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Abstract: This paper proposes a Markov Decision Process (MDP) approach to compute the
optimal on-line speed scaling policy to minimize the energy consumption of a processor executing
a finite or infinite set of jobs with real-time constraints. The speed policy is computed off-line
but used on-line. We provide several qualitative properties of the optimal policy: monotonicity
with respect to the jobs parameters, comparison with on-line deterministic algorithms. Numerical
experiments show that our proposition performs well when compared with off-line optimal solu-
tions and out-performs on-line solutions oblivious to statistical information on the jobs. Several
extensions are proposed in appendix to take into account the cost of processor speed changes and
of task context switches, as well as non-convex power functions to model power leakage.
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Sélection en-ligne de la vitesse minimisant l’énergie dans les
systèmes temps-réels

Résumé : Cet article propose d’utiliser la technique des processus de décision markovien
(PDM) pour calculer la politique optimale en-ligne de choix de vitesses afin de minimiser l’énergie
consommée par un processeur exécutant un ensemble de tâches avec des contraintes temps-réel.
La politique de vitesse est calculée avant l’exécution du système temps réel (hors ligne), mais
utilisée en ligne. Nous démontrons plusieurs propriétés qualitatives de la politique optimale :
monotonie par rapport aux paramètres des tâches, comparaison avec les algorithmes détermin-
istes. Les expérimentations montrent que notre méthode est efficace et proche de la solution
optimale hors-ligne, et qu’elle est plus performante que les solutions en-ligne qui ne prennent pas
en compte les informations statistiques sur les tâches futures. Nous présentons plusieurs exten-
sions pour prendre en compte les coûts de changement de vitesse du processeur et de changement
de contexte entre les tâches, ainsi que les fonctions non convexes de puissance consommée pour
modéliser les fuites énergétiques.

Mots-clés : Optimisation, systèmes temps réel, processus de décision markovien, ajustement
dynamique de la fréquence et du voltage
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1 Introduction

Minimizing the energy consumption of embedded system is becoming more and more important.
This is due to the fact that more functionalities and better performances are expected from such
systems, together with a need to limit the energy consumption, mainly because batteries are
becoming the standard power supplies.

The starting point of this work is the seminal paper of Yao et al. [1] followed by the paper of
Bansal et al. [2], which both solve the following problem: Let (ri, ci, di)i∈N be a set of jobs, where
ri is the release date (or arrival time) of job i, ci is its WCET (or workload) i.e., its execution
time by the processor operating at its maximal speed, and di is its relative deadline, i.e., the
amount of time given to the processor to execute job i.

The problem is to choose the speed1 of the processor as a function of time s(t) such that the
processor can execute all jobs before their deadlines, and such that the total energy consumption
J is minimized. In our problem, J is the dynamic energy consumed by the processor: J =∫ T

0
j(s(t))dt, where T is the time horizon of the problem (in the finite case) and j(s) is the power

consumption when the speed is s.

This problem has been solved in Yao et al. [1] in the off-line case, i.e., when all jobs are
known in advance, and when the power function j(·) is a convex function of the speed. But of
course, the off-line case is unrealistic.

Several solutions for the on-line case (only the jobs released at or before time t can be used to
select the speed s(t)) have been investigated by Bansal et al. in [2]. The authors prove that the
on-line algorithm, called Optimal Available (OA), has a competitive ratio of αα when the power
dissipated by the processor working at speed s is of the form j(s) = sα. In CMOS circuits, the
value of α is typically 3. In this case, (OA) may spend 27 times more energy than an optimal
schedule in the worst case. The principle of the on-line algorithm (OA) is to choose, at each
time t, the smallest processor speed such that all jobs released at or before time t meet their
deadline, under the assumption that no more jobs will arrive after time t.

However, the assumption made by (OA) is questionable. Indeed, the speed selected by (OA)
at time t will certainly need to be compensated (i.e., increased) in the future due to jobs released
after t, incurring an energetic inefficiency when the j function is convex. In contrast, our intuition
is that the best choice is to select a speed above the one used by (OA) to anticipate on those
future job arrivals.

The goal of the paper is to give a precise solution to this intuition by using statistical knowl-
edge of the job arrivals (that could be provided by the user) to select the speed that optimizes
the expected energy consumption. Other constructions based on statistical knowledge have been
done in [3, 4] in a simpler framework, namely for one single job whose execution time is uncer-
tain, or in [5] by using heuristic schemes. In this paper, we show that this general constrained

1Different communities use the term “speed” or “frequency”, which are equivalent for a processor. In this paper,
we use the term “speed”.
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optimization problem can be modeled as an unconstrained Markov Decision Process (MDP) by
choosing a proper state space that also encodes the constraints of the problem. In particular,
this implies that the optimal speed at each time can be computed using a dynamic programming
algorithm and that the optimal speed at any time t will be a deterministic function of the current
state at time t.

Application in Practical Scenarios

Our approach is usable in several practical cases. The first one concerns real-time systems whose
tasks are sporadic, with no a priori structure on the job release times, sizes, and deadlines.
In such a case, a long observation of the jobs features can be used to estimate the statistical
properties of the jobs: distribution of the inter-release times, distribution of the job sizes, and
deadlines.

Another case where our approach is efficient is for real-time systems consisting of several
periodic tasks, each one with some randomly missing jobs. The uncertainty on the missing
jobs may be due, for example, to faulty sensors and/or electromagnetic interference causing
transmission losses.

These two cases are explored in the experimental section where our solution is compared
with current solutions. Our numerical simulations report a 5% improvement in the sporadic
tasks case, and 30% to 50 % improvement in the periodic tasks case.

Outline of the Paper

In the first part of this paper (§ 2), we present our job model and the problem addressed in the
paper. In a second part (§ 3), we construct a Markov decision process model of this problem. We
investigate its state space and its complexity (§ 2.3), we propose an explicit dynamic programming
algorithm to solve it when the number of jobs is finite (§ 3.1), and a Value Iteration algorithm [6]
for the infinite case (§ 3.2). We prove that both solutions have stochastic monotonicity properties
with respect to the sizes and the deadlines of the jobs (§ 3.4). Finally, we compute numerically
the optimal policy in the finite and infinite horizon cases, and compare its performance with
off-line policies and “myopic” policies like (OA), oblivious to the arrival of future jobs (§ 4).
Moreover we present, in appendix, some generalizations such as taken into account the cost of
processor speed changes, the cost of task context switches, and the non-convex power functions
of model power leakage.

2 Presentation of the problem

2.1 Jobs, Processor Speeds, and Power

We consider a real-time system with one uni-core processor that executes real-time jobs, sporadic
and independent. Each job i is defined by 3 integer values: (ri, ci, di) where ri is the release time,
ci is the WCET, and di is the relative deadline. We assume that all jobs have a bounded size
and a bounded deadline:

∃C s.t. ∀i, ci ≤ C, ∃∆ s.t. ∀i, di ≤ ∆.

RR n° 9101



6 Gaujal & Girault & Plassart

We further assume that several jobs may arrive simultaneously but that the total work brought
to the processor at time t is also bounded by C.

The CPU processing speed s(t) can vary in time over a finite number of rational speeds
between 0 and smax: s(t) ∈ S = {0, s1, ..., sk, smax}, smax being the maximal processor speed.

With no loss of generality, we will scale the speeds (as well as theWCETs), so that s1, ..., sk, smax

are all integer numbers. Typically, a set of admissible speeds {0, 1/4, 1/2, 3/4, 1} is replaced by
the set {0, 1, 2, 3, 4}, while all WCETs are multiplied by 4. This is done to avoid manipulating
rational numbers.

We consider that the power dissipated by the CPU working at speed s(t) at time t is j(s(t)), so
that the energy consumption of the processor from time 0 to time T is J =

∫ T
0
j(s(t))dt. Classical

choices for the power consumption j are convex increasing functions of the speed (see [1, 2]),
based on classical models of CMOS circuits for power dissipation, or star-shaped functions [7]
to further take into account static leakage. Here, the function j is arbitrary. However several
structural properties of the optimal speed selection will only hold when the function j is convex.
In the numerical experiments (§ 4), several choices of j are used, to take into account different
models of power consumption.

For the sake of simplicity, we only consider the following simple case: context switching time
is null, speed changes are instantaneous, and the power consumption function j(.) is convex.
However, preemption times, time lags for speed changes as well as non-convex energy costs can
be taken into account with minimal adaptation to the current model. A detailed description of
all these generalizations is available in appendix of this report.

2.2 Problem Statement

The objective is to choose at each time t the speed s(t), in order to minimize the total energy
consumption over the total time horizon, while satisfying all the real-time constraints. Further-
more, the choice must be made on-line, i.e., it can only be based on past and current information.
In other words, only the jobs released at or before time t are known.

The information (or history) H(t) at time t is the set of all the past and current jobs together
with the past speeds selection:

H(t) = {(ri, ci, di)|ri ≤ t} ∪ {s(u), u ≤ t} (1)

Notice that in this model, unlike in [3, 4], the workload ci and the deadline di are known at the
release time of job i 2.

The on-line energy minimization problem (P) is:

Find online speeds s(t) (i.e. s(t) can only depend on the history H(t)) and a scheduling policy
R(t) to minimize E

∫ T
0
j(s(t))dt under the constraint that no job misses its deadline.

Since all release times and job sizes are integer numbers, the information H(t) only changes
at integer points, if we consider that the speed s(t) can only change at integer points. In the
following we focus on integer times t ∈ N.

Let (s∗, R∗) be an optimal solution to problem (P). Since the energy consumption does
not depend on the schedule (preemption is assumed to be energy-free) and since the Earliest

2When the actual workload can be smaller than WCET, our approach still applies by modifying the state
evolution Eq. (2), to take into account early termination of jobs.

Inria
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Deadline First (EDF) scheduling policy is optimal for schedulability [8], then (s∗, EDF ) is also
an optimal solution to problem (P). In the following, we will always assume with no loss of
optimality that the processor uses EDF to schedule its jobs. This implies that the only useful
information to compute the optimal speed at time t, out of the whole history H(t), is simply the
remaining work. The remaining work at time t is an increasing function wt(·) such that wt(u)
is the amount of work that remains to be done before time t+ u. Since all available speeds, job
sizes and deadlines are integer numbers, the remaining work wt(u) is an integer valued càdlàg
staircase function.

This is illustrated in Figure 1 that shows the set of jobs released just before t= 4, namely
J1 = (0, 2, 4), J2 = (1, 1, 5), J3 = (2, 2, 6), J4 = (3, 2, 4), J5 = (4, 0, 6), as well as the speeds chosen
by the processor up to time t= 4: s0 = 1, s1 = 0, s2 = 2, s3 = 1. Function A(t) is the amount of
work that has arrived before time t. Function D(t) is the amount of work that must be executed
before time t. This requires a detailed explanation: the first step of D(t) is the deadline of J1

at t= 0+4 = 4; the second step is for J2 at t= 1+5 = 6; the third step is for J4 at t= 3+4 = 7;
the fourth step is for J3 at t = 2+6 = 8. Hence the step for J4 occurs before the step for J3.
This is because Figure 1 depicts the situation at t= 4. At t= 3 we would only have seen the
step for J3. Finally, function e(t) is the amount of work already executed by the processor at
time t; in Figure 1, the depicted function e(t) has been obtained with an arbitrary policy (i.e.,
non optimal). Finally, the remaining work function wt(u) is exactly the portion of D(t) that
remains “above” e(t). In Fig. 1, we have depicted in red the staircase function wt(u) for t = 4.

t
• • • • • • • • • •

work

•
•
•
•
•
•
•
•

•
•
• •
• •
•
• •
•
• •

A(t)

•
•
• • •

• •
•
• •
•
•

D(t)

•
• •

•
•

e(t)

• • • •
• •
•
• wt(u)

(O
A)

Figure 1: Construction of the remaining work function wt(·) at t = 4, for jobs J1 = (0, 2, 4), J2 =
(1, 1, 5), J3 = (2, 2, 6), J4 = (3, 2, 4), J5 = (4, 0, 6), and processor speeds s0 = 1, s1 = 0, s2 =
2, s3 = 1. A(t) is the amount of work that has arrived before time t. D(t) is the amount of
work that must be executed before time t. e(t) is the amount of work already executed by the
processor at time t.

Remark 1. The on-line algorithm Optimal Available (OA) mentioned in the introduction is also
based on the remaining work function: The speed of the processor at time t is the smallest slope
of all linear functions above wt. This is illustrated in Figure 1: the speed that (OA) would choose
at time t = 4 is the slope of the green dotted line marked (OA); in the discrete speeds case (finite
number of speeds), the chosen speed would be the smallest available speed just above the green
dotted line.

Since the remaining work function wt is the only relevant information at time t, out of the
whole history H(t), needed by the processor to choose its next speed, we call wt the state of the
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8 Gaujal & Girault & Plassart

system at time t.

2.3 Description of the State Space

To formally describe the state space W (i.e., all the possible remaining work functions) and the
evolution of the state over time, we introduce several constructors.

Definition 1. We define the following operators:

– The time shift operator Tf is the shift on the time axis of function f , defined as: ∀t ∈
R, Tf(t) = f(t+ 1).

– The positive part of a function f is f+ = max(f, 0).

– The unit step function (Heaviside function), denoted Ht, is the discontinuous step function
such that ∀u ∈ R:

Ht(u) =

{
0 if u < t
1 if u ≥ t

Lemma 1. Let (rn, cn, dn) be a job that arrives at time t = rn. If the processor speed at time
t− 1 is st−1, then at time t the remaining work function becomes:

wt(·) = T
[
(wt−1(·)− st−1)+

]
+ cnHdn(·) (2)

Proof. Between t− 1 and t, the processor working at speed st−1 executes st−1 amount of work,
so the remaining work decreases by st−1. The remaining work cannot be negative by definition,
hence the term (wt−1(·)− st−1)+. After a time shift by one unit, a new job is released at time t,
bringing cn additional work with deadline t+ dn, hence the additional term cnHdn(·).

Let us illustrate the state change over an example. In Fig. 2, a new task arrival leads to a
modification of the remaining work. The red line corresponds to the previous remaining work
function in rn, and the blue line corresponds to the new remaining work function. This new state
has been modified by the job arrival (rn, cn, dn). A quantity sn−1 of work has been executed by
the processor.

The state space is finite, as stated by the following proposition. This proposition also gives the
size of the state space, which will play a major role in the complexity of the dynamic programming
algorithm to compute the optimal speed.

Proposition 1. If C is the maximal size of a job and ∆ its maximal deadline, then the size
Q(C,∆) of the state space W is:

Q(C,∆) =

C∑
y1=0

2C∑
y2=y1

3C∑
y3=y2

· · ·
∆C∑

y∆=y∆−1

1. (3)

It can be computed in closed form3:

Q(C,∆) =
1

1 + C(∆ + 1)

(
(C + 1)(∆ + 1)

∆ + 1

)
(4)

≈ e√
2π

1

(∆ + 1)3/2
(eC)∆ (5)

3In Eq. (4), the notation
(n
k

)
is the binomial coefficient.

Inria
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t
• • • • • • • •

r n
−

1

r n

r n
+
d
n

r n
+

∆

work

•
•
•
•
•
•
•

e(rn−1)

e(rn)

•

•
wrn−1

•

•

wrn

sn−1

cn

cn

dn

•

•

Figure 2: Task arrival at time rn and the corresponding state change. The red line corresponds
to the previous remaining work function. The blue line corresponds to the new remaining work
function.

Proof. The proof is postponed to appendix E.

3 Markov Decision Process Solution

Since the state spaceW is finite, one can effectively compute the optimal speeds in each possible
state. In this section, we provide such algorithms to compute that optimal speed selection in
two cases: when the time horizon is finite and when it is infinite. In the finite case, we minimize
the total energy consumption, while in infinite case we minimize the average energy consumed
per time unit.

In both cases, we compute offline the optimal policy σ∗t that says which speed the processor
should use at time t in all its possible states. At runtime, at each time t, the processor chooses
the speed that corresponds to its current remaining work w as s := σ∗t (w).

The algorithms to compute the policy σ∗ are based on a Markovian evolution of the jobs.
Without loss of generality, we will assume rn = n. This means that a new job arrives at each
each time slot, this job being of size 0 (cn = 0) if no real work actually arrived at time n. Under
this point of view, the job stream is given by a family of distributions (φw(·, ·))w∈W that give
the size and the deadline of a job arriving at time t: For any 0 ≤ γ ≤ C, and for any 0 ≤ δ ≤ ∆,

φw(γ, δ) = Pr(ct = γ, dt = δ|wt = w) (6)

Once φ is given, the transition matrix Ps(w,w′) from state w to w′ when the speed chosen
by the processor is s is:

Ps(w,w
′)=

{
φw(γ, δ) if w′ = T[(w − s)+] + γHδ

0 otherwise (7)

RR n° 9101



10 Gaujal & Girault & Plassart

3.1 Finite Case: Dynamic Programming

We suppose in this Section that the time horizon is finite and equal to T . It means that we only
consider a finite number of jobs. The goal here is to minimize the processor energy consumption
during the time interval [0, T ].

We compute the minimal total expected processor energy consumption (J∗) from 0 to T .
This means that we want to solve the following problem.

If the initial state is w0, then

J∗(w0) = min
σ

(
E

(
T∑
t=0

j(σt(wt))

))
(8)

where σ is taken over all possible policies of the processor: σ(w, t) is the speed used at time t
if the state is w. The only constraint on σ(w, t) is that it must belong to the set of admissible
speeds, i.e., σ(w, t) ∈ S, and it must be large enough to execute the remaining work at the next
time step:

∀t, σ(w, t) ≥ w(1) (9)

The set of admissible speeds in state w is denoted A(w) and is therefore defined by:

A(w) =
{
s ∈ S s.t. s ≥ w(1)

}
(10)

J∗ can be computed using a backward induction. Let J∗t (w) be the minimal expected energy
consumption from time t to T , if the state at time t is w (wt = w). We present in the next
section an algorithm to compute J∗.

3.1.1 Dynamic Programming Algorithm (DP)

We use a backward induction (Dynamic Programming) to recursively compute the expected
energy consumption J∗ and the optimal speed policy σ∗. We use the finite Horizon-Policy
Evaluation Algorithm from [6] (p. 80). We obtain an optimal policy, which corresponds to the
processor speed that one must apply in order to minimize the energy consumption (Algorithm 1).

Algorithm 1 Dynamic Programming Algorithm (DP) to compute the optimal speed for each
state and each time.
t← T % time horizon
for all w ∈ W do J∗t (w)← 0 end for
while t ≥ 1 do
for all w ∈ W do

J∗t−1(w)← min
s∈A(w)

(
j(s) +

∑
w′∈W

Ps(w,w
′)J∗t (w′)

)

σ∗t−1[w]← arg min
s∈A(w)

(
j(s) +

∑
w′∈W

Ps(w,w
′)J∗t (w′)

)
end for
t← t− 1 % backward computation

end while
return all tables σ∗t [·] ∀t = 0 . . . T − 1.

Inria



Dynamic Speed Scaling Minimizing Expected Energy Consumption for Real-Time Tasks 11

The complexity to compute the optimal policy σ∗t (w) for all possible states and time steps is
O(T |S|C∆Q(C,∆)). The combinatorial explosion of the state space makes is very large when the
sizes of the jobs and the maximum deadline are large. Note however that this pre-computation
is done off-line. At runtime, the processor simply considers the current remaining work wt at
time t and uses the pre-computed speed σ∗t (wt) to execute the job with the earliest deadline.

3.1.2 Runtime Process: Table Look-up (TLUDP)

At runtime, the processor computes the current state w and simply uses a table look-up (TLU)
to obtain its optimal speed σ∗t [w], the speed tables having been computed offline by (DP). This
is algorithm 2.

Algorithm 2 Runtime process (TLUDP) used by the processor to apply the optimal speed

For Each t = 0 . . . T − 1
Update wt using Eq. (2)
Set s := σ∗t [wt]
Execute the job(s) with earliest deadline job(s) at speed s for one time unit

End

The runtime cost for TLUDP is O(1).

3.2 Infinite Case: Value Iteration

When the time horizon is infinite, the total energy consumption is also infinite whatever the
speed policy. Instead of minimizing the total energy consumption, we minimize the average
expected energy consumption per time-unit, denoted g. We therefore find the optimal policy σ∗
that minimizes g. In mathematical terms, we want to solve the following problem. Compute

g∗ := min
σ

E

(
lim
T→∞

1

T

T∑
t=1

j(σ(wt))

)
(11)

under the constraint that no job misses its deadline.

3.2.1 Stationary assumptions and existence of the limit

In the following we will make the following additional assumption on the jobs: The size and the
deadline of the next job have stationary distributions (i.e., they do not depend on time). We
further assume that the probability that the next job is of size 0 (meaning that no work arrives
in the next time slot) is strictly positive.

Under these two assumptions, the state space transition matrix is unichain (see [6] for a
precise definition). Basically, this means that starting from state w0 = (0, . . . , 0), it is possible to
go back to state w0, no matter what speed choices have been made and what jobs have occurred.
This is possible because, with positive probability, jobs of size 0 can arrive for long enough a
time so that all past deadlines have been met and the state goes back to w0.

When the state space is unichain, the limit in Eq. (11) always exists [6] and can be computed
with an arbitrary precision using a value iteration algorithm (VI), presented in the next section.
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12 Gaujal & Girault & Plassart

3.2.2 Value Iteration Algorithm (VI)

This algorithm finds a stationary policy σ (here σ will not depend on t), which is optimal, and
gives an approximation of the gain (average reward value g∗) with an arbitrary precision. In
the following value iteration algorithm, the quantity un can be seen as the total energy up to
iteration n:

Algorithm 3 Value Iteration Algorithm (VI) to compute the optimal speeds in each state and
the average energy cost per time unit.

u0 ← (0, 0, . . . , 0), u1 ← (1, 0, . . . , 0)
n← 1
ε > 0 % stopping criterion
while span(un − un−1) ≥ ε do
for all w ∈ W do

un+1(w)← min
s∈A(w)

{
j(s) +

∑
w′∈W

Ps(w,w
′)un(w′)

}
end for
n← n+ 1

end while
Choose any w ∈ W and let g∗ ← un(w)− un−1(w)
for all w ∈ W do

σ∗[w] ∈ arg min
s∈A(w)

{
j(s) +

∑
w′∈W

Ps(w,w
′)un(w′)

}
end for
return σ∗

In Algorithm 3, the span of a vector is the difference between its maximal value and its
minimal value: span(x) = maxi(xi) − mini(xi). A vector with a span equal to 0 has all its
coordinates equal.

Algorithm 3 computes both the optimal average energy consumption per time unit (g∗) with
a precision ε as well as an ε-optimal speed to be selected in each state (σ∗[w]).

The time complexity to compute the optimal policy depends exponentially on the precision 1
ε .

The numerical experiments show that convergence occurs reasonably fast (see Section 4).

3.2.3 Runtime Process: Table Look-Up (TLUVI)

As for (TLUDP), at any integer time t ∈ N, the processor computes its current state w using
Eq.(2) and retrieves its optimal speed s := σ∗[w] by looking-up in the table σ∗, pre-computed
by (VI). This is identical to Algorithm 2).

3.3 Schedulability Issues

Depending on the maximum available speed (smax) and on the jobs characteristics (C and ∆),
all sets of jobs might not be schedulable. For instance, if smax < C, then no speed policy can
guarantee the schedulability: indeed, if a job of size C and relative deadline 1 arrives, then the
processor cannot process it before its deadline.
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The case where smax = C is borderline because there exists a unique speed selection that
guarantees that no job will miss its deadline. Any valid on-line algorithm must always set
s(t) = ct at all times t, where by convention ct is the WCET of the job arrived at time t if it
exists, or 0 if no job arrives at time t: Choosing a speed smaller than ct at time t will imply
missing a deadline in some future time slot if a sequence of jobs of size C and deadline 1 arrive at
times t+1, t+2, . . . , t+∆. These jobs will preempt the processor at each time slot t+1, . . . , t+∆
if they do not miss their deadline, and some work present at time t will not be finished at time
t+∆, so one job deadline will be missed. Therefore our optimization problem P is only interesting
when smax > C.

Now let us consider the case where smax > C. When the (DP) algorithm is used, the optimal
energy consumption in state w satisfies:

J∗t−1(w)← min
s∈A(w)

(
j(s) +

∑
w′∈W

Ps(w,w
′)J∗t (w′)

)
(12)

If A(w) is empty (this is equivalent to the fact that, in state w, some job will miss its deadline
at time t) one can set J∗t−1(w) = +∞. Using this convention, we can state that the optimal
solution will never miss a deadline starting from a system with no pending job at time 0 is
equivalent to J∗0 (0) <∞.

Starting from an empty system with no pending job, we know that the speed policy σ̃ that
sets ∀t st = ct ≤ C is schedulable. So its energy consumption will be finite. Since the optimal
solution σ∗ yields a smaller energy consumption than σ̃, its energy consumption will also be
finite, hence the optimal solution will also be schedulable.

To conclude, we get the following result:

Theorem 1. Starting from an empty system, schedulability with (DP) or (VI) is guaranteed if
and only if smax ≥ C.

We also note that schedulability is another advantage of the (DP) solution in comparison
with (OA). Contrary to (DP), (OA) is not always schedulable. We present in appendix D a
worst-case scenario where (OA) fails and we prove that (OA) is schedulable if and only if

smax ≥ C
(

∆

∆− 1
+ h∆−2

)
(13)

where hn is the n-th harmonic number.

3.4 Properties of the Optimal Policy

In this section, we show several structural properties of the optimal policy σ∗ that are true for
both the finite and infinite case.

3.4.1 Comparison with Optimal Available (OA)

Optimal Available (OA) is an on-line policy that chooses the speed s(OA)(wt) in state wt to be
the optimal speed at time t, should no further jobs arrive in the system. More precisely, at time t
and in state wt, the (OA) policy uses the speed

s(OA)(wt) = max
u

wt(u)

u
(14)
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14 Gaujal & Girault & Plassart

We first show that, under any state w ∈ W, the optimal speed σ∗(w) is always larger than
s(OA)(w).

Proposition 2. In the finite or infinite case, the optimal speed policy satisfies σ∗(w) ≥ s(OA)(w)
for all state w ∈ W, if the power consumption j is a convex function of the speed.

Proof. The proof is based on the observation that (OA) uses the optimal speed assuming that
no new job will come in the future. Should some job arrive later, then the optimal speed will
have to increase. We first prove the result when the set of speeds S is the whole real interval
[0, smax] (continuous speeds).

Two cases must be considered. If s(OA)(wt) = maxu
wt(u)
u is reached for u = 1 (i.e.,

s(OA)(wt) = wt(1)), then σ∗(w) ≥ s(OA)(w) by definition because the set of admissible speeds
A(wt) only contains speeds larger than wt(1) (see Eq. (14)).

If the maximum is reached for u > 1, then A(wt) may enable the use of speeds below wt(1).

Between time t and t + u, some new job may arrive. Therefore, the optimal policy should
satisfy

∑u−1
i=0 σ

∗(wt+i) ≥ wt(u).

The convexity of the power function j implies4 that the terms of the optimal sequence
σ∗(wt), . . . , σ

∗(wt+u−1) must all be above the average value (which is larger than wt(u)/u =
s(OA)(wt)). In particular, for the first term, σ∗(wt) ≥ s(OA)(wt).

Now, if the set of speeds is finite, then the optimal value of σ∗(wt) must be one of the two
speeds in S surrounding σ∗(wt), s1 < σ∗(wt) ≤ s2. If the smallest one s1 is chosen, this implies
that further choices for σ∗(wt+i) will have to be larger or equal to s2, to compensate for the work
surplus resulting from choosing a speed below σ∗(wt). This implies that it is never sub-optimal
to choose s2 in the first place (by convexity of the j function).

This trajectorial argument is true almost surely, so that the inequality σ∗(wt) ≤ s(OA)(wt)
will also hold with the expected energy over both a finite or infinite time horizon.

3.4.2 Monotonicity Properties

Let us consider two sets of jobs T1 and T2 for which we want to apply our speed scaling procedure.
We wonder which of the two sets uses more energy than the other when optimal speed scaling is
used for both.

Of course, since jobs have random features, we cannot compare them directly, but instead we
can compare their distributions. We assume in the following that the sizes and deadlines of the
jobs in T1 (resp. MT2) follow a distribution φ1 (resp. φ2) independent of the current state w and
of the time t.

Definition 2. Let us define a stochastic order (denoted ≤st) between the two sets of jobs T1 and
T2 as follows. T2 ≤st T1 if the respective distributions φ1 and φ2 are comparable: For any job
(c1, d1) with distribution φ1 and any job (c2, d2) with distribution φ2, we have:

∀γ, δ, Pr(c2 ≥ γ, d2 ≤ δ) ≤ Pr(c1 ≥ γ, d1 ≤ δ) (15)

Proposition 3. If T2 ≤st T1, then:

1. over a finite time horizon T , the total energy consumption satisfies J (2) ≤ J (1) (computed
with Eq. (8));

4Actually, we use the fact that the sum
∑u−1

i=0 j(s) is Schur-convex when j is convex (see [9]).
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2. in the infinite time horizon case, the average energy consumption per time unit satisfies
g(2) ≤ g(1) (computed with Eq. (11)).

Proof. Case 1: The definition of T2 ≤st T1 implies that we can couple the set of jobs T1 with the
set of jobs T2, such that at each time t ≤ T , J (1)

t = (t, c1t , d
1
t ) and J (2)

t = (t, c2t , d
2
t ) with c2t ≤ c1t

and d2
t ≥ d1

t (see [10]). In turn, this implies that the optimal sequence of speeds selected for T1

is admissible for T2, hence the optimal sequence for T2 should have a better performance. Since
this is true for any set of jobs generated using φ1, it is also true in expectation, hence J (2) ≤ J (1).

Case 2: We just use the fact that the optimal sequence for T2 is better than the optimal
sequence for T1 over any finite horizon T . Letting T go to infinity shows that the average energy
cost per time unit will also be better for T2.

4 Numerical Experiments

4.1 Application Scenarios

In this part, we come back to the possible scenarios described in the introduction. The numerical
experiments are divided in 2 cases: For § 4.3.1 and § 4.3.2, we consider a situation with a single
sporadic task whose jobs are identical. The inter-arrival times of the jobs are estimated to follow
a geometric distribution5, while their sizes and deadlines remain constant.

The second set of experiments deals with another type of real-time systems made of several
periodic tasks. Each task is characterized by its offset, period, size, and deadline. In addition,
jobs may be lost (for example due to sensor failures and/or perturbations on transmission links).
These losses are modeled by a loss probability.

All the experiments reported below are based on these two scenarios.

4.2 Implementation Issues

The state spaceW has a rather complex structure and is very large. Therefore, the data structure
used in the implementations of Algorithms 1 and 3 must be very efficient to sweep the state space
as well as to address each particular state when state changes occur. This is done by using a
hashing table to retrieve states according to a multi-dimensional key that represents the state
(the vector (w(1), w(2) − w(1), . . . , w(∆) −

∑∆−1
k=1 w(k))) and a recursive procedure based on

Eq. (3) to traverse the state space.

The implementation of Algorithms 1 and 3 has been done in R to take advantage of the
possibility to manipulate linear algebraic operation easily, and in C when the state space was
too large to be efficiently handled in R.

4.3 Experimental Set-up, Finite Case

Our experiments are done in two steps: Firstly we compute the optimal speeds for each possible
state. To compute this, we use Algorithm 1 (DP) or 3 (VI), and we store in the σ∗ table the
optimal speed for each possible state of the system.

5Such an estimation can be obtained through the measurement of many traces of the real-time system.
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16 Gaujal & Girault & Plassart

Secondly, to compare different speed policies, we simulate a sequence of jobs (produced by
our real-time tasks, see § 4.1) over which we use our (TLUDP) solution or other solutions (e.g.,
off-line or (OA)) and we compute the corresponding energy consumption.

In a nutshell, the experiments show that our solution performs very well in practice, almost
as well as the optimal off-line solution (§ 4.3.1). As for the comparison with (OA), in most of
our experiments, (TLUDP) outperforms (OA) by 5% on average in the sporadic case when job
inter-arrival times are iid6 (§ 4.3.2). In the periodic case, where jobs are more predictable, the
gap with (OA) grows to about 50% (§ 4.3.3).

4.3.1 Comparison with the Off-line Solution

To evaluate our on-line algorithm, we compare it with the off-line solution computed on a simu-
lated set of jobs, generated using the distribution described below. We draw the aggregated work
done by the processor (the respective speeds are the slopes) in two cases: the optimal off-line
solution that only uses speeds in the finite set S, and the (TLUDP) solution. Figure 3 displays
the result of our simulations in the following case.

Example 1. One sporadic task τ1 with jobs of size c1 = 2 and deadline d1 = 5. The inter-arrival
times are random, modeled by a geometric distribution of parameter p1 = 0.6.

As for the processor, we consider that it can only use 4 speeds S = {0, 1, 2, 5} and that its
energy consumption per time unit is given by the function j(s) = s3. Here, the maximal speed
is large enough so that schedulability is not an issue: 5 = smax > C = 2 (§3.3). (Note that (OA)
is not schedulable).

The result over one typical simulation run is displayed in Figure 3.
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Figure 3: Comparison of the executed work of off-line and (TLUDP) solution on one simulation
of Example 1. Red curve: workload arrived between 0 and T ; Blue curve: workload deadlines
from 0 to T ; Brown curve: work executed using the optimal off-line speeds; Black curve: work
executed using the speed selection computed by (TLUDP).

6Independent and identically distributed random variables.
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The associate energy consumption curve is:
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Figure 4: Comparison of the energy consumption of the off-line solution (in red) and the (TLUDP)
solution (in black).

As expected, in Figure 3 (TLUDP) consumes more energy than the off-line case. However, the
off-line and the (TLUDP) solution only differ in few points: speed 0 is used once by (TLUDP) but
is never used by the off-line solution. Speed 2 is used 5 times by (TLUDP) and only 4 times in
the off-line case. So the energy consumption gap between the two is 23 + 03−13−13 = 6 J . The
total energy consumption under the off-line solution is 46 J , while the total energy consumption
under the (TLUDP) solution is 52 J , so the gap is less than 12 % of the total energy consumption.

4.3.2 Comparisons with (OA), Sporadic Tasks

Recall that, under (OA), the processor speed at time t in state wt is set to maxu
wt(u)
u . However,

when the number of speeds is finite, (OA) must be adapted: the speed s(OA)(wt) is thus set to
the smallest speed in S larger than maxu

wt(u)
u .

As a consequence, to compare both solutions, the number of possible speeds must be large
enough to get a chance to see a difference between the two. Here, we have simulated two sporadic
tasks with the following parameters.

Example 2. Two sporadic tasks τ1 and τ2. τ1 has job of size c1 = 3, deadline d1 = 3, and
arrival rate p1 = 0.6, while τ2 has jobs of size c2 = 6, deadline d2 = 3, and an arrival rate
p2 = 0.2. The processor can use 4 processor speeds S = {0, 1, 2, 3, 4} and its energy consumption
per time unit follows the function j(s) = s3.

We ran an exhaustive experiment made of 10,000 simulations of sequences of jobs over which
we computed the relative energy gain of (TLUDP) over (OA) in percentage. The gain percentage
of (TLUDP) was in the range [5.17, 5.39] with a 95% confidence interval and an average value of
5.28%.

Even if this gain is not very high, one should keep in mind that it comes for free once the
(DP) solution has been computed. Indeed, using (TLUDP) online takes a constant time to select
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18 Gaujal & Girault & Plassart

the speed (table look-up) while using (OA) online takes O(∆) to compute maxu
wt(u)
u .
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Figure 5: Comparison of the executed work between (OA) and (TLUDP) solutions, with fixed
deadlines dn = 3, size cn ∈ {0, 2, 4} with respective probabilities (0.2, 0.6, 0.2), and processor
speeds in {0, 1, 2, 3, 4}.
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Figure 6: Comparison of the energy consumption between (OA) and (TLUDP) solutions, with
fixed deadlines dn = 3, size cn ∈ {0, 2, 4} with respective probabilities (0.2, 0.6, 0.2), and processor
speeds in {0, 1, 2, 3, 4}.

Figure 5 shows a comparison between (OA) and (TLUDP). The total work executed by
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(TLUDP) solution is always above the total work executed by (OA), as stated in Proposition 2.
Moreover, we notice in Figure 5 that the consumed energy is more important at the beginning
with (TLUDP) than with (OA), because we anticipate the work to do in the future. The processor
executes more work so it consumes more energy with (TLUDP) before time t = 11; but after this
time, it’s the opposite, the energy consumed by (TLUDP) is lower than the energy consumed by
(OA). Over the whole period, (TLUDP) outperforms (OA).

Indeed, on this example, the total energy consumption for (OA) is 711 J while that for
(TLUDP) is 639 J . (TLUDP) outperforms (OA) policy by a margin of around 10 %. Even if this
gain is not very high, one should keep in mind that, again, it comes for free once the (TLUDP)
solution has been computed.

4.3.3 Comparisons with (OA), Periodic Tasks

We now consider several examples consisting of two or more periodic tasks.

Example 3. Two periodic tasks τ1 and τ2. For task τ1, the period is 2, the offset is 0, the job
size is c1 = 2, and the deadline is d1 = 2. The loss probability is p1 = 0.2. For task τ2, the
period is 2, the offset is 1, the job size c2 = 4, and the deadline d2 = 1. The loss probability is
p2 = 0.25.

Figure 7 depicts a typical simulation over 20 time steps.

Figure 7: Executed work using (OA) (light blue curve) and (TLUDP) (black curve) with the two
task models of Example 3.

RR n° 9101



20 Gaujal & Girault & Plassart

The energy consumption is as follow:
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Figure 8: Energy consumption using (OA) (light blue curve) and (TLUDP) (black curve) under
the two task models of Example 3.

The total energy consumption over the 20 units of time displayed in Figure 7 is 513 J for
(TLUDP), and 825 J for (OA), so more than 60 % higher. Here (TLUDP) has a clear advantage
because the job stream is more predictable than in the independent case.

Example 4. Four periodic tasks τ1, τ2, τ3, τ4 with the same period equal to 4 and respective
offsets 0, 1, 2, 3. The loss probability is the same for all tasks p = 0.2. The other parameters are
as follows: (c1 = 1, d1 = 3), (c2 = 4, d2 = 2), (c3 = 4, d3 = 1), and (c4 = 2, d4 = 2).

With Example 4, the energy consumed by (TLUDP) is on average 30% lower than the energy
consumed by (OA). We performed 10.000 simulations over 40 time steps: the average gain is
29.30% with the following confidence interval at 95%: [ 29.10, 29.50 ]. In figure 9, we report one
example run only over the first 20 time step. Notice that between time steps 2 and 4, the blue
curve (OA) is below the black curve (DP), meaning that (OA) first uses a speed below that of
(DP), but thanks to the convexity property of the energy consumption, the energy consumed by
(DP) is lower.

Example 5. Seven periodic tasks τ1 to τ7. Task τ1 has period 4, offset 0, and (c1 = 4, d1 =
2, p1 = 0.2). All the other tasks τ2, . . . , τ7 have period 8, loss probability p = 0.2, respective
offsets 1, 2, 3, 5, 6, 7 (4 being for the second job of τ1), and respective parameters (c2 = 1, d2 = 2),
(c3 = 4, d3 = 1), (c4 = 2, d4 = 2) (c5 = 4, d5 = 3) (c6 = 2, d6 = 1) (c7 = 1, d7 = 2).

With Example 5, the energy consumed by (TLUDP) is on average 30% lower than the energy
consumed by (OA). We performed 10.000 simulations over 80 time steps, the average gain is
29.98% with the following confidence interval at 95%: [ 29.87, 30.10 ]. In Figure 9, we report
one example run only over the first 20 time step.

The other simulation parameters for Examples 3 to 5 are T = 20, S = {0, 1, 2, 3, 4, 5} and
j(s) = s3.
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Figure 9: Executed work using (OA) (light blue curve) and (TLUDP) (black curve) under the
four task models of Example 4.
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Figure 10: Executed work using (OA) (light blue curve) and (TLUDP) (black curve) under the
seven task models of Example 5.
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Table 1 summarizes these results.

example gain against (OA) 95% confidence interval
Ex. 3 (2 tasks) 49.27% [49.04,49.50]
Ex. 4 (4 tasks) 29.30% [29.10,29.50]
Ex. 5 (7 tasks) 29.98% [29.87,30.10]

Table 1: Comparisons between (OA) and (TLUDP).

In all these cases, (TLUDP) outperforms (OA) by a larger margin than with sporadic tasks.
Indeed, the job sequence is more predictable, so the statistical knowledge over which (TLUDP)
is based is more useful here than in the sporadic case.

We notice some gain differences between the different examples. A partial explanation comes
from the following considerations. If there is no error (i.e., no missing jobs), the gain of (TLUDP)
versus (OA) can be computed exactly, as we can notice on Figure 11. It is 75% for Ex. 3 (2 tasks),
28% for Ex. 4 (4 tasks) and 52% for Ex. 5 (7 tasks). These computations explain partly the
gain differences obtained in the experimental results in Table 1 with 20% losses. Furthermore,
in all examples, the system has an hyper-period (respectively 2, 4, 8). With the 7 tasks, errors
accumulate over 8 time units; With 2 tasks, the error rate is larger (25 % instead of 20 % for
one of the two tasks). Therefore, the job sequence in one hyper-period is less predictable in both
examples than with 4 tasks. This is why the gain with 7 tasks and with 2 tasks is not as well
predicted by the computation made without errors, as it is with 4 tasks.

work

Upper bound constraint
Lower bound constraint
Work executed by (DP-TLU)
Work executed by (OA)

2 tasks case 4 tasks case 8 tasks case

Figure 11: Executed work using (OA) (light blue curve) and (TLUDP) (black curve) on Examples
4, 5 and 6 over one period in the case where no jobs are missing.

4.4 Computation Experiments, Infinite Case

In this part, we run algorithm (VI) (Algorithm 3) to compute the optimal speed to be used
at each time step over an infinite horizon. We fix the stopping criterion in Algorithm 3 to
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ε = 1.0 ∗ 10−5, so our computation of the average energy consumption is precise by at least 5
digits. We ran the program in the following cases:

Example 6. One sporadic task with jobs of size 2, deadline 3, and arrival rate p that varies
from 0 to 1.

Example 7. One sporadic task with jobs of size 2, deadline 5, and arrival rate p that varies
from 0 to 1.

In both examples, the available processor speeds are in S = {0, 1, 2} and the energy con-
sumption function is j(s) = s2. The only difference between Examples 6 and 7 are the deadlines.

The results of our computations are displayed in Figure 12. The three curves depict respec-
tively the average energy consumption per time unit as a function of the arrival rate p (which
varies from 0 to 1) for Examples 6 and 7, together with a theoretical lower bound.
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Figure 12: Average energy consumption per time unit for (TLUVI) and lower bound (red curve),
with deadlines equal to 3 (black curve, Example 6) and 5 (blue curve, Example 7).

The different curves in Figure 12 have the following meaning:

• The black and blue curves depict the Value Iteration solution with three processor speeds
S = {0, 1, 2}. These curves display g∗, as computed by Algorithm 3 (VI), as a function of p,
the probability that a job of size c = 2 and deadline d = 3 (black curve) or deadline d = 5
(blue curve) arrives in the next instant.

• The red curve is a lower bound on g∗, oblivious of the jobs distribution and deadlines, only
based on the average amount of work arriving at each time slot.

As it was expected according to Proposition 3, the higher the arrival rate, the higher the
average energy consumption (both curves are increasing).

Proposition 3 also implies that larger deadlines improve the energy consumption. This is in
accordance with the fact that the black curve (deadline 5) is below the blue curve (deadline 3).
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What is more surprising here is how well our solution behaves when the deadline is 5. Its
performance is almost indistinguishable from the theoretical lower bound (valid for all deadlines)
over a large range of the rate p. More precisely, the gap between our solution with deadline equal
to 5 and the lower bound is less than 10−3 for a rate p between 0 and 0.20, and between 0.80
and 1.

4.4.1 Lower bound

The lower bound has been obtained by solving the optimization problem without taking into
account the distribution of the jobs features nor the constraint on the deadlines. Without con-
straints, and since the power is a convex function of the speed (here j(s) = s2), the best choice
is to keep the speed constant. The ideal constant speed needed to execute the jobs over a finite
interval [0, T ] is A(T )/T , where A(T ) is the workload arrived before T . When T goes to infinity,
the quantity A(T )/T converges to 2p by the strong law of large numbers. Therefore, the optimal
constant speed is s∞ = 2p.

Now, if we consider the fact that only 3 processor speeds, namely {0, 1, 2}, are available, then
the ideal constant speed s∞ = 2p cannot be used. In this case the computation of the lower
bound is based on the following construction.

If 0 ≤ p ≤ 1
2 , the the ideal constant processor speed s∞ = 2p belongs to the interval [0, 1].

In that case, only speeds {0, 1} will be used. To obtain an average speed equal to 2p, the
processor must use speed 1 during a fraction 2p of the time and speed 0 the rest of the time.
The corresponding average energy per time unit has therefore the following form:

g∞ = 2p× 12 + (1− 2p)× 02 = 2p (16)

If p ≥ 1
2 , then s∞ = 2p belongs to the interval [1, 2]. In that case, the processor only uses

speeds 1 or 2. To get an average speed of 2p, it must use the speed 2 during a fraction 2p − 1
of the time and speed 1 the rest of the time. The corresponding average energy per time unit in
this case is:

g∞ = (2p− 1)× 22 + (2− 2p)× 12 = 6p− 2 (17)

As a result, the lower bound on g is given by: g∞ = 2p if p ≤ 1/2 and g∞ = 6p−2 if p ≥ 1/2.
This is the red curve in Figure 12.

4.4.2 Comparison of TLUDP and TLUVI

A comparison between the two algorithms TLUDP and TLUVI over different time horizons T
was done to study the impact of this parameter. The gain in energy of (TLUDP ) vs (TLUV I),
represented in blue in Figure 13, is computed as follow:

EnergyV I − EnergyDP
EnergyDP

(18)

This fraction computes the relative difference between the infinite horizon case algorithm and
the the finite horizon case algorithm. Besides, the cost of (OA) vs (TLUDP ), also represented in
Figure 13, in a dashed red curve, is defined as follows:

EnergyOA − EnergyDP
EnergyDP

(19)
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Computations were done on Example 2 with 10000 simulations, and are summarized in Ta-
ble 2.

T 10 15 20 25 30 40
(VI) vs (DP) 4.3% 1.7% 0.95% 0.62% 0.45% 0.29%
(OA) vs (DP) 4.8% 5.3% 5.3% 5.2% 5.0% 4.9%

T 100 150 200 250 1000
(VI) vs (DP) 0.099% 0.064% 0.046% 0.031% 6.19·10−5%
(OA) vs (DP) 4.6% 4.5% 4.3% 4.3% 4.2%

Table 2: Influence of the time horizon T on (TLUDP) in comparison with (TLUVI).
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Figure 13: Influence of the time horizon T on TLUDP by comparison with TLUVI and (OA) on
Example 2.

One can notice in Table 2 and also on the blue curve in Figure 13 that, as soon as the time
horizon is greater than 20 time units, the difference of energy between TLUDP and TLUVI is
smaller than 1%, and is negligible in comparison with the difference of energy between TLUDP

and (OA). So using (VI) instead of (DP) is a good approximation even over rather short time
horizons, because the results are almost as good and computing the optimal processor speeds is
faster for (VI) than for (DP). This result is rather intuitive because the only important difference
between TLUDP and TLUVI concerns the last steps. Indeed, during these last steps, (VI) behaves
as if jobs continue to arrive in the future (after T −∆), whereas (DP) considers that there is no
job arrival after T −∆. (DP) can therefore adapt the chosen speeds in the last steps, whereas
(VI) cannot. With these informations, the energy consumption of (DP) on the last steps is, in
average, better than that of (VI).

As for (VI), (OA) doesnot take into account finite time horizon (except on the last ∆ steps).
This is why the red curve is also decreasing with the time horizon.
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Remark: The red dashed curve shows that the difference of energy between (OA) and (TLUDP)
is almost constant, whatever the horizon time T we consider. The horizon time has no impact on
the gain. Data in Table 13 confirm the results obtained in Example 2 before, because whatever
the considered time horizon, the gain of (TLUDP) in comparison with (OA) ranges between 4%
and 5.5%.

5 Conclusion and Perspectives

In this paper, we showed how to select online speeds to execute real-time jobs while minimizing
the energy consumption by taking into account statistic information on job features. This in-
formation may be collected by using past experiments or simulations as well as deductions from
the structure of job sources. Our solution provides performances that are close to the optimal
off-line solutions on average, and outperforms classical on-line solutions in cases where the job
features have distributions with large variances.

While the goal of this study is to propose a better processor speed policy, several points are
still open and will be the topic of future investigations.

The first one is about the scheduling model: In this paper we assume that jobs are executed
under the Earliest Deadline First policy, but this is not always the case in practice. What would
be the consequence of using another scheduling policy?

The second one is about the time and space complexity of our algorithms that are exponential
in the deadlines of the jobs. Although our algorithms (DP) and (VI) are used off-line and can be
run on powerful computers, our approach remains limited to a small range of parameters. One
potential solution is to simplify the state space and to aim for a sub-optimal solution (but with
proven guarantees), using approximate dynamic programming.

Finally, the statistical information gathered on the job features is crucial. When this informa-
tion is not accurate or even not available, Markov Decision approaches are not possible and one
should use reinforcment learning techniques (such as Q-learning [11]) to construct a statistical
model of the jobs on-line and select speeds accordingly, which will converge to optimal speeds
over time.
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Appendix

In the first three sections of this appendix, we develop several extensions to make our model more
realistic. To achieve this, we assume that the processor can change speeds at any time. This
assumption is not very strong because there is no technical reason to change processor speed
only at task arrival. These generalizations are the following:

1. Convexification of the power consumption function: Any non-convex power function can
be advantageously replaced by its convex hull.

2. Taking into account the time penalty required to change the processor speed: This time
penalty can be replaced by an additional cost on the energy consumption.

3. Taking into account the context switching time between one task to another: This switching
time can also be included in the cost function.

Finally, we present in the last section, appendix D, a worst-case scenario where (OA) fails to
schedule the given jobs.

A Convexification of the Power Consumption Function

Our general approach does not make any assumption on the power function j(·). Our algorithms
(DP) and (VI) will compute the optimal speed selection for any function j(·). However structural
properties (comparison with (OA), monotonicity) need convexity assumptions. It is therefore
desirable to convexify the power function.

Let us consider a processor, whose speeds belong to the set S = {s0, s1, s2, smax} and the
power function of the processor j(.) : S → R, represented by the black curve in Figure 14. The
function g(.) is the convex hull of j(.) (the red curve in Figure 14).

g(s1)

Convex hull

Energy Consumption

Processor speed
s1 s2 smaxs0 = 0

j(s1)

j(s2)

Figure 14: Convexification of the power consumption function.

If the energy function is not convex, some speeds are not relevant, because using these speeds
is more expensive in term of energy than using a combination of more relevant speeds. Figure 14

RR n° 9101



28 Gaujal & Girault & Plassart

depicts a non-convex power function in black, and its convex hull in red. It is better to choose
speeds s0 and s2 (actually a combination of s0 and s2), rather than speed s1. In fact, all
points of the power function curve, that are above the convex hull, should never be taken into
consideration. It is always better to only select the speeds whose power consumption belongs to
the convex hull of the power function. Indeed if g(s1) < j(s1) (see Figure 14), instead of selecting
speed s1 during any time interval [t, t + 1), the processor can select speed s2 during a fraction
of time α2 and then speed s0 during a fraction of time α0, such that α0s0 + α2s2 = s1. The
total quantity of work executed during the time interval [t, t + 1) will be the same as with s1,
but the energy consumption will be g(s1) = α0j(s0) + α2j(s2) < j(s1) thanks to the convexity
of function j. This approach uses the Vdd hopping technique.

So we can always consider that the power function is convex. This is very useful in practice.
Indeed, the actual power consumption of a CMOS circuit working at speed s is non-convex
function of the form j(s) = Csα + L(s), where the constant C depends on the activation of the
logical gates, α is between 2 and 3, and L(s) is the leakage, with L(0) = 0 and L(s) 6= 0 if s > 0.
In this case, convexification removes the small values of s from the set of useful speeds.

Remark: This idea to replace one speed with a combination of two speeds (i.e., Vdd hopping)
can also be used to simulate any speed between 0 and smax. Indeed if a speed doesn’t exist in
the set S, a solution is to simulate it by combining two neighboring speeds. For our problem, this
technique let the processor have more speeds to choose from so that the optimal speed computed
by the (DP) algorithm will use less energy with Vdd hopping than without it.

B Taking into Account the Cost of Speed Changes

In our initial model, we have assumed that the time needed by the processor to change speeds is
null. However, in all synchronous CMOS circuits, changing speeds takes some time; this delay is
needed to resynchronize the logical gates. We denote by δ the time needed by the processor to
change speeds. During this time, the circuit logical functions are altered so no computation can
take place.

With time lags for speed changes, the executed work by the processor has two slope changes,
at times t1 and t2, with t2 − t1 = δ (see the red solid line in Figure 15). The problem is that,
since in general δ 6∈ N, we cannot have both t1 ∈ N and t2 ∈ N. As a consequence, one of the
states wt1 or wt2 will not be integer valued. This is forbidden by our MDP approach.

The solution we propose involves replacing the actual behavior of the processor (represented
by the red solid line in Figure 15) by a simulated behavior, equivalent in terms of the amount
of work performed (represented by the blue dashed line in Figure 15). This simulated behavior
exhibits a single speed change and is such that the total amount of work done by the processor
is identical in both cases at all integer times (i.e. at t3 − 1, t3, and t3 + 1 in Figure 15). The
advantage is that, since there is only one state change, it can be chosen to occur at an integer
time. In other words, we choose t1 such that t3 ∈ N.

One issue remains, due to the fact that the consumed energy will not be identical with the
real behavior and the simulated behavior; it will actually be higher for the real behavior for
convexity reason. This additional energy cost of the real processor behavior must therefore be
added to the energy cost of the equivalent simulated behavior.

Finally, in order to trigger the speed change at time t1, the processor needs to be “clairvoyant”,
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s2

δ α1,2

t3 + 1t3 − 1 t1 t2 t3

real behavior
simulated behavior

work

s1

time

ε

Figure 15: Transformation of the time lag into an energy additional cost (case s1 < s2). The red
line represents the real behavior of the processor, which includes a δ time lag. The blue dashed
line represents an equivalent behavior in terms of executed work, with no time lag.

i.e., it needs to know in advance (before t1) the characteristics of the job arriving at time t3. This
will allow the processor to compute the new speed s2 and the length ε of the required interval
to make sure that the work done by the processor at t3 in the two cases (real and simulated) is
identical.

The value of ε, α1,2, and the additional energy cost h(s1, s2) of this speed change are computed
as follows. In the case s2 > s1 (as in Figure 15), we have:

s1 ε = s2 α1,2 = s2 (ε− δ) ⇔ (s2 − s1) ε = δ s2

⇔ ε = δ + α1,2 =
δ s2

s2 − s1
(20)

We further assume that, during the time lag δ, the energy is consumed by the processor as if
the speed were s1. The additional energy cost incured in the real behavior (red curve) compared
with the simulated behavior (blue curve), denoted h(s1, s2), is therefore:

h(s1, s2) = α1,2(j(s2)− j(s1))

Using the value of α1,2 from Eq. (20) yields:

h(s1, s2) = δs1

(
j(s2)− j(s1)

s2 − s1

)
(21)

When s1 > s2, the additionnal cost becomes:

h(s1, s2) = δs2

(
j(s1)− j(s2)

s1 − s2

)
(22)

This additional energy due to speed changes will be taken in consideration in our model in
the cost function, by modifying the state space W and adding the current speed to the state

RR n° 9101



30 Gaujal & Girault & Plassart

at t− 1. Therefore the new state will have the following form:

(wt, st−1)

And the new main step of the (DP) Algorithm 1 becomes:

J∗t−1(w, s)← min
s′∈A(w)

(
j(s) + h(s, s′) +

∑
w′∈W

Ps(w,w
′)J∗t (w′, s′)

)
(23)

with h(s, s′) = 0 when s = s′ and otherwise given by Eq. (22) if s′ < s and Eq. (21) if s < s′.
The rest of the analysis is unchanged.

C Taking into Account the Cost of Context Switches

We now consider that switching from the execution of one job to another one takes some non-
negligible time, denoted γ, whether this corresponds to the beginning of a new job or the resuming
of a job after preemption. This is essentially the time needed to upload/download the content of
the execution stack. During this context switch, no useful work is being executed. In Figure 16,
we consider 2 jobs with the following characteristics: J1(r1 = 0, c1 = 3, d1 = 7, 5) and J2(r2 =
3, c2 = 2, d2 = 3).

r1 r2 d2 d1

J2 time
J1

γ

Figure 16: Impact of a context switch on the execution time.

We notice that, each time the processor starts to execute a new job, it takes some time for
switching for one job context to another (context switch). This switching time is denoted by γ
(see the barred area in Figure 16). We assume that each context switch takes γ, whether this
corresponds to the beginning of a new job or the resume of a job after preemption.

Figure 17 illustrates the fact that, during one time step, several context switches can occur.
In this example, during the time interval [t, t+ 1), the processor completes two jobs, J1 and J2,
and starts the execution of J3 (see the red curve). This involves two context switches, both of
which occur during one time unit. This leads to a total delay of 2γ. As in Appendix B, we
transform this time delay into an energy cost: In one time unit, the evolution of the executed
work under speed s, with K context switches (see the green curve), is the same as the evolution
of the executed work under speed s1 = s(1−Kγ), with no switching delay (red curve).

The state space of the system must be modified to be able to compute K, the number of
context switches in each time interval. We must keep in memory the sizes of the jobs instead
of only the total remaining work. Indeed, with the current state space W, we do not know the
number of actual different jobs composing a given amount w(i), i ∈ {0, · · · ,∆}, so we cannot
know the number of context switches. We denote by W the new state space, where the modified
state at time t, w(t) ∈ W, has the following form:

w(t) =

[
(ρ1

1, · · · , ρ
k1
1 ), · · · , (ρ1

i , · · · , ρ
ki
i )︸ ︷︷ ︸

remaining work quantity of jobs
with absolute deadline t+ i

, · · · , (ρ1
∆, · · · , ρ

k∆

∆ )

]
(24)
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Figure 17: Compensation of the impact of the context switches on the executed work by using
a higher speed. The released jobs are Ji = (ri, ci, di), for 1 ≤ i ≤ 5, with r5 + d5 = ∆,
r4 + d4 = r3 + d3 = r2 + d2 = ∆− 1, and r1 + d1 = ∆− 2.

where ki is the number of jobs whose relative deadline is i time units away (hence their absolute
deadline is t+ i), and ρji is the work quantity of the j-st such such job.

Let (rn, cn, dn) be a new job that arrives at time t = rn. If the processor speed at time t− 1
is st−1, then at time t the next state w(t) becomes:

w(t) =
[(

(ρ1
2(t− 1)− `(1, 1))+, · · · , (ρk1

2 (t− 1)− `(1, k − 1))+
)
, · · · ,(

(ρ1
dn

(t− 1)− `(dn, 1))+, · · · , (ρkdndn
(t− 1)− `(dn, kdn))+, cn

)
, · · · ,(

(ρ1
∆(t− 1)− `(∆, 1))+, · · · , (ρk∆

∆ (t− 1)− `(∆, k∆))+
)
,(

(ρ1
∆(t− 1)− `(∆, 1))+, · · · , (ρk∆

∆ (t− 1)− `(∆, k∆))+
)]

where `(d, k) =
(
st−1 −

∑d−1
i=1

∑ki
j=1 ρ

j
i −

∑k
j=1 ρ

j
d

)+

.

The idea of the state change is such as we set all the ρji to 0 when s <
∑
i,j ρ

j
i , except for the

job, that will be executed, possibly only partially, where some residual work remains.

We further assume that the energy consumption during a context switch is the same as when
some work is executed. The new main step of the (DP) Algorithm 1 now has the following form:

J∗t−1(w)← min
s∈A(w)

j ( s

1−Ksγ

)
+
∑
w′∈W

Ps(w,w
′)J∗t (w′)

 (25)

Note that the speed s
1−Ksγ may not be directly available, but thanks to the remark made in

Appendix A, we can easily simulate this speed with the neighboring available speeds.

We denote by Ks the number of job executed if we use the speed s:

Ks =

α−1∑
i=1

kα + α
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where α is such that minα,kβ

(
s <

∑α,kβ
i,j ρji

)
. The rest of the analysis is unchanged.

As a final remark, if processor sharing is enabled, which is often the case nowadays, the
state space can be simplified: One only needs to keep in memory the number of jobs, which are
executed in a specific w(i), instead of all their sizes, so a state w is of the following form:

w = [(w(1), k1), (w(2), k2), · · · , (w(∆), k∆)] (26)

with ki the number of jobs, whose have the same relative deadline of value i. We have also
to modify the change state function accordingly. Let (rn, cn, dn) be a job that arrives at time
t = rn. If the processor speed at time t− 1 is st−1, then at time t the next w becomes:

wt(·) = T
[
(wt−1(·)− st−1)+

]
+ cnHdn(·)

and the number k that corresponds to the deadline dn of the new task is increased by one:

kdn = kdn + 1

In the processor sharing case, the penalty cost due to the time of processor sharing is pro-
portional to the number of executed jobs. If we denote by µ the total switching time between
two jobs over one time unit, the Bellman equation is the same as Eq. (25) but replacing Ks by:

K ′s =
∑
i

ki
s

(s−
i−1∑
j=1

wj) + k1
w1

s

D Schedulability of the (OA) Policy

We present in this appendix a worst-case scenario where the (OA) policy fails to schedule the
sequence of jobs it is given, and we show that (OA) is schedulable under a condition on the
maximal speed smax of the processor.

Formally, let smax be the maximal processor speed, then we have:

(OA) is schedulable ⇐⇒ ∀t, smax ≥ w(OA)
t (1)⇐⇒ smax ≥ sup

t

(
w

(OA)
t (1)

)
Let us first compute an upper bound w1 on the state supt(w

(OA)
t (1)). By looking backward

in time, at time t > ∆, w(OA)
t (1) must satisfy:

w
(OA)
t (1) = wt−∆+1(∆) +

t∑
i=t−∆+2

ci1{di≤t+1} −
t−1∑

i=t−∆+1

s
(OA)
i (27)

However, we know by definition that wt−∆+1(∆) ≤ C∆ if no deadlines are missed before t,
and that ∀i, ci ≤ C. It follows that w(OA)

t (1) satisfies the following inequality:

w
(OA)
t (1) ≤ C∆ + C(∆− 1)−

t−1∑
i=t−∆+1

s
(OA)
i (28)

By definition of (OA), s(OA)
i decreases with the deadlines of the pending jobs, so s(OA)

i is
lower bounded when the deadlines of the jobs are as late as possible (but not after t+ 1). This is
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the case when all the jobs arriving between t−∆ + 1 and t have their absolute deadline at t+ 1.
Moreover, replacing the state wt−∆+1 by a lower bound (∀i ∈ [t−∆ + 1, t], w′t−∆+1(i) = 0 and
w′t−∆+1(t+ 1) = C∆) also decreases the speeds to their lower bounds, denoted s∗i . By doing so,
we obtain an upper bound w1 on w(OA)

t (1), given in Eq (29):

w1 = C∆ + C(∆− 1)−
t−1∑

i=t−∆+1

s∗i (29)

This construction of an upper bound on w(OA)
t (1) is illustrated in the case where C = 2 and

∆ = 6 in Figure 18.

time
t+1

work

C(∆− 1)

w′t−∆+1(∆)

w1

s∗t−2

w′t−∆+1

tt−∆+1

Figure 18: Construction of the bound w1 of w(OA)
t (1) for C = 2 and ∆ = 6. The black bold

curve is the lower bound on the state wt−∆+1. The blue bold curve is the upper bound w1 on the
state. The arrows represent the work executed by the processor at each time slot, at speeds s∗i .

The configuration displayed in Figure 18 is not a reachable state under (OA). However,
one can construct a state that is asymptotically reachable and that makes (OA) use the same
speeds s∗i . This is illustrated in Figure 19. We consider the following case: First, jobs of
type (C,∆) arrive at each time slot during n time slots. In this case, the state under (OA)
approaches the black staircase state as n grows. Then, jobs of type (C,∆ − i + n) arrive ∀i ∈
[n+1, n+∆−1] time slots (jobs arrival are represented alternatively in blue and red in Figure 19).
In that case, let us compute wn+∆−1(1). The remaining work of the black state in Figure 19 is
the same as in the worst case in Figure 18, with a value of C∆. Furthermore, the speeds used in
the state of Figure 19 are the same as in the upper bound displayed in Figure 18. So wn+∆−1(1)

approaches w1 as n goes to infinity. This shows that w1 is tight: supt(w
(OA)
t (1)) = w1.

Let us compute w1 using the above construction, displayed in Figure 19 in the case C = 1
and ∆ = 5. The speed under (OA) at time 0 is s(OA)(0) = C. At time 1, it is s(OA)(1) = C∆

∆−1 .
More generally, for 1 ≤ k < ∆, we have:

(∆− k)s(OA)(k) = (∆ + k − 1)C −
k−1∑
j=1

s(OA)(j) (30)
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n+∆n n+1

work

time

C∆

v
(OA)
max

Figure 19: Asymptotic worst case state, for C = 1 and ∆ = 5. The staircase black curve
represents the state reached asymptotically while the colored parts (blue and red segments rep-
resent one job at each time slot with same WCET C and different deadline) lead to the maximal
wn+∆−1(1). The green arrows represent quantities of work executed by the processor under
(OA).

(∆− k − 1)s(OA)(k + 1) = (∆ + k)C −
k∑
j=1

s(OA)(j) (31)

By substracting Eq. 30 and 31, we obtain:

(∆− k − 1)
(
s(OA)(k + 1)− s(OA)(k)

)
= C

⇔ s(OA)(k + 1) = s(OA)(k) +
C

(∆− k − 1)

By using a telescoping sum, we obtain ∀k ≥ 1:

s(OA)(k + 1) = s(OA)(1) + C

k+1∑
j=2

1

∆− i

= s(OA)(1) + C(h∆−2 − h∆−k−2)
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Therefore w1 = s(OA)(∆− 1) has the following value:

w1 = 2C∆− C −
∆−2∑
j=0

s(OA)(j + 1)

= 2C∆− C − Cs(OA)(1)−
∆−2∑
j=1

(s(OA)(1) + C(h∆−2 − h∆−j−1))

= C(∆− 1)− C
∆−2∑
j=1

(h∆−2 − h∆−j−1)

= C

(
∆

∆− 1
+ h∆−2

)
,

using s(OA)(1) = C ∆
∆−1 and hn, the n-th harmonic number: hn =

∑n
i=1 1/i and h0 = 0.

To conclude, the (OA) policy is schedulable if and only if

smax ≥ C(
∆

∆− 1
+ h∆−2) ≈ C log ∆, (32)

when ∆ is large. Therefore (OA) is not always schedulable.

E Size of the State Space

This appendix is dedicated to the enumeration of the total number of states.

Let w(.) be a valid state of the system, at any time t. Since all parameters are integer
numbers and the maximum deadline of a task is ∆, the maximal look-ahead at any time is ∆,
hence w(.) is characterized by its first ∆ integer values (that are non-decreasing by definition):
w(1) ≤ · · · ≤ w(∆).

Let us define the step sizes of w, starting from the end: x1 = w(∆) − w(∆ − 1), and more
generally, xj = w(∆− j+ 1)−w(∆− j), for all j = 1, . . . ,∆, the released work being of maximal
size C at any time, x1 ≤ C because x1 must be bounded by the amount of work that was released
at step t. Similarly, x1 + x2 must be bounded by the amount of work that was released at steps
t and t− 1, namely 2C, and so on and so forth up to x1 + x2 + · · ·+ x∆ ≤ ∆C. This is the only
condition for a function w to be a possible state when deadlines and sizes are arbitrary integers
bounded by ∆ and C respectively.

Therefore (x1, x2, ..., x∆) satisfy the following conditions:

x1 6 C
x1 + x2 6 2C
x1 + x2 + x3 6 3C
...
x1 + x2 + ...+ x∆ 6 ∆C

By defining the partial sums yj = x1 + · · ·+ xj , the number of states satisfies:

Q(C,∆) =

C∑
y1=0

2C∑
y2=y1

3C∑
y3=y2

· · ·
∆C∑

y∆=y∆−1

1.
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This multiple sum can be seen as a generalized Catalan number. Indeed, notice that a state
characterized by its steps (x1, . . . , x∆) is in bijection with a path on the integer grid from (0, 0)
to (∆ + 1, C(∆ + 1)), which remains below the diagonal of slope C (see Fig. 20).

x1

x4

x2

(0, 0)

(6, 12)

x5

x3

Figure 20: A valid state seen as a path below the diagonal (0, 0)− (6, 12), for C = 2 and ∆ = 5.

Counting the number of such paths has been done in [12] and corresponds to the generalized
Catalan numbers, Ckn = 1

nk+1

(
nk+1
n

)
, with k = C + 1 and n = ∆ + 1. Therefore, Q(C,∆) =

1
1+C(∆+1)

(
(C+1)(∆+1)

∆+1

)
.

Using the Stirling formula, we finally get Q(C,∆) ≈ e√
2π

1
(∆+1)3/2 (eC)∆.
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