concluding, no model can be “better” than the others, as they are all equiv-
alent, and each model has specific contexts of applications. However, the cate-
gorical formulation, and the equivalence results, shed light on what is essential,
and what is accessory, in each model, and pave the way to more general results
and novel applications.

7 Beyond pure names

As we saw, a novel theory of computation has been derived from the permutation
model, way after its publication as a counterexample in an abstract mathematical
proof. Nowadays, these developments are described as “nominal computation”,
and there is active research on its applications. Classical research questions,
such as computability via Turing machines, are finding their way in this new
area of computation theory [1,22], as well as algebraic description of terms with
binding over richer algebraic structures than just pure names [20], coalgebraic
interpretations of nominal regular expressions [23], alternative, more powerful
interpretations of freshness [42,35], theories of languages of infinite words aimed
at automata-theoretic model checking [9], and several other developments scat-
tered along many research groups.

This is just the surface of a much richer theory. In nominal sets, names are
solely characterised by identity. As we said, bending this assumption, variants of
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the theory are obtained, that have, as a primitive concept, e.g., a universal net-
work connecting elements (think of social networks), or a universal partial order
(such as, events and causal dependencies). This observation, and the categorical
understanding of the constructions that have been done in nominal sets, pave
the way to very general frameworks for the definition and finite representation
of the syntax, semantics, logics, automata theory, and automated verification of
dynamic structures. Much of the theory is yet to be developed. We expect that
this will be done soon by the enlarged research community, advancing the state
of the art of theoretical computer science in surprising and useful ways.

It is worth recalling once again that all these developments took a century
to stem, from the permutation model that Fraenkel developed, in search of a
proof of independence of the axiom of choice. We consider this a relevant lesson,
among many similar ones, in the history of Science.

Acknowledgments. The author wishes to thank Matteo Sammartino for sev-
eral interesting discussions on history-dependent automata, and for helping with
proofreading this paper.
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