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Abstract. Customer order fulfillment at distribution centers (DC) is in-
creasingly necessitated by innovative strategies to maximize operational
performance that are primarily driven by cost and service level under
supply chain variability. In order to better understand the trade-offs,
in this paper, a generic computational model is developed to estimate
forklift travel times for DCs with any arbitrary floor space and loading
docks. In particular, travel times are modelled as random variables and
the moments of the probability distribution of travel times are estimated
and used as inputs to analytical queueing model and discrete event sim-
ulation model. Results show that the analytical and simulation models
are within 3% under different demand scenarios. These models are used
to determine the impact of work-force capacity on key performance mea-
sures such as Truck Processing Time (TPT) and Labor Hours Per Truck
(LHPT). The workforce capacity for different demand scenarios is deter-
mined using three different approaches - Target Utilization Level, Square
Root Staffing (SRS) rule (adapted from call center staffing) and Opti-
mization. The result from these models indicate that adapting workforce
capacity to match varying demand can reduce cost by 18% while main-
taining de-sired service level.

Keywords: Distribution center - Workforce capacity - Simulation.

1 Introduction

Supply chain variability can be caused by product seasonality, batch produc-
tion and transportation, product consolidation or value added processing. DCs
buffer the material flow in supply chains to accommodate this variability. In-
coming items brought to the DC are unloaded at the receiving docks (receiving)
and put into storage (storing). Outgoing items are retrieved from storage (order
picking), processed and shipped to customers through the shipping docks (ship-
ping). Resources such as space, labor, and equipment are allocated to different
DC functions following organizational policies to achieve desired operational per-
formance in terms of capacity, throughput and service at minimum cost. DCs
can adapt to varying demand by adjusting workforce capacity to meet desired
service level [1,2].

Several authors had investigated the effects of warehouse design and control
on operational performance and developed analytical and simulation models for
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performance analysis. Pandit and Palekar investigated the effects of warehouse
design on response time and suggested a method for optimal design based on
response time [3]. Chew and Tang presented a travel time model that evaluates
performance of an order picking system with consideration to order batching and
storage allocation strategies [4]. Graves et al. evaluated warehouse performance
for several sequencing and class based storage policies using continuous analyt-
ical models and discrete evaluation procedures, [5]. Bozer and White modelled
the performance of an end-of-aisle order picking system by deriving analytical
expressions and developed a design algorithm to determine the optimal con-
figuration [6]. Koster proposed a modeling and approximate analysis method
for a pick-to-belt order picking system based on Jackson network modeling and
analysis [7]. Lee presented an analytical method for the stochastic analysis of a
unit load AS/RS [8]. Hur et al. presented an analytical model for the stochastic
analysis of a unit load AS/RS without assuming any specific distribution for the
travel time of the S/R machine. [9]. The existing literature has predominantly fo-
cused on warehouse design & control using travel time models and performance
analysis in terms of throughput, resource utilization and storage strategy for
order picking systems. As labor cost can be a significant component of variable
cost in DCs, it is evident that there is a need for research to explore the im-
pact of workforce capacity on DC performance by considering cost and service
level trade-off for varying demand scenarios. This work has been motivated by
paucity of models and tools that can be used by DC operations managers for
workforce planning in practice. Hence, a decision model that integrates critical
operational performance measures to evaluate DC performance and workforce
capacity policies under varying demand scenarios is developed.

2 Model and Assumptions

A large scale, non-automated, rectangular DC is analyzed. A rectangular shape
is the optimal geometrical shape for storing rectangular units such as pallets
[10]. The storage locations are characterized by single-deep racks and drive-in
racks. The racks are arranged back-to-back, to form a block, parallel to the
dock of the DC, such that space between blocks form aisles. The blocks are
arranged in a rectangular grid to form a network of aisles through which material
handling devices such as forklifts travel as shown in Figure 2 (a) [3]. A generic
computational model with length (L), width (W), aisle-width (A) and number of
docks (N) as parameters is developed to estimate forklift travel times in DCs. The
model is capable to evaluate DCs with a size between 60,000 sq.ft (small scale)
and 500,000 sq.ft. (large scale) and up to 45 docks. A probability distribution
is fit to the forklift travel times and moments of the distribution is provided as
input to the analytical queueing model of DC. The skewness profile of forklift
travel time distribution against distance from center dock and L & W of the DC is
investigated. It is observed that for a given W, skewness profile is represented by
a series of peaks and valleys with decreasing value as L increases and for a given
L, skewness profile remains nearly constant as W increases as shown in Figure
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2 (b). The skewness for forklift travel time distributions fluctuate significantly
from dock 1 (end dock) and becomes negligible towards dock 23 (center dock)
and remains negligible from the center dock to dock 45 (end dock) as shown in
Figure 2.
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Fig. 1. DC Layout and Skewness of Travel Time Distribution against L and W of DC
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Fig. 2. Skewness for Travel Time Distribution with Distance from Center Dock

2.1 DC Queueing System

The outbound operations in the DC begins by “accumulation” of customer orders
from storage area as pallet loads in the dock to form a truck load. The pallet
loads then undergo a “wrapping” process to secure items in the pallet after
accumulation. The pallet loads are then “inspected” to verify that items in the
pallets have completed all processes before loading. Pallets are then “loaded”
onto the truck for shipping. The process time associated with accumulation,
wrapping, inspection and loading are denoted by Accumulation Time (AT) or
Forklift Travel Time, Wrapping Time (WT), Inspection Time (IT) and Loading
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Time (LT) respectively. The process time for a truck load, denoted by Truck
Processing Time (TPT), is the sum of AT, WT, IT and LT. The operational
productivity is expressed by a metric called Labor Hours Per Truck (LHPT).
The movement of pallets are done using forklifts and pallet jacks. It is assumed
that forklifts perform only accumulation operations and pallet jacks are used by
wrapping team, inspection team and loading team for wrapping, inspection and
loading respectively. The queueing model is shown in Figure 3. The analytical
queueing model facilitates development and evaluation of workforce capacity
policies for the DC for several demand scenarios by providing a performance
estimate for each policy-scenario combination.

Accumulation AT Wrapping WT Inspection IT Loading LT

TPT=AT+WT +IT+LT

Fig. 3. DC Queueing System

2.2 DC Analytical Queueing Model

This system can be modelled as an open network queueing system with a First
Come First Serve (FCFS) queue discipline and an infinite queue space. The
customer orders for accumulation arrive at a rate ra in the form of palletized
truck loads. Forklifts, wrapping team, inspection team and loading team act as
servers. The system is characterized by a series of G/G/m queues for accumula-
tion, wrapping, inspection and loading with general interarrival and process time
distributions. The following parameters are provided as input to the analytical
queueing model: ra - rate of arrivals in truck load per unit time; u - Workforce
Utilization; ta - Average time between arrivals (in minute); ca - Arrival CV; cd
- Departure CV; te - Mean effective process time (in minute); ce - CV of effec-
tive process time. The performance of the queueing system is characterized by
the following parameters and are considered as the output from the analytical
queueing model: m - Workforce level in a process; CTq - Expected waiting time
in queue for a process (in minute); CT - Expected time for a process (in minute);
TPT - Truck Processing Time (in minute); WIP - Average work-in-process level
at process (in truck load); WIPq - Expected WIP in queue (in truck load); ATL
- Aver-age Truck Load; LHPT - Labor Hours Per Truck [11].

3 Performance Analysis using Analytical Models

The workforce capacity of the DC is analyzed for several demand scenarios that
range from a low demand to a high demand for a given process time at 70% target
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workforce utilization for all the process using the analytical queueing model. It
is concluded that TPT decreases steadily as workforce capacity increases and
LHPT increases linearly with workforce capacity as shown in Figure 3 (a) and
(b). This establishes that as more workforce is deployed to process a truck load,
the time to process the truck load decreases (service level improves) but labor
hour investment on a truck load increases (cost increases).

Truck Processing Time for Varying Demand Scenarios Workforce Capacity for Varying Demand Scenarios
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Fig. 4. Truck Processing Time for Varying Demand Scenarios and Workforce Capacity
for Varying Demand Scenarios

The Square Root Staffing (SRS) rule is applied in call centers to determine
the appropriate staffing levels for an offered load (R) and Quality of Service, ()
and is approximated as R + SVR, where, R is the amount of work that arrives
in the system in unit time. The value of 3 signifies the operational regime of the
system and can be a Quality Driven (QD) regime with emphasis on service level
over efficiency, Efficiency Driven (ED) with emphasis on efficiency over service
level or Quality Efficiency Driven (QED) regime with trade-off between service
level and efficiency. Larger the 8 value, better the service level, [12,13].

The workforce capacity the DC queueing system is computed by the appli-
cation of SRS rule for ED (5 =0), QD (8 = 1) and QED (8 = 0.5) operational
regimes. It is observed that workforce capacity increases steadily as DC operates
from an ED regime towards a QD regime as shown in Figure 5. This implies
that as more workforce is deployed to process a truck load, the service level of
DC improves.

4 Performance Analysis using Simulation Model

The DC queueing system is modelled using Simio simulation software for a given
interarrival & process time distribution and workforce capacity. The DC simu-
lation model is run for 500 hours with 30 replications after a warm-up period
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Workforce Capacity from Square Root Staffing Rule
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Fig. 5. Workforce Capacity from SRS Rule for ED, QED & QD Operational Regimes

of 100 hours. The results from simulation model is compared with that of the
analytical queueing model. The analytical and simulation model results for cy-
cle time and workforce utilization are highly comparable as shown in Figure 4
(a) and (b). The TPT and LHPT are determined with -3.13% and -6.49% error
respectively from the simulation model with reference to the analytical queueing
model.

Cycle Time - Analytical v/s Simulation Workforce Utilization - Analytical v/s Simulation
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Fig.6. DC Cycle Time Comparison: Anaytical v/s Simulation and DC Workforce
Utilization Comparison: Analytical v/s Simulation

A simulation-based multi-objective optimization model is developed using
OptQuest for Simio add-in. The optimal scenarios for workforce capacity that
minimizes TPT and operating cost subject to constraints for a target workforce
utilization policy is determined using pattern frontier optimization.

Minimize: TPT and Operating Cost subject to:

— 1 < Forklift > 25
— 1 < Wrapping Team > 6
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— 1 < Inspection Team > 8
— 1 < Loading Team > 10
—u<0.70

OptQuest optimizes across all responses and finds the set of scenarios that
are optimal, rather than a single optimal solution based on weights, [15]. The
model is run for 500 hours after a warm-up period of 100 hours with 30 replica-
tions for 100 scenarios. It is observed that there are six optimal scenarios with
TPT , LHPT and operating cost that range between 628.24 minutes, 340 labor
hours & 5915.95 and 689.66 minutes, 279 labor hours & 5000.07 respectively
corresponding to a workforce capacity that range between 43 to 33 as shown in
Figure 7. It can be concluded from the optimal scenarios that the desired service
level can be maintained by adapting workforce capacity to match demand and
thereby reducing operating cost by up to 18%.

Optimal Scenarios - Workforce Capacity
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Fig. 7. Optimal Scenarios - Workforce Capacity

5 Conclusions

A decision model is developed to evaluate the impact of workforce capacity on
DC performance in terms of Truck Processing Time and Labor Hours Per Truck
by considering cost and service level trade-off for varying demand scenarios. In-
dustrial practitioners can use this model for tactical and operational decisions in
DCs by application and integration of travel time computation model, analyti-
cal and/or simulation model based on the DC geometry considered. The desired
service level can be maintained and opportunities to reduce operating cost can
be identified by adapting workforce capacity to match demand. Delays in truck
processing significantly impacts detention time, the time spent waiting for a
truck to be loaded. Increased detention time implies lost revenue by paying late
fees to the shipper or missing an opportunity to secure another load. The models
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can facilitate industrial practitioners to negotiate for better pricing and terms of
contract by reducing detention time substantially. The models presented in this
work can be extended to automated DC with conveyors and the resulting energy
footprint can be estimated [14,15]. Ongoing work is focusing on implementing
these models in a userfriendly spreadsheet tools for industrial practitioners.
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