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Motivation and goals. In many practical situations, geometric objects
are only known through a nite set of possibly noisy sample points. A natu-
ral question is then to recover the geometry and the topology of the unknown
object from this information. The most classical example is probably surface
reconstruction, where the points are measured on the surface of a real world
object. A perhaps more surprising example is the study of the large scale
structure formed by the galaxies, which cosmologists believe to be an inter-
connected network of walls and laments. In other applications, the shape of
interest may be a low dimensional object embedded in a higher-dimensional
space, which is the basic assumption irmanifold learning [10Z]. This is for
example the case in time series analysis, when the shape of study is the at-
tractor of a dynamical system sampled by a sequence of observations. When
these structures are highly nonlinear and have a non trivial topology as it is
often the case, simple dimensionality reduction techniques do not su ce and
must be complemented with more geometric and topological techniques.

A lot of research was done in this direction, originating from several sources.
A bunch of contributions came from the eld of computational geometry
where much e ort was done to elaborate provably correct surface recon-
struction algorithms, under a suitable sampling condition. We refer to [64]
for a thorough review of this approach. However most of this research fo-
cused on the case of sampled smooth surfaces R?, which is by now fairly
well covered. Extending these results to higher dimensional submanifolds
and to non smooth objects is one of the objectives of this book. Such an
extension requires new data structures to walk around the curse of dimen-
sionality. Handling more general geometric shapes also requires concepts
from topology and has provoked an interest in the subject oftcomputational
topology. Computational topology has recently gained a lot of momentum
and has been very successful at providing qualitative invariants and e -
cient algorithms to compute them. Its application to data analysis led to
the rapidly evolving eld of topological data analysisthat provides a general
framework to analyze the shape of data and has been applied to various
types of data across many elds.

This book.  This book intends to cover various aspects of geometric and
topological inference, from data representation and combinatorial questions
to persistent homology, an adaptation of homology to point cloud data. The
aim of this book is not to provide a comprehensive treatment of topological
data analysis but to describe the mathematical and algorithmic foundations
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of the subject.

Two main concepts will play a central role in this book : simplicial com-
plexes and distance functions.Simplicial complexesgeneralize the notion of
triangulation of a surface and are constructed by gluing together simplices :
points, line segments, triangles and their higher dimensional counterparts.
Simplicial complexes can be considered, at the same time, as continuous ob-
jects carrying topological and geometric information and as combinatorial
data structures that can be e ciently implemented. Simplicial complexes
can be used to produce ne meshes leading to faithfull approximations well
suited to scienti c computing purposes, or much coarser approximations,
still useful to infer important features of shapes such as their homology or
some local geometric properties.

Simplicial complexes have been known and studied for a long time in math-
ematics but only used in low dimensions due to their high complexity. In
this book, we will address the complexity issues by focusing on the inherent,
usually unknown, structure in the data which we assume to be of relative low
intrinsic dimension. We will put emphasis on output-sensitive algorithms,
introduce new simplicial complexes with low complexity, and describe ap-
proximation algorithms that scale well with the dimension.

Another central concept in this book is the notion of distance function. All
the simplicial complexes used in this book encode proximity relationships
between the data points. A prominent role is taken by Voronoi diagrams,
their dual Delaunay complexes and variants of those, but other simplicial
complexes based on distances like th€ech, the Vietoris-Rips or the witness
complexes will also be considered.

The book is subdivided into four parts.

Part | contains two chapters that present background material on topological
spaces and simplicial complexes.

Part Il introduces Delaunay complexes and their variants. Since Delau-
nay complexes are closely related to polytopes, the main combinatorial and
algorithmic properties of polytopes are presented rst in Chapter[3.

Delaunay complexes, to be introduced in Chaptef 4 are de ned from Voronoi
diagrams which are natural space patrtitions induced by the distance func-
tion to a sample. Delaunay complexes appear as the underlying basic data
structure for manifold reconstruction. The extensions of Voronoi diagrams
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and Delaunay complexes to weighted distances are also presented together
with their relevant applications to kth-nearest neighbor search and Breg-
man divergences which are used in information theory, image processing
and statistical analysis.

Although Delaunay triangulations have many beautiful properties, their size
depends exponentially on the dimension of the space in the worst-case. It is
thus important to exhibit realistic assumptions under which the complexity
of the Delaunay triangulation does not undergo such a bad behaviour. This
will be done through the notion of nets. Another issue comes from the fact
that, in dimensions greater than 2, Delaunay simplices may have an arbitrar-
ily small volume, even if their vertices are well distributed. Avoiding such
bad simplices is a major issue and the importance of thick triangulations has
been recognized since the early days of di erential topology. They play a
central role in numerical simulations to ensure the convergence of numerical
methods solving partial di erential equations. They also play a central role
in the triangulation of manifolds and, in particular, the reconstruction of
submanifolds of high dimensional spaces as shown in Chaptgl 8. Chaptef 5
de nes thick triangulations and introduces a random perturbation technique
to construct thick Delaunay triangulations in Euclidean space.

Chapter [g introduces two lItrations of simplicial complexes. Filtrations are
nested sequences of subcomplexes that allow to compute persistent homology
as described in Chaptef Il. We rst introduce alpha-complexes and show
that they provide natural Itrations of Delaunay and weighted Delaunay
complexes. We then introduce witness complexes and their Itrations. The
withess complex is a weak version of the Delaunay complex that can be
constructed in general metric spaces using only pairwise distances between
the points, without a need for coordinates. We will also introduce a Itration

of the witness complex.

Part 11l is devoted to the problem of reconstructing a submanifold M of
RY from a nite point sample P 2 M . The ultimate goal is to compute a
triangulation of M , i.e. a simplicial complex that is homeomorphic toM .
This is a demanding quest and, in this part, we will restrict our attention
to the case whereM is a smooth submanifold ofRY.

In Chapter [7} we introduce the basic concepts and results, and state a the-
orem that provides conditions for a simplicial complex M with vertex set
P M to be both a triangulation and a good geometric approximation of
M.
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Chapter [§ is devoted to the problem of reconstructing submanifolds from
point samples. This problem is of primary importance whenM is a surface
of R® (it is then known as the surface reconstruction problem). It also
founds applications in higher dimensions in the context of data analysis
where data are considered as points in some Euclidean space, of possibly
high dimension. In this chapter, we rst exhibit conditions under which the
alpha-complex of P M has the same homotopy type asM , a weaker
property than being homeomorphic to M . We then consider the problem
of reconstructing a smooth submanifoldM embedded in a space of possibly
high dimensiond. We then cannot a ord to triangulate the ambient space
as is being routinely done when working in low dimensions. A way to walk
around this di culty is to assume, as is common practice in data analysis
and machine learning, that the intrinsic dimension k of M is small, even
if the dimension of the ambient space may be very large. Chaptelr|8 takes
advantage of this assumption and presents a reconstruction algorithm whose
complexity is linear in d and exponential only in k.

The assumptions made in Part Il are very demanding: the geometric struc-
tures of the data should be smooth submanifolds, the amount of noise in
the data should be small and the sampling density should be high. These
assumptions may not be satis ed in practical situations. Part IV aims at
weakening the assumptions. Chaptef 9 studies the stability properties of
the sublevel sets of distance functions and provide sampling conditions to
infer the underlying geometry and topology of data.

Approximations in Chapter P]are with respect to the Hausdor distance.
This is a too strong limitation when the data contain outliers that are far
away from the underlying structure we want to infer.To overcome this prob-
lem, Chapter[1Q introduces a new framework where data are no longer con-
sidered as points but as distributions of mass or, more precisely probability
measures. It is shown that the distance function approach can be extended
to this more general framework.

Although Chapters [9 and [1Q provide strong results on the topology of the
sublevel sets of distance functions, computing and manipulating such sub-
level sets is limited in practice to low dimensions. To go beyond these limi-
tations, we restrict our quest to the inference of some topological invariants
of the level sets, namely their homology and the associated Betti numbers.
Chapter [11 introduces persistent homology and provides tools to robustly
infer the homology of sampled shapes.
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E cient implementations of most of the algorithms described in this book
can be found in the CGAL library (' http://www.cgal.org/ ) orin the GUDHI
library (|http://gudhi.gforge.inria.fr/ ).
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20 CHAPTER 1. TOPOLOGICAL SPACES

Basic mathematical notions useful in the sequel of this book are given in this
chapter. For conciseness, the de nitions and results are not always given in
their full generality. They are restricted to the simplest version necessary to
follow and understand the results and proofs of this book.

1.1 Topological spaces

This section quickly recalls a few basic notions and de nitions from general
topology. Most of the topological objects encountered in this book are metric
spaces whose de nition is also recalled.

A topologyon a setX is a family O of subsets ofX that satis es the three
following conditions: encountered in this book are metric spaces whose def-
inition is also recalled.

De nition 1.1 (Topological space) A topology on a setX is a family
O of subsets ofX that satis es the three following conditions:

1. the empty set; and X are elements ofO,

2. any union of elements ofO is an element ofO,

3. any nite intersection of elements of O is an element ofO.

The set X together with the family O, whose elements are called open sets,
is a topological space A subsetC of X is closedif its complement is an
open set. IfY X is a subset ofX , then the family Oy = fO\ Y : O 2 Og

is a topology onY, called theinduced topology.

De nition 1.2 (Closure, interior and boundary) Lat S be a subset of
a topological spaceX. The closure S of S, is the smallest closed set con-
taining S. The interior S of S is the largest open set contained irS. The
boundary @ Sof S is the set di erence @S= SnS.

De nition 1.3 (Metric space) A metric (or distance) on a setX is a
mapd: X X ! [0;+1) such that:

1. for any x;y 2 X, d(x;y) = d(y; x),
2. forany x;y 2 X, d(x;y) =0 if and only if x = vy,
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3. forany x;y;z 2 X, d(x;z) d(x;y)+ d(y;z).

The setX together withd is a metric space The smallest topology containing
all the open ballsB(x;r) = fy 2 X : d(x;y) < rgis called the metric
topology on X induced byd.

De nition 1.4 (Continuous map) Amapf : X I XObetween two
topological spacesX and X©°is continuous if and only if the pre-image
f 309 = fx 2 X : f(x) 2 O% of any open setO® X9is an open
set of X. Equivalently, f is continuous if and only if the pre-image of any
closed set inX %is a closed set inX .

De nition 1.5 (Compact space) A topological spaceX is a compact spa-
ceif any open cover ofX admits a nite subcover, i.e. for any family f U;gj»,
of open sets such thatX = [ j» U;j there exists a nite subsetd | of the
index setl such thatX = [;25U;.

For metric spaces, compacity is characterized using sequences: a metric
space X is compact if and only if any sequence inX has a convergent
subsequence.

De nition 1.6 (Connected spaces) A topological spaceX is connected
if it is not the union of two disjoint open sets: if O1; 0, are two open sets
such thatX = O1[ O, thenO1=; or O, = ;.

A topological spaceX is path-connected if for any x;y 2 X there exists a
continuous map :[0;1]! X such that (0)= x and (1)=y.

A path-connected space is always connected, but the reverse is not true in
general. See Exercise 1].1.

Euclidean spaces. The spaceRY, d 1 and its subsets are examples of
particular interest. All along the book, for x = (x1;  ;Xq) 2 RY

xd
kxk = x2
i=1
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denotes theEuclidean norm on RY. It induces the Euclidean metric on RY :
d(x;y) = kx yk. The standard topology on RY is the one induced by the
Euclidean metric.

A subsetK  RY (endowed with the topology induced from the Euclidean
one) is compact if and only if it is closed and bounded (Heine-Borel theorem).

1.2 Comparing topological spaces

There are many ways of measuring how close two objects are. We distinguish
between topological and geometric criteria.

1.2.1 Homeomorphism, isotopy and homotopy equivalence

In topology, two topological spaces are considered to be the same when they
are homeomorphic

De nition 1.7 (Homeomorphism) Two topological spacesX and Y are
homeomorphic if there exists a continuous bijective map : X ! Y such that
its inverse h ! is also continuous. The maph is called a homeomorphism.

As an example, a circle and a simple closed polygonal curve are homeomor-
phic. On the other hand, a circle and a segment are not homeomorphic. See
Exercise[L6.

The continuity of the inverse map in the de nition is automatic in some

cases. IfU is an open subset oR% andf : U! RYis an injective continuous
map, then V = f (U) is open andf is a homeomorphism betweerlJ and V

by Brower's invariance of domainﬂ The domain invariance theorem may be
generalized to manifolds: IfM and N are topological k-manifolds without

boundary and f : U ! N is an injective continuous map from an open
subset ofM to N, then f is open and is an homeomorphism betweeb and

f (V).

If X is homeomorphic to the standard unit ball of RY, X is called atopological
ball.

1See T. Tao's blog https://terrytao.wordpress.com/2011/06/13/
brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/
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The notions of compacity and connexity are preserved by homeomorphism.
See Exercisé¢ _1]4.

Let h be a map between two topological spaceX and Y. If h is a homeo-
morphism onto its image, it is called anembeddingof X in Y.

When the considered spaceX and Y are subspaces oRY, the notion of
isotopy is stronger than the notion of homeomorphism to ditinguish between
spaces.

De nition 1.8 (Ambient isotopy) An ambient isotopy betweenX  RY
andY RYisamapF :RY [0;1]! RY such thatF(:;0) is the identity
map onRY, F(X; 1) = Y and for any t 2 [0;1], F is a homeomorphism of
RY,

Intuitively, the previous de nition means that X can be continuously de-
formed into Y without creating any self-intersection or topological changes.
The notion of isotopy is stronger than the notion of homeomorphism in the
sense that if X and Y are isotopic, then they are obviously homeomorphic.
Converselym two subspaces oR¢Y that are homeomorphic may not be iso-
topic. This is the case for a knotted and an unknotted torus embedded in
R3 as the ones in Figurd 1.Jl. Note that, although intuitively obvious, prov-
ing that these two surfaces are not isotopic is a non obvious exercise that
requires some background in algebraic topology.

Figure 1.1: Two surfaces embedded ifR® homeomorphic to a torus that are
not isotopic.

In general, deciding whether two spaces are homeomaorphic is a very di cult
task. It is sometimes more convenient to work with a weaker notion of
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equivalence between spaces calldtbomotopy equivalence

Given two topological spacesX and Y, two maps fg;f1 : X ! Y are
homotopic if there exists a continuous mapH :[0;1] X ! Y such that for
all x 2 X, H(O;x) = fo(x) and H(1;x) = f1(x). Homotopy equivalence is
de ned in the following way.

De nition 1.9 (Homotopy equivalence) Two topological spacesX and

Y have the same homotopy type (or are homotopy equivalent) if there exist
two continuous mapsf : X ! Y andg:Y ! X suchthatg f is homotopic
to the identity map in X andf g is homotopic to the identity map inY.

As an example, the unit ball in an Euclidean space and a point are homo-
topy equivalent but not homeomorphic. A circle and an annulus are also
homotopy equivalent - see Figurg 1.2 and Exercisds 1.8.

Figure 1.2: An example of two maps that are homotopic (left) and examples
of spaces that are homotopy equivalent, but not homeomorphic (right).

De nition 1.10 (Contractible space) A contractible space is a space that
has the same homotopy type as a single point.

For example, a segment, or more generally any ball in an Euclidean space
RY is contractible - see Exercisé 1]7.

It is often di cult to prove homotopy equivalence directly from the de ni-
tion. When Y is a subset ofX , the following criterion reveals useful to prove
homotopy equivalence betweenX and Y.

Proposition 1.11 If Y X and if there exists a continuous mapH :
[0;1] X ! X such that:
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1. 8x 2 X, H(0;x) = X,
2.8x2X,H1L;x)2Y,
3.8y2Y; 8t2[01] H(ty)2Y,

then X and Y are homotopy equivalent.

De nition 1.12 (Deformation retract) If, in Proposition the last
property of H is replaced by the following stronger one

8y2Y; 8t2[0;1] H(ty)=y;

then H is called adeformation retract of X to Y.

A classical way to characterize and quantify topological properties and fea-
tures of spaces is to consider theitopological invariants . Theses are mathe-
matical objects (numbers, groups, polynomials,...) associated to each topo-
logical space that have the property of being the same for homeomorphic
spaces. The homotopy type is clearly a topological invariant: two homeo-
morphic spaces are homotopy equivalent. The converse is false: for example,
a point and a segment are homotopy equivalent but are not homeomorphic.
See Exercis¢ 1]7. Moreover, most of the topological invariants considered in
the sequel are indeed homotopy invariants, i.e. they are the same for spaces
that are homotopy equivalent.

1.2.2 Hausdor distance

The set of compact subsets of a metric space can be endowed with a metric,
called the Hausdor distance, that allows to measure how two compact
subsets are far away from each other. We give here the de nition for compact
subspaces oRY but it immediately adapts to the compact subsets of any
metric space.

De nition 1.13 (O set) Given a compact setX of RY, the tubular neigh-
borhood or o set X" of X of radius ", i.e. the set of all points at distance
at most" from X:

. [
X"=fy2R%:inf kx yk "g= B(x;")g
x2X
x2X

where B (x;") denotes the closed balfly 2 RY: kx yk "g.
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De nition 1.14  The Hausdor distance dy (X;Y ) between two closed sub-
setsX and Y of RY is the inmum of the " 0 such thatX Y and
Y  X'. Equivalently,

!

dy (X;Y)=max sup(inf kx yk);sup(inf kx yk)
y2y X2X x2X Y2Y

The Hausdor distance de nes a distance on the space of compact subsets
of RY. See Exercisé 1.10.

1.3 Exercises

Exercise 1.1 Let X be a path connected space. Show that is connected.
Let X  R? be the union of the vertical closed segmerit0g [ 1;1] and the
curve f (t; sin (%)) 2 R?:t 2 (0;1]g. Show thatX is compact and connected
but not path-connected.

Exercise 1.2 Let S be a subset of a metric spacX . Show that:
1. x2X 2Sifand only if forany r> 0, B(x;r)\ S6 ;.
2. x2 X 2 Sifand only if there existsr > 0 such thatB(x;r) S.

Exercise 1.3 Let X be a metric space. Giverx 2 X andr > 0, show that
the setB(x;r) = fy 2 X :d(x;y) rgis a closed set which is indeed the
closure of the open balB(x;r) = fy 2 X :d(x;y) <rg.

Exercise 1.4 Let X;Y two homeomorphic topological spaces. Prove the
following equivalences:

1. X is compact if and only if Y is compact.

2. X is connected (resp. path-connected) if and only ifY is connected
(resp. path-connected).

Exercise 1.5 Show that the Euclidean space is not compact (without using
the Heine-Borel theorem).
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Exercise 1.6 A continuous polygonal curveP  R? with consecutive edges
e =[pu;p2lie2=[p2:P3]; € =[Pn;Pn+1] is simple and closed if and only
if g\ g = ; whenever2 ji jj mod(n),e\e+ =p+1fori=1;, n 1
and e, \ e = p;. Show thatP is homeomorphic to a circle.

Show that a circle and a segment are not homeomorphic.

Exercise 1.7 Let X be a segment (i.e. a space homeomorphic t®;1])
and let Y be a point. Prove thatX and Y are homotopy equivalent but not
homeomorphic. More generally prove that any ball irRY is contractible.

Exercise 1.8 Let X be the unit circle in R? and letY  R? be the annulus
of inner radius 1 and outer radius 2. Prove that X and Y are homotopy
equivalent.

Exercise 1.9 Let X and Y be two topological spaces that are homotopy
equivalent. Show that ifX is path-connected, thenY is also path-connected.

Exercise 1.10 Show that the Hausdor distance is a distance on the space
of compact subsets oRY. Show that this is no longer true if we extend the
de nition to non compact sets (give an example of two di erent sets that are

at distance 0 from each other).

1.4 Bibliographical notes

All the notions introduced in this chapter are classical, but fundamental,
and presented with many details in the classical mathematical litterature.
For more details about basic topology, the reader may refer to any standard
book on general topology such as, e.g._[111]. The geometry of metric spaces
is a wide subject in mathematics. The reader interested in the topics may
have a look at [30]. More details and results about the notions of homotopy
and homotopy equivalence can be found ir [86, pp. 171-172] or [110, p. 108].
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Geometric shapes like curves, surfaces or their generalization in higher di-
mensions Com are \continuous" mathematical objects that cannot be di-
rectly encoded as a nite discrete structure usable by computers or comput-
ing devices. It is thus necessary to nd representations of these shapes that
are rich enough to capture their geometric structure and to comply with the
constraints inherent to the discrete and nite nature of implementable data
structures. On another side, when the only available data are point clouds
sampled around unknown shapes, it is necessary to be able to build some
continuous space on top of the data that faithfully encode the topology and
the geometry of the underlying shape. Simplicial complexes o er a classical
and exible solution to overcome these di culties.

2.1 Geometric simplicial complexes

The points of a nite set P = fpy;p1; ;pxgin RY are said to bea nely
independentif they are not contained in any a ne subspace of dimension
less thank.

De nition 2.1 (Simplex) Given a setP = fpy;::i;pg RY of k+1
a nely independent points, the k-dimensional simplex , or k-simplex for
short, spanned byP is the set of convex combinations

Xk XK
ipi;  with i=1 and ; O
i=0 i=0

Notice that is the convex hull of the points P, i.e. the smallest convex
subset of RY containing po;p1;  ;pk. A O-simplex is a point, a 1-simplex
is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron.

The facesof the simplex whose vertex set isP are the simplices spanned
by the subsets ofP. Any face dierent from is called aproper face of

For example, the faces of a triangle spanned by 3 independent poinfgg; p1; p2g 2
RY are the simplices; ; [po]; [P1]; [Po; Pa]; [P1; P2]; [P2; Po] and [po; pa; p2]. Ob-
serve that, by convention, ; is usually added to the faces as the simplex
spanned by the empty subset of the vertices.
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De nition 2.2 (Simplicial complex) A ( nite) simplicial complex K in
RY is a ( nite) collection of simplices such that:

1. any face of a simplex oK is a simplex ofK,

2. the intersection of any two simplices oK is either empty or a common
face of both.

All the simplicial complexes considered in this book are nite. The simplices
of K are called thefacesof K. The dimension of K is the highest dimension
of its simplices. A complex of dimensionk is also called ak-complex. A
subset of the simplices ofK which is itself a simplicial complex is called
a subcomplexof K. The j-skeleton Sk (K) of K is the subcomplex ofK

consisting of the simplices of dimension at mos;j .

Figure 2.1: Left: an example of a simplicial complex. Right: a union of
simplices which is not a simplicial complex

For a simplicial complexK in RY, its underlying spacejKj R is the union
of the simplices of K. The topology of K is the topology induced onjK j
by the standard topology in RY. When there is no risk of confusion, we do
not clearly make the distinction between a complex inRY and its underlying
space.

2.2 Abstract simplicial complexes

Notice that when its vertex set is known, a simplicial complex inRY is fully
and combinatorialy characterized by the list of its simplices. This leads to
the following notion of abstract simplicial complex.
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De nition 2.3 (Abstract simplicial complex) Let V = fvi; vnhg be
a nite set. An abstract simplicial complex K with vertex setV is a set of
nite subsets of V satisfying the two conditions :

1. The elements ofV belong toK".
2. If 2K and ,then 2 K.

The elements ofK are called the simplices or the faces oK. If 2 K has
precisely k + 1 elements, the dimension of is k and we say that is a
k-simplex. The dimension ofK is the maximal dimension of its simplices.

Any simplicial complex K in RY naturally determines an abstract simplicial
complex K, called the vertex schemeof K: K and K have the same set of
vertices and the simplices ofK" are the sets of vertices of the simplices oK .
Conversely, if an abstract complexK is the vertex scheme of a complexX
in RY, then K is called ageometric realization of K. Notice that any nite
abstract simplicial complex K has a geometric realization in an Euclidean
space in the following way. Letfvi;vy; ;vhg be the vertex set of K
where n is the number of vertices of K, and let R" be the simplex
spanned by fep; e; ;eng where, for anyi = 1; :n, & Is the vector
whose coordinates are all 0 except thé" one which is equal to 1. ThenK
is the subcomplex of dened by [e,; ;&,]is ak-simplex of K if and
only if [vi,;  ;Vvi ] is a simplex ofK . It can also be proven that any nite
abstract simplicial complex of dimensiond can be realized as a simplicial
complex in R24+1 (Exercice).

De nition 2.4 (Isomorphism of abstract simplicial complexes) Two
abstract simplicial complexesk:; K° with vertex setsV and V° are isomor-

phic if there exists a bijection :V ! VOsuch thatfvg; kg 2 K if and

only if f (vo); (vik)g 2 KC

The relation of isomorphism between two abstract simplicial complexes in-
duces homeomorphism between their geometric realizations.

Proposition 2.5 If two simplicial complexes K; K © are the geometric re-
alizations of two isomorphic abstract simplicial complexes; K© then jK j
and jK 9 are homeomorphic topological spaces. In particular, the underlying
spaces of any two geometric realizations of an abstract simplicial complex
are homeomorphic.
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In this book, we will often encounter abstract simplicial complexes whose
vertices are points in RY. Let K be an abstract complex with vertex set
V  RY. If the convex hull of eachk-simplex = fvg; :wg 2 K is a

geometric k-simplex in RY and if the collection of these simplices de nes a
simplical complex K , then we say that K naturally embedsin RY and that

K is the natural embeddingof K . When there is no ambiguity, the same
notation is used for K and K.

An important remark about terminology: as the underlying spaces
of all geometric realizations of an abstract simplicial complex are homeo-
morphic to each other, it is usual to relate the topological properties of
these underlying spaces to the complex itself. For example, when one claims
that an abstract simplicial complex K is homeomorphic or homotopy equiv-
alent to a topological spaceX, it is meant that the underlying space of any
geometric realization of K is homeomorphic or homotopy equivalent toX .

2.3 Nerve

As noticed in previous the section, simplicial complexes can be seen at the
same time as topological spaces and as purely combinatorial objects.

De nition 2.6 (Covers) An open cover of a topological spacX is a col-

lection U = (U;)i2; of open subsetdJ; X, 121 wherel is a set, such
that X = [ i2) U;. Similarly, a closed cover ofX is a collection of closed sets
whose union isX.

De nition 2.7 (Nerve) Given a cover of a topological spacX , U = (U;)i2)
we associate an abstract simplicial complex (U) whose vertex set i2J and
such that

=[Ui,;Ui,; ;U ]2 C(U) ifandonly if \ ¥, U 6 ;:
Such a simplicial complex is calledhe nerve of the coverU.
When all the sets U; are open and all their nite intersections are con-

tractible, i.e. are homotopy equivalent to a point, the Nerve Theorem relates
the topology of X and C(U).
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Theorem 2.8 (Nerve Theorem) Let U = (Uj)i2; be a nite open cover
of a subsetX of RY such that any intersection of theU;'s is either empty or
contractible. Then X and C(U) are homotopy equivalent.

The nerve theorem also holds for closed covers under a slightly more re-
strictive assumption on X . The following version is general enough for our
purpose.

Theorem 2.9 (Nerve Theorem for convex covers) Let X RY be a
nite union of closed convex setsF = ( Fi)i2; in RY. Then X and C(F) are
homotopy equivalent.

A cover satisfying the assumptions of the Nerve Theorem is sometimes called
a good cover. The Nerve Theorem is of fundamental importance in compu-
tational topology and geometric inference: it provides a way to encode the
homotopy type of continuous topological spaceX by a simplical complex
describing the intersection pattern of a good cover. In particular, whenX

is a ( nite) union of (closed or open) balls in RY, it is homotopy equivalent
to the nerve of this union of balls.

2.4 Filtrations of simplicial complexes

Simplicial complexes often come with a speci ¢ ordering of their simplices
that plays a fundamental role in geometry inference.

De nition 2.10 A ltration of a nite simplicial complex K is a nested
sequence of sub-complexgs= K% K1 K™ = K such that

KI*t = K'[ " where ™! is a simplex of K:

Equivalently, a ltration of K can be seen as an ordering of the simplices
such that for any i 0, the collection of the rst i simplices is a simplicial
complex. To ensure this later condition, it is su cient to know that every
simplex ' appears in the ltration after all its faces.

As a ltration of K is just an ordering of the simplices, in some cases, it
might be more natural to index the simplices by an increasing sequence
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()R, of real numbers:; = K o K 1 K m = K. In this case, it
is often convenient to extend the ltration to the whole set of real numbers
bydening K =K '"for 2[i; i+1), K =:for < gandK =K
for K m.

For example, when a function is de ned on the vertices ofK , on can de ne
a sublevel set ltration in the following way.

Filtration associated to a function de ned on the vertices of a
complex. Let K be asimplicial complex and letf be a real valued function
de ned on the vertices of K. For any simplex = fvg; wg one de nes
f( )by

f = max f (v

()= max f(v)

Ordering the simplices ofK according to the values of each simplex de nes
a ltration of K. Note that di erent simplices can have the same value. In
this case, they are ordered according to increasing dimension and simplices
of the same dimension with same value can be ordered arbitrarily. The
ltration induced by f is the Itration by the sublevel sets f (] 1 ;t]) of
f.

2.5 Vietoris-Rips and Cech ltrations

Filtrations are often built on top of nite sets of points to reveal the un-
derlying topological structure of data (see Chapter). LetP  RYbe a
( nite) set of points.

De nition 2.11 Given > 0, the Cech complex with vertex setP and

parameter is the nerve Cech(P; ) of the unions of balls centered onP

with radius . The simplices of Cech(P; ) are characterized by the following
condition:

\K
fXo;X1;::1;Xkg 2 CechP; ) B(xj; )6 ;:
i=0

As goes fromOto + 1 , the nested sequence of complex€ech(P; ) de nes
the Cech complex ltration.
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Given ak-dimensional face of the simplex of dimensionjPj 1, the smallest

such that 2 Cech(P; ) is the radius of the smallest ball enclosing the
vertices of . As a consequence, th&k-dimensional skeleton of theCech
ltration can be computed by computing the O( jPj¥) minimum enclosing
balls of all the subsets of at mostk points of P. Although the computation
of the minimum ball enclosing a set ofk points can be done in time O(k)
(see the bibliographic notes), the computation of the wholeCech lItration
quickly becomes intractable in practice. Given > 0, the computation of
the k-skeleton of Cech(P; ) can be done by rst computing all the cliques
of at most (k + 1) vertices of the 1-skeleton of Cech(P; ) which is a graph,
and second by selecting the cligues whose minimum enclosing ball has its
radius upper bounded by .

Figure 2.2: The Cech (left) and Vietoris-Rips (right) complexes built on top
of a nite set of points in R2. Note that they both contains a 3-simplex and
are thus not embedded inR?.

A simplicial complex which is closely related to the Cech ltration is the
Vietoris-Rips Itration , Rips(P).

De nition 2.12  Given > 0, the Vietoris-Rips complex Rips(P; ) with
vertext setP and parameter is de ned by the following condition

fXo; X1; ;Xkg 2 Rips(P; ) , k Xi Xxjk forall i;j 2f0;:::;kg:

As goes from0Oto + 1 , the nested sequence of complex&ips(P; ) de nes
the Vietoris-Rips Itration.

The Vietoris-Rips complex is much simpler to compute than theCech |-

tration as it just involves distance comparisons. The Vietoris-Rips complex
is the largest simplicial complex that has the same 1-skeleton as th€ech
complex. It is thus completely characterized by its 1-skeleton. The whole
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k-dimensional skeleton of the Vietoris-Rips lItration can be computed by
computing the diameter of all the subsets of at mostk points of P.

The Cech and the Vietoris-Rips ltrations are related by the following in-
terleaving property that plays a fundamental role in Chapter [L1].

Lemma 2.13 Let P be a nite set of points in RY. for any 0,

Rips(P; ) Cech(P; ) Rips(P;2 )

T
Proof If = fxg;x1s; ;xkg 2 Rips(P; ) then xo 2 ¥, B(x; ). So,
2 Cech(P; ). This proves the rst inclusion.

Now, if = fxo;Xx1; ;Xkg 2 Cech(P; ), there existsy 2 RY such that
y 2\ !‘zoB(xi; ), i.e. kx; yk foranyi =0; k. As a consequence,
forall i;j 2f0;:::;kg, kxi xjk 2 and 2 Rips(P;2 ).

Remark that the Cech and Vietoris-Rips Itrations can be de ned for a set
of points in any metric space and that the above interleaving property still
holds. When the points P are in RY, the interleaving of Lemma[2.13 is not
tight and can be slightly improved (see Exercisd 11]3).

2.6 Combinatorial manifolds triangulations

De nition 2.14 (Star and link) Let K be a simplicial complex with ver-
tex setP. The star of p 2 P is the set of simplices ofK that havep as a
vertex. We denote itstar(p; K). The link of p is the set of simplices

such that 2 star(p;K) but 62star(p; K). We denote it by link(p; K).

Observe that the star of a simplex isnot a complex while the link is. We
will use the nameclosed starof p in K to denote the subcomplex ofK that
consists of the simplices of stan§; K) and their subfaces.

De nition 2.15 (Pure complex) A simplicial k-complexK is pure if ev-
ery simplex in K is the face of ak-simplex.

De nition 2.16 (Boundary complex) Let K be a pure simplicialk-com-
plex. The boundary ofK , denoted @Kis the (k 1)-subcomplex ofK whose
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(k 1)-simplices are the(k 1)-simplices of K that are incident to only one
face of dimensionk.

De nition 2.17 (Combinatorial manifold) A simplicial complex K is
a combinatorial k-manifold if

1. K is pure k complex,
2. the link of any vertex ofK n @Kis a triangulated (k 1)-sphere
3. the link of any vertex of @Kis a triangulated (k  1)-ball.

We de ne the adjacency graphof a combinatorial k-manifold K as the graph
whose nodes are the&k-simplices of K and two nodes are joined by an edge
in the graph if the two simplices associated to the two nodes have ak( 1)-
simplex in common.

An example of a combinatorial manifold is the boundary complex of a poly-
tope (see Sectiofj 3]1).

De nition 2.18 (Triangulation of a point set) A triangulation of a -
nite point set P 2 RY is a geometric simplicial complexK whose vertex set
is P and whose underlying space is the convex hull &f.

The triangulation of a nite point set P 2 RY is a combinatorial mani-
fold whose boundary is the boundary complex of the convex hull oP (see

Exercise[3.9).

De nition 2.19 (Triangulation of a topological space) A triangulation
of a topological spaceX is a simplicial complex K and a homeomorphism
h:jKj! X.

2.7 Representation of simplicial complexes

To represent a simplicial complexK, we need a data structure that rep-
resents the simplices of the complex and is able to provide e cient imple-
mentations of elementary operations such as face and coface retrieval, and
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maintainance of the data structure upon elementary modi cations of the
complex, insertion or removal of a new simplex. In addition, we may want
to attach a lItration to each simplex and iterate over the simplices of a
Itered complex by increasing values of ltration. We present below several
data structures to represent simplicial complexes.

We say that two simplices and of a simplicial complex areincident if
one is included in the other. We say that and are adjacentif they are
incident and if their dimensions di er by exactly 1. The Hasse diagramof a
simplicial complex K is a graph whose nodes represent the simplices (of all
dimensions) and two nodes are joined by an arc if the associated simplices
are adjacent.

The Hasse diagram provides an explicit representation of all the simplices of
K . If the dimension of the complex is considered as a constant, it is easy to
see that all elementary operations onK can be performed e ciently. How-
ever the size of the Hasse diagram may be problematic in practice when
considering big complexes. A more compact data structure that still pro-
vides an explicit representation of all the simplices ofK is the so-called
simplex tree which is a minimal spanning tree of the Hasse diagram. The
simplex tree is constructed as a pre x tree of the simplices considered as
words on the alphabetvs; ::;; vy Wherevy; :::; v, are the labels of the vertices

of K (see Figure[ 2.8 and Exercicé 2|1).

Both the Hasse diagram and the simplex tree are convenient to store and
retrieve information attached to a simplex, e.g. a ltration value. Neverthe-
less, in some applications, we may content ourselves with less expressive but
more compact representations. Instead of representing all simplices, one can
represent only the maximal ones, i.e. the simplices that have no coface in
the complex. This may lead to a dramatic saving in memory size as can be
seen from the following simple example : the complex consisting of a unique
simplex has one maximal simplex but 3 simplices in total.

Representating only the maximal simplices is especially well suited for com-
binatorial manifold. A combinatorial manifold K can be represented by
its maximal simplices, together with the adjacency graph of those maximal
simplices. We will simply call this graph the adjacency graph of the combi-
natorial manifold. When K is of dimensiond, the adjacency graph of the
maximal simplices is a connected graph of degred + 1 that be e ciently
traversed. Such a graph will be used in Sectioh 3]4 when constructing convex
hulls.
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Figure 2.3: A Hasse diagram and a Simplex Tree with their associated
simplicial complexes.

2.8 Exercises

Exercise 2.1 A simplicial complex C is said to be (path-)connected if for
any pair of points (x;y) 2 C there exists a continuous path :[0;1]! C
such that (0) = x and (1) = y. Prove that a simplicial complex C is
connected if and only if its 1-skeleton is connected.

Exercise 2.2 Give examples of simplicial complexes irR® that are home-
omorphic to a ball, a sphere, and a torus.

Exercise 2.3 Prove that any abstract simplicial complex K of dimension
d can be realized as a geometric simplicial complex iR24*1 . (Hint : map
the vertices of K to points on the moment curve C = f(x;x2;:::;;x24*1) 2
R2d*1-x 2 Rg. Show that any subset of 21 + 2 points on C are anely
independent and that the image ofK is a realization of K in R>¥*1  See

also Exercise 3.1p.)

Exercise 2.1 (Simplex Tree) Let K be ad-simplicial complex whose ver-
tices are labelled 1:::;n. Each simplex is represented by a word which is
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the sorted list of its labels. We then store all simplices ofK as a pre x
tree called the simplex tree of K. The simplex tree is characterized by the
following properties:

1. The nodes of the simplex tree are in bijection with the simplices (of all
dimensions) of the complex. The root is associated to the empty face.

2. Each node of the tree, except the root, stores the label of a vertex.
Speci cally, a node associated to a simplex stores the last label of .

3. The vertices whose labels are encountered along a path from the root to
a node associated to a simplex are the vertices of . Along such a path,
the labels are sorted by increasing order and each label appears no more
than once.

Show that the simplex tree ofK is a spanning tree of the Hasse diagram of
K. Let be ai-simplex. Show that we can be decide whether is in K or
insert in K (assuming all its subfaces are irK) in time O(i logn). Show
also how to locate the faces and the cofaces ofin the simplex tree and how
to remove from K.

Exercise 2.2 Show how to compute the Vietoris-Rips lItration of a set of
points P in some metric space using the simplex tree.

2.9 Bibliographical notes

Our presentation of simplicial complexes follows the one in Munkres [109].
The nerve theorem and its variants are classical results in algebraic topology.
A proof is given in Hatcher [96, Section 4G].

The computation of the Cech lItration of a nite set of points relies on the
computation of minimum enclosing balls. Welzl has proposed an elegant
randomized algorithm of linear complexity to compute the minimal ball en-
closing a set ofn points. The algorithm can be adapted to compute the
minimal enclosing ellipsoid [129]. The Vietoris-Rips Itration can be ob-
tained by computing the cliques in the 1-skeleton of the Vietoris-Rips com-
plex. This is an NP-complete problem but e cient solutions exist for sparse
graphs [77]. The Vietoris-Rips ltration can be constructed and stored us-
ing a simplex tree, a data structure proposed by Boissonnat and Maria [20].
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Convex polytopes and convex polyhedra are fundamental structures that
play an essential role in computational geometry, linear programming, op-
timisation and many other elds. In this book, they also play a central
role because of their close relationship with Voronoi diagrams and Delaunay
complexes, introduced in Chapter[4 and used throughout the book. This
chapter presents here the combinatorial and algorithmic aspects of convex
polyhedra to be used in the following chapters. For a more complete treat-
ment of the rich theory of convex polytopes, the reader is referred to classical
textbooks (see the bibliographic notes).

3.1 De nitions

3.1.1 Convex polytopes

De nition 3.1 A convex polytope in RY is the convex hull of a nite set of
points. In this book, we only consider convex polytopes and the word polytope
is used as a synonym for convex polytope.

Hence, a convex polytope is a closed bounded subset Bf. The dimension
of a convex polytope is the dimension of the a ne subspace spanned by the
polytope. Simplices (see SectioE]Z) are particular cases of polytopes.

3.1.2 Facial structure of polytopes

A hyperplane h of RY is a subset ofRY de ned by a linear equation :
h=fx2R%:h(x)= a x+ b=0g;
wherea 2 R4 b2 R. A hyperplane h divides R? in two half-spaces:
h* fx2RY:h(x)= a x+b 0g
h fx2RY:h(x)=a x+b 0g

Note the half-spacesh* and h are de ned as closed subsets, so that, h*
and h do not form a partition of RY but h, h* nh.andh nh do.

De nition 3.2 A hyperplane h of RY is a supporting hyperplane of the
polytope P i the intersection P\ h is non empty andP is included in one
of the two half-spaces de ned byn.
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The intersection of P with a supporting hyperplaneh is called afaceof P.
Lemma 3.3 A face of a polytope is a polytope.

Proof Let P = fpsi;:::;:png be a nite set of points in RY and let P =
conv(P) be the polytope which is the convex hull of P. Any facef of P is
the intersection of P with a supporting hyperplane h. We prove that the
facef = P\ h is the convex hull conv(P \ h) of the subset of points of
P included in h. The inclusion conv(P \ h) f comes from the convexity
of f. Indeed, f is convex since it is the intersection of two convex sets.
Furthermore f contains P \ h, so it contains the convex hull convP \ h).
To prove the reverse inclusion, we assume without loss of generality that
P h*. Then we haveh(p) %for any p; 2 P. Any point p included
in P is a convex combir@tionp = i”=1 i pi of points in P. If furthermore
p belongs tof, h(p)) = L, ih(p) vanishes and this can happen only if

i = 0 for all points p; that are not in h. Thus, if p belongsf , it belongs to
conv(P \ h).

The proof of the previous lemma, shows that the faces of the polytop® are
the convex hulls of subsets ofP. A polytope has therefore a nite number
of faces. The boundary of the polytopeP is the union of its faces. The
faces of dimension 0 are calledertices. The faces of dimension 1 are called
edges If P has dimensiond, the faces of dimensiord 1andd 2 are called
respectively facets and ridges.

The vertices of the polytope P = conv(P) are points of P. The following
lemma, whose proof is left as an exercise (Exercie 8.1) is a well known result
of the theory of polytopes.

Lemma 3.4 Any polytope is the convex hull of its vertices.
The facial structure of a simplex can be easily described. Indeed, if is a

dent points, any subset ofS is a set of independent points whose convex hull
is a simplex and, except in the case oS itself, this simplex is a face of .

Therefore ak-simplex hask + 1-vertices, and :(Ii faces of dimension
j,forj =0to k 1.

Another fundamental result of the theory of polytopes is the following lemma
whose proof is also left as an exercise (see Exerci$es| 3.4 35).
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Lemma 3.5 Any polytope is the intersection of a nite number of half-
spaces. Reciprocally, any intersection of a nite number of half-spaces that
is bounded, is a polytope.

Therefore any polytope can be described either as the convex hull of a nite
set of points or as the intersection of a nite number of half-spaces. More
precisely, the proof of Lemmg 3. shows that the minimal set of half-spaces
whose intersection is identical to the polytopeP is the set of half-spaces
bounded by the hyperplanes supportingP along its facets and containing
P.

3.1.3 Convex polyhedra

In the sequel, we extend the notion of polytopes to describe unbounded
intersections of half-spaces as well as polytopes.

De nition 3.6 A convex polyhedronis the intersection of a nite number
of half-spaces.

A convex polyhedron may be bounded or not. From Lemmg 35, a convex

polytope is just a special case of convex polyhedron. The notion of support-

ing hyperplanes and faces introduced above for convex polytopes extend
naturally to convex polyhedra. The faces of a convex polyhedron are them-

selves convex polyhedra and may be unbounded if the convex polyhedron is
unbounded.

3.1.4 Simplicial polytopes and simple convex polyhedra

A point set P in RY is said to be in general positionwhen any subset ofP
with size at most d+ 1 is a set of a nely independent points. When the
points of P are in general position, any hyperplaneh includes at mostd
points of P and the points in P\ h are a nely independent. Therefore all
the faces of the polytopeP = conv(P) are simplices and the polytopeP is
called asimplicial polytope.

A set of n hyperplanes inRY is said to bein general position if the intersec-
tion of any subset ofk of them is an a ne subspace of dimensiond k. A
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convex polyhedron de ned as the intersection ofn half-spaces bounded by
hyperplanes in general position is callecsimple.

3.1.5 The boundary complex

Let P be a convex polyhedron. Any face of a face dP is a face ofP and
the intersection of two faces ofP is either empty or a common face of both
faces.

Therefore, if P is simplicial polytope, its faces form a geometric simplicial
complex (see Chaptef P). This complex is called théoundary complexof P.
It can be shown (see Exercisg 3]9) that the boundary complex of a simplicial
polytope is a combinatorial manifold (see De nition ).

If P is not a simplicial polytope, its faces may not be simplices. Still, they
are convex polyhedra and they form a cell complex as de ned now.

De nition 3.7 (Cell complex) A cell complex is a setC of convex poly-
hedra, called the faces ofC, that satis es the two following properties

{ Any face of a face of C is a face ofC.

{ The intersection of any two faces of C is either empty or a common
face of both faces.

The cell complex formed by the faces of a convex polyhedroR is still called
the boundary complexof P. We adapt to cell complexes and therefore to
convex polyhedra the notions of incidency and adjacency de ned in Sec-
tion 2.7t

Two faces of a convex polyhedron are said to béncident if one is
included in the other.

Two facets of a convex polyhedron are said to badjacentif they share
a(d 2)-subface.
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3.2 Duality

3.2.1 Point-hyperplane duality

We introduce a duality between points and hyperplanes that makes use of
the unit paraboloid of RY and gives a special role to the last coordinate axis,

called the vertical axis. We denote by x(i);i = 1;:::;d, the coordinates of
a point x 2 RY.
The unit paraboloid Q is de ned as :
( w1 )
Q= x2RY:x(d)=  x(i)?

i=1

Pdl
i=

P
In the rest of this section, we write for short Ofor ¢ 1

Let p be a point of the paraboloid Q. The duality associates to point p the
hyperplane p tangent to Q at p:

P
fx 2 R%: x(d) = 2P Di)x()  p(i))+ p(d)
fx2 R x(d) 2 %(i)x(i)+ p(d)=0g:

P

More generally, duality associates to any pointp of RY the non vertical
hyperplane p de ned by:

p = fx 2 RY: x(d) 2P Op(i)x(i)+ p(d)=0g:

Conversely, leth be a non vertical hyperplane ofRY. The equation of h can
be written in normal form:

d Pao ., .\,
h=fx2R":x(d)+ 0n(|)x(|)+ h(d)=0g;
and duality associates toh the point h with coordinates

h®)..... hd 1)

St i h(d)

Sincep = p, duality is an involutive bijection between points of RY and
non vertical hyperplanes of RY. Duality preserves incidences of points and
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hyperplanes: ifp and g are two points in RY with dual hyperplanes p and
g respectively, we have

P
a2p 0 qd 2 P+ pd=00) p2q:

Let h be a non vertical hyperplane whose equation in normal form id1(x) =
0. We say that point p is above h or that h is below p if h(p) > 0. We
say that point p is below h or that h is abovep if h(p) < 0. For a non
vertical hyperplane h, we call upper half-spaceand denote by h* the half-
space bounded byh that is above h. We call lower half-spaceand denote by
h the half-space belowh:

h+
h

fx 2 RY: h(x) > Og
fx 2 RY: h(x) < Og:

Duality reverses the above-below relations between points and hyperplanes :
if p and g are two points in RY with dual hyperplanes p and q respectively,
we have:

=]
azp* 0 qd) 2_ Pp(d)g(d)+ p(d)>00 p2q”
azp 0 qd) 2 Pd)gd)+ p(d)<0) p2q

3.2.2 Lower hulls and upper envelope

by lowerhull(P), is a subcomplex of the boundary complex of the polytope
P =conv(P). Let H(P) be the set of hyperplanes supporting the polytope
P. We distinguish the subsetH ; (P) of lower supporting hyperplanes where
a hyperplaneh of H (P) is a lower supporting hyperplane ifh is a non vertical
hyperplane andP is included in the upper half-spaceh™. The lower hull of
P is then de ned as the subcomplex of the convex hull boundary, formed
by faces ofP included in lower supporting hyperplanes:

lowerhull(P) = fP\ h:h2 H.(P)g
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and let H* be the convex polyhedron which is the intersection of the upper
half-spaces bounded by the hyperplanes dfi :

H* =hl\ hy:::\ hi:

The boundary complex of the convex polyhedronH™ is called the upper
envelopeof the set of hyperplanesH .

Two complexesK and K (simplicial or cellular complexes) of dimensiond
are said to bedual complexedf there is a bijective correspondence between
the faces ofK and the faces ofK such that

the k-faces ofK correspond to the d k)-faces ofK

the correspondence preserves incidences and reverses inclusion rela-
tions, meaning that if if f g are incident faces ofK , the correspond-
ing facesf and g of K are incident and such thatg f .

Observe that the lower envelope of a set of points inRY, and the upper

envelope of a set of hyperplanes are bothd( 1)-complexes. The duality

between points and hyperplanes oR¢ introduced in Section yields a
duality between the lower hull of a set of points and the upper envelope of
the set of dual hyperplanes.

Lemma 3.8 (Lower hull - upper enveloppe duality) Let P be a set of
points in RY and let P be the set of dual hyperplanes. The lower hull d?
and the upper envelope oP are dual (d 1)-complexes.

Proof We assume here for simplicity that the points of P are in general po-
sition and leave the proof for the general case as an exercise (Exercfse 3.10).

Let P = conv(P) be the convex hull of P and by P * be the convex polyhe-
dron which is the intersection of the upper half-spaces bounded by the dual
hyperplanes:

P =p" "\ p i\ pt:
Let f be ak-face of lowerhull(P). Facef is ak-face of the polytopeP and,
since general position is assumed, includes (k + 1)-vertices of P which are

included in f . We consider a lower supporting hyperplaneh that intersects
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supporting hyperplane, the other points of P are included in the upper half-
spaceh®. Let h be the point dual to h. Then, from the properties of the
point hyperplane duality introduced above, we get:

pi2ht h 2p™*; 8 =1;:::;n (3.1)
pi2h h 2p; 8=1;:::;k+1 (3.2)
pi 62h h 62,; 8i=k+2;:::;n (3.3)

Equations[3.1,[3.2 and 3.B show that the pointh belongs to the @ 1
k)-face f of P * which is the intersection of P * with the k + 1 hy-
perplanesfp, ;i = 1;:::k +1g. Therefore, duality maps the k-face f =
conv(f pp;:::; pk+1 Q) of lowerhull(P) to the (d 1 k)-facef = p;\ p,\
20\ Peyg \P T Of P T

In the other way, any (d 1 k)-face of P * is the intersection of P * with
k+1 hyperplanes in P (see ExercisG). Let us consider ad( 1 k)-face
f of P * and say thatf is the intersection of P * with the k hyperplanes

fp;i = 1;:::k +1g. Equations ,[3-2 and[3.B show that any point
h in f is the dual of a hyperplane h which supports P along the face

Therefore, duality maps backf to f and the correspondence is bijective.

3.3 Combinatorial bounds

The following theorem bounds the total number of faces of a convex poly-
hedron in RY which is known to have either n facets or n vertices. The
theorem is known as theupper bound theoremthough the bound is tight in
the worst case.

Theorem 3.9 (Upper Bound Theorem) The total number of faces of a
convex polyhedron inRY, de ned as the intersection of n half-spaces or as

the convex hull ofn points, is ~ nbP2C .

Proof We prove here the upper bound. The lower bound is the topic of
Exercise[3.12.
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Let P be a convex polyhedron de ned as the intersection ofi half-spaces of
RY. To prove the upper bound on the number of faces oP, we may assume
that the hyperplanes bounding the half-spaces de ningP are in general
position. Indeed, otherwise, we can slightly perturb those hyperplanes to
bring then in general position. During this process, the number of faces of
P can only increase, see Exercige 3[11. Hence, any upper bound that is valid
for hyperplanes in general position holds for any set of hyperplanes. We also
assume that the polyhedron has at least one vertex. Indeed, otherwise the
number of bounding hyperplanes is at mostd 1 and the total number of
faces is at most 2 1. In addition, we may assume, without loss of generality,
that two vertices of P do not have the samexy coordinate.

We rst bound the number of vertices of P and then extend this bound to
faces of any dimension. Letp be one of the vertices ofP. Because general
position is assumed,p, as any other vertex of P, is included in exactly d of
the bounding hyperplanes. Thereforep is incident to exactly d facets andd
edges ofP. Thus at least d%e edges incident top are included in either in
the half-spaceh™ : x4  Xq(p) or in the half-spaceh :xq xq4(p). Since
the bounding hyperplanes are in general positionP is simple and the a ne
hull of any subset ofk < d edges incident to a vertex ofP contains ak-face
of P (Exercice). Therefore, each vertexp of P is a vertex with extremal
Xg-coordinate for at least one face of dimensiord%e. Since any face has
at most one vertex of maximal x4 coordinate and one vertex of minimal
Xg-coordinate, the number of vertices ofP is at most twice the number of
dde-faces ofP.

From the general position assumption, ak-face of P is the intersection of
d k of the bounding hyperplanes (see Exercis@ﬁ). We deduce that the

number of k-faces is at most n K = O(nd k), which is O(n°2°) for

k = d%e. From the above discussion, we conclude that the number of vertices
of P is O(nb%°).

Let us bound now the number ofk-faces fork > 0. The number of k-faces
d d Ko which is a constant for xed d.
Hence the upper boundO(nb%C) holds also for the number of faces of any
dimension.

incident to any vertex of P is

The duality introduced in Section B.Z] immediately implies that the same
upper bound holds for the lower hull of a set ofn points and nally (by
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symmetry) to the number of faces of a polytope de ned as the convex hull
of n points.

3.4 Convex hull algorithms

We present here two algorithms to build the convex hull of a set of points
P. Both algorithms are incremental, meaning that they insert the points
of P one by one, while maintaining the convex hull of the currently subset
of inserted points. Convex hulls are represented by the Hasse diagram of
their boundary complexes (see Section 27). Incremental algorithms make
also use of the adjacency graph of convex hull facets which, as noticed in
Section[2.7), is encoded in the Hasse diagram. Both algorithms also work
while maintaining only the adjacency graph of the facets of the convex hull.
To make the description of the algorithms simple and to focus on the main
ideas, we assume here that the input set of point$ is in general position.
However this is not a limitation of the presented convex hull algorithms.

3.4.1 An incremental algorithm

by P; the subset of the rst i-points. Before presenting the whole algorithm
and its analysis, we explain how the convex hull is updated when inserting
point p+1 .

From conv(P;) to conv(Pj+1)

When point pi+1 is considered, the faces of cong;) may be classi ed in the
following way (see Figure[3.1):

A facet f of conv(P;) is red if the hyperplane hs supporting conv(P;)
along f separatesp;j+; from conv(P;) meaning that p; belongs to the
open half-spaceh; that does not intersect conv(P;). Otherwise, as
general position is assumedp; is included in the half-spaceh, whose
closure contains convP;), and the facetf is said to beblue
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Figure 3.1: Incremental convex hull algorithm. Top: d = 2. Bottom: d = 3.

A k-face with k < d is said to bered if all its incident facets are red,
blue if all its incident facets are blue, and purple if it is incident to
both red and blue facets.

The incremental algorithm and its analysis relies on the three following facts,
all related to the transformation of conv(P;) into conv(P;j.+1) when adding

point pj+1 .

1. The set of red facets induces a connected subgraph of the adjacency
graph of conv(P;).

2. The set of faces of conw;.1) includes the blue and purple faces of
conv(P;) together with additional new faceswhich are all incident to
pi+1 . Each new face is formed by the convex hull cond][ pi+1) where
g is a purple face of convp;). See Figure[3.1.

3. The set of purple faces of conw;) with their incidence relation is iso-
morphic to the set of new faces of conwp;.1 ). Both sets are isomorphic
to the set of faces of ad 1)-polytope with at most i vertices.
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Figure 3.2: When adding point pj+1, the set of purple facets of convp;) is
isomorphic to a (d 1)-polytope with at most i vertices.

Fact 1 and Fact 2 are illustrated on Figure [3.1. Fact 3 is illustrated on

Figure showing that the purple faces of conyP;) and the set of faces of
conv(P;+1 ) incident to pj+1 are both isomorphic to the set of faces of ad 1)-

polytope obtained as the intersection of convP;.;) with any hyperplane h

that separates conv;) from pj+1 .

In summary, updating conv(P;) to conv(P;j+1) requires to identify the red
and purple faces of convP;). The Hasse diagram of convP;.;) is then ob-
tained form the Hasse diagram of convP;) by removing red faces of convP;)
and creating a new face conw§[ p;j+1) for each purple faceg of conv(P;).
Incidence relations among new faces are deduced from incidence relations
among purple faces in convP;).

The algorithm

The incremental convex hull algorithm is summarized in the pseudo-code of
Algorithm ]

The incremental algorithm sorts the points in P by lexicographic order of
their coordinates and insert them in that order. Let pi1;p2;:::p, be the
sorted sequence of points irP and let P; be the subset of rsti points.

The lexicographic ordering ensures that when pointp;+; is inserted, at least
one of the facet of convp;) incident to p; is red. Indeed point pj+1 is
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Algorithm 1 Incremental convex hull algorithm

Input: A set P of n points in RY
Sort the points of P by lexicographic order of coordinates
Let p1;p2:::pn be the points ofP in lexicographic order
Let P; be the subset of rsti points
Build the Hasse diagram of convPg+1)
for i=d+1 to i=n-1 do
Find a red facet of conv(P;) fwith respect to pj+1 g
Find all red and purple faces of convg;)
Update the Hasse of conv;) into the Hasse diagram of convPj. ).
Output:  The Hasse diagram of the convex hull ofP

separated from conv@;) by a hyperplane h through p;. Let h* be the
half-space bounded byh that does not contain conv(P;). Let, in addition,
H denote the set of hyperplanes which are the ane hulls of the facets
of conv(P;) incident to p;. Write H™* for the union of the half-spaces not
containing conv(P;) that are bounded by the hyperplanes inH. Sinceh*
is included in H*, pi+1 is separated from convP;) by at least one of the
hyperplanes ofH. Thus to nd a rst red facet, the algorithm walks in the
adjacency graph of the facets of conw;), visiting only facets of conv(P;)
that are incident to p;, until a red facet is encountered.

Then to nd all red and purple faces, the algorithm traverses the adjacency
graph visiting all red facets of conv(P;) and, from each read facet, it traverses
the Hasse diagram to identify all red and purple faces of con;). The Hasse
diagram is then updated as explained in the previous paragraph.

Complexity Analysis

Theorem 3.10 The incremental convex hull algorithm computes the convex
hull of n points in RY in nlogn + nP*2-C  time.

Proof First notice that the only numerical predicates involved in Algo-
rithm L]are the orientation predicates called to decide if a facet of convp;)
is red or blue when inserting pointpj+1 . The orientation predicate amounts
to evaluate the sign of a @ +1) (d+ 1) determinant (see Exercise[3.16).

To ndthe rstred facet, the algorithm visits only facets of conv( P;) incident
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to the last inserted point p;. Therefore each facet will be visited only once
for this purpose during the whole algorithm.

Identifying red and purple faces is also clearly proportionnal to the number

of these faces. As a red face disappears from the convex hull, each face is
visited only once as a red face, and the cost of visiting a purple facg can

be charged on the new face cong([ pi+1).

Updating the Hasse diagram has a complexity proportional to the number
of new and removed faces which are respectively the number of purple and
red faces of convp;).

In summary, the cost of stepi +1 where point p;+1 is inserted is proportional

to the number of new and removed faces. Since a face is created only once
and removed at most once, the total cost of the incremental algorithm,
except for the initial sorting of the points, is proportionnal to the total
number of created faces.

From Fact 3 above and the upper bound theorem (Theore9), the number
of faces created when insertingpj+1 is O idelC and the total cost of
updating the Hasse diagram is:
1
X0 e o nb%
i=d+l

c

Taking into account the initial sorting of the points according to the lexico-
graphic order, the complexity of the incremental algorithm is:

O nlogn + nb%-c O(nlogn) if d=2

0 nb%C ifd>2

Furthermore, the complexity bound O nlogn + nb%-c s tight for any
incremental convex hull algorithm. See ExerC|s¢;_13E4 for examples of points
where the incremental convex hull requires (n 2 ) times.

The upper bound theorem gives a lower bound of nb2C for computing
the convex hull of n points in RY.

Moreover, ( nlogn) is also a lower bound of complexity for computing the
convex hull of n points since it is known that sorting n number reduces in
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linear time to the computation of the convex hull of n points (See Exer-
cise[3.15).

We deduce that computing the convex hull ofn points in RY has a complexity
which is at least nlogn + nP%C . The incremental algorithm is therefore

worst-case optimal in even dimensions. However, it is not optimal in odd
dimensions.

3.4.2 A randomized algorithm
The algorithm

The randomized incremental algorithm is quite similar to the above incre-
mental algorithm : points are inserted one by one in the convex hull. At each
insertion the set of red and purple faces of the current hull are identi ed and
the convex hull is updated accordingly. The main di erence with respect to
the incremental algorithm of Section[3.4.] is that the points are no longer
introduced in lexicographic order but in random order. We will show that

the expected complexity of the random algorithm matches the lower com-
plexity bound for convex hull computation. Expectation here concerns only
the random insertion order and assumes that, for an input set ofn points,

all the n! possible insertion sequences occur with the same probability.

In the following, points in P are assumed to be indexed according to their

rst inserted points. As in the deterministic algorithm presented before, the
randomized algorithm has to nd a rst red facet. However, we cannot rely
now on the lexicographic order of the input points and restrict our attention
to the faces incident to the lastly inserted point. To walk around this issue,
we will use an additional data structure called the con ict graph .

A facet f of the current convex hull conv(P;) is said to be in conict with
the not yet inserted point p; with j > i i the hyperplane h; supporting
conv(P;) along f separatesp; from conv(P;). The con ict graph maintained
by the algorithm is a bipartite graph including for each not yet inserted point
pj an edge between this point and a facet of the current hull in con ict with
pj . Note that when a new point pj+1 is inserted, the current hull is conv(P;)
and the facets of convP;) in conict with pj+; are precisely the red facets
of conv(P;). Therefore, when inserting point pi+1 , the con ict edge incident
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to pi+1 gives in constant time access to a red facet of con¥). Then the
algorithm nds all the red and purple faces of conv(P;) and updates the
Hasse diagram of the convex hull exactly as in the deterministic algorithm.
The only di erence is that now, after each insertion, the algorithm needs, in
addition, to update the con ict graph. Before explaining how this is done,
we summarize the randomized algorithm as Algorithm[ 2.

Algorithm 2 Randomized convex hull algorithm

Input: A set P of n points in RY
Choose randomly a subsePy,1 of d+ 1 points in P
Build the Hasse diagram of convPg+1)
Initialize the con ict graph
for i =d+1 to i=n-1 do
Choose randomlypj+1 2 P nP;
Pi+1 = Pi [f pi+1 0
Follow the con ict edge of pj+1 to nd a rst red facet
Find all red and purple faces of convp;)
Update the Hasse and compute the Hasse diagram of cor®{;1 ).
Update the conict graph
Output:  The Hasse diagram of the convex hull ofP

Updating the con ict graph

The algorithm needs to restore con ict edges between the facets of coni*.1 )
and the points of P nPj+1 . Nothing needs to be done for the points of nP; .,
that were previously in con ict with a blue facet of conv(P;) since such a
facet is still a facet of conv(P;+1). Let p; be a point of P nP;.; that was pre-
viously in con ict with a red facet f; of conv(P;). We need to nd a facet of
conv(Pj+1) in conict with p;. Let R denote the set of red facets of con\;)
and let R; denote the set of facets of conw;) in conict with p;. As noted
previously, the setR induces a connected subgraph of the adjacency graph
of conv(P;). The same is true forR; and for the subsetF; = R\ R; of red
facets in conict with pj. Note that the boundary of F; includes red ridges
which are on the boundary ofR; but not on the boundary of R and purple
ridges which are on the boundary ofR. See Figure 3.B for an illustration in
R2,

To nd a facet of conv(Pj+1) in conict with p;, the algorithm starts at f;,
the facet that was in con ict with p; before the insertion ofpi+1, and walk
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on the adjacency graph of convp;), visiting the facets of F;. At each purple
ridge h encountered on the boundary off;, the algorithm checks if one of
the two following cases occurs:

Case 1 : the blue facetg of conv(P;) incident on h is in con ict with pj+1,

Case 2 : the new facetf 9= conv(h;pj+1) of conv(P;.1), is in con ict with
Pi+1 .

In both cases, a facet of conup;.1 ) in con ict with pj+1 has been found and
the walk stops. If the walk traverses all facets ofF; without encountering
one of the above two casesp; lies inside conv@i.1) and can be discarded.

See Figurg 3.8.

Analysis of the randomized algorithm

We insist that the randomized algorithm presented here always computes the
actual convex hull of the set of input points. The random choices performed
by the algorithm concern only the order in which the points are inserted
and the performances of the algorithm. The analysis below will bound the
expected complexity of the algorithm assuming that all insertion sequences
occur with the same probability.

Theorem 3.11 The randomized incremental algorithm computes the con-
vex hull ofn points in RY in expected timeO nlogn + nb2C

Before we give the proof of the theorem, we recall an important result of
Clarkson and Shor [58], known as the random sampling theorem.

The random sampling theorem. We call con guration a subset ofd
independent points inRY. A con guration is said to be de ned on a set of
points P if the points in  belong to P. Let us choose as the origin a point
o in conv(P). A con guration is said to be in con ict with a point p if the
hyperplane which is the a ne hull of  separateso from p. A con guration
is said to havej conicts on P if it is in conict with | points of P. We
denote by C(P) the set of con gurations de ned on P and by C; (P) (resp.
C «(P)), the set of con gurations de ned on P and with j conicts (resp.
at most k conicts) on P.
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In the following, we consider random samplesS of P and we denote by
o(s; P) the expected number of con gurations de ned on S and without
conict on S, whereS is a random sample of sizes of P.

Theorem 3.12 (The random sampling theorem) Let P be a set ofn
points. The number jC ((P)j of con gurations de ned on P and with at
most k-con icts on P is bounded as follows :

i nKk

iC k(P)j 4d+1)%kY P (3.4)

In our context, a con guration that is de ned on P and without con ict on

P, is just the vertex set of a facet of convP) so that there is a bijection
between Cy(P) and the facets of convP). We then deduce from the upper
bound theorem (Theore) that the number of con gurations de ned and

without con ict on a sample of size s of P is at most O sb2C  Therefore:

o(s;P)= O sbsC - (3.5)

Plugging Equation [3.5 into Equation [3.4, we get that for any setP of n
points the number of con gurations de ned and with at most k conicts
over P is at most :

iC «(P)j= O kYzenbaC . (3.6)

Proof of Theorem 3.[1. | We can now analyze the cost of updating the
Hasse diagram of the convex hull and the cost of maintaining the con ict
graph.

Cost of updating the Hasse diagram. As in the case of the incremental
algorithm, the cost of updating the Hasse diagram is proportional to the
total number of convex hull facets that are created by the algorithm.

Let us bound the expected numbem(i +1) of facets that are created at Step
i +1 when point pj+; is inserted. Since the algorithm inserts the points of
P in random order, Pj+1 is a random subset ofP of sizei + 1. Notice that a
facet created at stepi +1 corresponds to a con guration of Co(Pj+1). Given
Pi+1, a con guration  of Co(Pj+1) corresponds to a facet created at step
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i +1 i one of the points in this con guration is the point Pj.; inserted at

step i, which happens with probability %. Thus, we have

X
nii+1) = proba( 2 Co(Pi+1)) 'fl
2C(P) !
d .
- m 0(| +1,P)

o (i+nbct .

By summing over all stepsi and using linearity of expectation, we bound
the expected total number of facets created by the algorithm and therefore
the expected cost of updating the Hasse diagram by :
X
n(i) = O(nP2%): (3.7)

Cost of updating the conict graph. We now bound the cost of up-
dating the conict graph. As explained above, when inserting pj+1 at step
i +1, the algorithm has to restore a conict edge for each point p; with

j>1i +1. This is done by traversing the incidence graph of convp;), visit-

ing the facets in con ict with both p;j+1 and pj. The cost of this procedure
is proportional to the number of visited facets which we analyse now.

For any pj 2 P nPj.1, the subsetS = Pj.1 [f pjgis a random sample of
P of sizei + 2. The facets visited to restore the conict for p; at stepi +1

correspond to con gurations in C»(S). Assume that a subsetS of P of size
i +2is given and that S = Pj+; [f pjg. Then, any con guration in Cx(S)

is a facet of conv@;) in conict with pj+1 andp; i pi+1 and p; are the two

elements ofS in conict with , which happens with probability W

Given S, the expected numbern(i +1;j;S) of facets visited to restore the
conict for pj atstepi+1is

ey X 2
n(l + 1,],8) = e prOba( 2 CZ(S)) m
2 . .
ESVIE R

Then, using Equation[3.8,
n(i+1:5S) O (i+1)PsC 2
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Since this is true for any subsetS of P of sizei +2, we get that the expected
number n(i +1,j) of facets visited to restore a conict edge forp; at step
i+lisalsoO (i+1) bsc 2 Then, the expected total cost for updating
the con ict graph is
o n(i;j) = x (h )0 iP5C 2 =0 nlogn+nbC . (3.8)
i=1 j=i+l i=1

At each insertion, nding a rst red facet takes constant time using the
con ict graph. Finding all the red and purple faces then takes a time pro-
portional to the number of red and purple faces and the total cost of this
operation is thus also given by Equation[3.7. In summary, the expected
combinatorial complexity of the randomized incremental construction of the
convex hull is given by Equations[3.T and 3.8, which achieves the proof of
Theorem[3.11.

The randomized version of the incremental construction of a convex hull
has therefore an expected complexity which is better than the complexity
of the deterministic incremental construction. Since this expected complex-
ity matches the complexity of the convex hull, the randomized incremental
construction of a convex hull is optimal.

3.5 Exercises

Exercise 3.1 Show that a convex polytopeP is the convex hull ot its ver-
tices.

Hint: one of the inclusion is trivial. To prove the other one, consider the
minimal subset P® P such that P = conv(P) = conv( P9 and prove that
each point in P%is a vertex of P.

Exercise 3.2 Show that the intersection of any nite set of faces of a poly-
tope is also a face of the polytope.

Exercise 3.3 Show that any face of a convex polytopeP is the intersection
of facets ofP.

Show that a (d 2)-face of a polytopeP is the intersection of two facets of
P.
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Exercise 3.4 Let P be a convex polytope and letH be the set of hy-
perplanes that support P along its facets. To each hyperplaneh 2 H,
we associate the half-spacé® bounded by h that contains P. Show that
P=\ h2H h* .

Exercise 3.5 (Polytopes and intersection of half-spaces) Show that,
if it is bounded, the intersection of a nite set of half-spaces is a polytope.

Exercise 3.6 (Faces of a convex polyhedron) Let H be a set ofn hy-
perplaneshy;:::;;h, and P be the polyhedron de ned as the intersection of
the n half-spaceshy ;:::;h) where hi is the half-space bounded byh; that
contains a given pointo. Let | be any subset of the indices ::;n and
Fi = \'i21 hj. Show that, if it is non empty, the intersection and P\ F, is a
face of P and that all the faces of P can be obtained this way, i.e. as the
intersection with P of the hyperplanes of a subset oH. Show, in addition,
that, if H is in general position,P\ F, is a face of dimensiord Kk if jlj = k.

Exercise 3.7 (Faces of a simple convex polyhedron) Prove that if P
is a simple convex polyhedron andp is a vertex of P, the a ne hull of any
subset ofk < d edges incident top contains a face ofP of dimensiond k.
Hint: use Exercise [3.2 and duality.

Exercise 3.8 (General position and duality) Show that n hyperplanes
are in general position i their dual points are in general position.

Exercise 3.9 Show that the boundary complex of a polytope is a combi-
natorial manifold.

Hint: Let p be a vertex of the d-polytope P. We show that the link of p

in the boundary complex of P is a (d 2)-topological sphere. Indeed, any
hyperplane h that separates p from the other vertices of P (see Figure[3.2)
intersects P along a polytope of dimension §{ 1) whose boundary complex
is isomorphic to the link of p in the boundary complex of P.

Exercise 3.10 Prove Lemma[3.8 in the general case.

Hint : Proves that if k°points in RY span an a ne hull of dimension k <k ©
their dual hyperplanes intersect along a k  d)-dimensional a ne space.
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Exercise 3.11 Let P be a convex polyhedron. Prove that perturbing the
hyperplanes bounding the half-spaces that de neP can only increase the
number of faces ofP.

Exercise 3.12 (Cyclic polytopes) A cyclic polytope is a polytope in R4
that is the convex hull of points lying on the moment curve M 4 de ned by
the parametric representation

Mg=fx(tt?:::t9:t 2 Rg

Show that a cyclic polytope of RY with n vertices has rk] (k 1)-faces

for any k suchthat0 k d=2.

Exercise 3.13 (Polarity) Polarity has been introduced with the paraboloid
Q. A sphere could have been used instead as shown in this exercise. Let
o be a point of RY. Polarity associates to any point p of RY distinct of o
the hyperplanep = fx : (x 0) (p 0) = 1g. Show that polarity is

a bijection between points of RY distinct de o and hyperplanes not pass-
ing through o. Let P be a set of point of RY whose convex hull includes
0. Show that polarity induces a duality between the boundary complex
of the po{ytope (P) = conv( P) and the boundary complex of the polytope
(P "= p2p P * wherep * is the half-space bounded byp not containing

0.

Exercise 3.14 (Lower bound for incremental convex hull computation)
Show that any incremental algorithm that constructs the convex hull of n

points of RY takes ( nbd%lc) time in the worst-case.

Hint : take the points on the moment curve M 4 (see Exercisd 3.12) and
insert them by increasing values of their rst coordinate.

Exercise 3.15 (Lower bound for convex hull computation ) Show that
sorting n number reduces in linear time to the computation of the convex
hull of n points in R2.

pi = (Xi;x?) on the unit parabola. If we know the convex hull of the p;, we

can deduce in linear time the list of the x; sorted by increasing values.
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Exercise 3.16 (Orientation predicate) Show that the numerical opera-
tion required to decide if a facetf = fp;,;:::; pi,g of conv(P;) is red or blue
when inserting point pi+1 amounts to evaluate the sign ofa l+1) (d+1)-
determinant

1 1 1
pil pid Pi+1
Exercise 3.17 (Vertical projection of a lower hull) Let P be a set of

point in general position in RY. We call vertical projection the projection
onto the hyperplane of equationx(d) = 0. Show that the restriction of the
vertical projection to the lower hull of P is 1 to 1. Show that the vertical
projection naturally embeds the lower hull of P as a triangulation of ( P9,
where PCis the vertex set of the lower hull of P.

Exercise 3.18 (Minkowski formula) Show that if P is a convex poly-
tope andf;, j 2 J, are its facets, we have ;,; vol(fj) nj = 0; wheren; is
the unit normal vector to f; oriented towards the outside ofP).

Hint : let x 2 P. Compute the volume of P by summing the volumes of
the pyramids (x;f;). The results follows by observing that the volume of P
does not depend orx.

3.6 Bibliographical notes

A modern introduction to the theory of polytopes can be found in Ziegler's
book [132]. The original proof of the upper bound theorem has been es-
tablished by McMullen in 1970. The simple asymptotic version given in
Theorem(3.9 is due to Seidel[121].

The incremental convex hull algorithm is due to SeidelA complete descrip-
tion of this algorithm handling degenerated cases is given in Edelsbrunner's
book [66]. The random sampling theorem is due to Clarkson and Shof [58].
The same paper proposes the rst randomized algorithm to build convex
hulls. This algorithm solves in fact the dual problem of computing the
intersection of half-spaces. Chazelle [52] has proposeddeterministic al-
gorithm to compute the convex hull of a nite point set that is worst case
optimal in any dimension. Obtained through derandomisation of the ran-
domized algorithm this algorithm is however mostly of theoretical interest
and no implementation is known.
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The theory of randomized algorithms is well-developed and nds applica-
tions in many areas of computer science. See the book by Motwani and
Raghavan for a broad perspective[[107], and the books of Boissonnat and
Yvinec [25] and of Mulmuley [108] for a geometric viewpoint.
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Delaunay complexes are fundamental data structures that have been ex-
tensively studied in computational geometry and used in many application
areas.

The Delaunay complex of a nite set of points P 2 RY is de ned as the nerve
of the Voronoi diagram of P which we de ne rst. We prove Delaunay's
theorem that states that, when the points of P are in general position, the
Delaunay complex ofP has a natural embedding inRY called the Delaunay
triangulation of P.

The proof relies on the so-called lifting map that associates to each point
of RY a point in R%1. We show that the Delaunay complex ofP is the
projection onto RY of the lower hull of the lifted points. Using then the re-
sults of Chapter[3, we will bound the combinatorial complexity of Delaunay
complexes and Voronoi diagrams, and obtain optimal algorithms for their
construction.

Voronoi diagrams and Delaunay complexes are a special case of more general
structures called weightedVoronoi diagrams and Delaunay complexes. The
class of weighted Voronoi diagrams includes the class of Euclidean Voronoi
diagrams and, as we will see, most of the properties of Voronoi diagrams still
hold for weighted diagrams. Weighted Voronoi diagrams can be found under
various disguises in various applications and the dual weighted Delaunay
complexes will play an important role in Chapters[§ and[8.

4.1 Lower envelopes and minimization diagrams

RY. The lower envelopeof F is de ned as

F = min f;i:
1in

From F andF , we de ne a partition of RY called the minimization diagram

of F. For a point x 2 RY, we de ne the index setl (x) of x as the set of
all indicesi such that F (x) = f;i(x). An equivalence relation noted can
then be de ned on the points of RY: two points are equivalent if they have
the same index set:

Xy, 1x)=1(y):

The equivalence classes are relatively open sets that covR®. Their closures
are called the facesof the minimization diagram of F and the collection of
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Figure 4.1: The lower envelope of a set of univariate functions. The min-
imization diagram is drawn on the horizontal line with the corresponding
indices. The face of indexf 1g consists of two components.

all those faces constitutes the minimization diagram ofF (see Figure).
The index set of a face is de ned as the largest subset of indices common to
all the points of the face. Conversely, the face of index set is the set of all
points x such that I I (x).

Upper envelopesand maximization diagrams can be de ned analogously.
Upper envelopes have been de ned in a geometric way in Sectidn 3.2.2 for
sets of non vertical hyperplanes. The two notions are in fact closely related.
Let H = fhy;:::;h,g be a set of non vertical hyperplanes inR%*!. Each
hyperplane h; in H has an equation which in normal form readsx(d+1) =
fi(x) where x(d+1) is the last coordinate of a point in R™! and f;(x) is an

a ne function of the d rst coordinates. Therefore h; can be regarded as
the graph of the ane function f;(x). Let F be the set of a ne functions

the graph of the upper envelope of the sefF, F* =max; ; nfj.

4.2 Voronoi diagrams

Voronoi cell V(p;;P), or simply V(p;) when there is ho ambiguity on the
setP :

V(pi;P)=fx2RY:kx pk k x pk;8p 2Pg:
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Figure 4.2: The Voronoi diagram of a set of 9 points.

The cell V(p;) is the intersection of the n 1 half-spaces bounded by the
bisecting hyperplanes ofp; and each of the other points ofP. V(p;) is

therefore a convex polyhedron, possibly unbounded, that containg;. The

Voronoi cells of P have disjoint interiors and, since any point of R belongs
to at least one Voronoi cell, they cover the entire spac&k?. The collection of

the Voronoi cells and their faces constitute acell complexcalled the Voronoi

diagram of P and denoted by Vor(P).

The Voronoi diagram of P is the minimization diagram of the set of distance

i(x)= kx pk

Since minimizing kx  pik over i is the same as minimizing &  p;)?, the

Voronoi diagram of P can alternatively be de ned as the minimization dia-

gram of the smooth functions x  p;)?. The graphs of those functions are
translated copies of the vertical paraboloid of revolution ofR%*! of equation

x(d+1)= x2

Observing further that, for any x, argmin;(x p;)? = arg max; (2p; X piz),
we obtain that the Voronoi diagram of P is the maximization diagram of a



4.2. VORONOI DIAGRAMS 75

Figure 4.3: V(P), with one of its faces projected ontoRY.

set of a ne functions, namely the functions
fix)=2p x p&

We can rewrite this construction in more geometric terms and establish a
link with convex polyhedra. For i = 1;::;n, let h; be the hyperplane of
R that is the graph of the a ne function f;(x) :

hi = f(x;x(d+1)) 2RY R;x(d+1)=2p x pig:

in H. By de nition (see Section [3.2.3), the upper envelopeV(P) is the
boundary complex of the convex polyhedrah; \ h; :::\ h} which is the
intersection of the upper half-spaces bounded by the hyperplanes i .
Since the Voronoi diagram Vor(P) is the maximization diagram of the set of

Og of the upper envelopeV(P), see Figure[4.3.

We deduce that the combinatorial complexity of the Voronoi diagram of n
points of RY is at most the combinatorial complexity of a polyhedron de ned

as the intersection ofn half-spaces ofR%!, which is O n9%€ as shown in

Section[3.3. This bound is tight (Exercise[4.8). Moreover, we can construct
Vor(P) by constructing V(P) R%1 and then projecting its faces ontoRY.
Thanks to Theorem [3.11, we conclude that Vorf) can be constructed in

. by
time  nlogn+ nd%¢€
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Figure 4.4. The Delaunay triangulation of a point set (in bold) and its dual
Voronoi diagram (thin lines).

4.3 Delaunay complexes

Let P be a nite set of points in RY and write as before VorP) for its Voronoi
diagram. The collection of all Voronoi cells of Vor(P) form a cover of RY
by closed convex sets, and the nerve of this cover is an abstract simplicial
complex called the Delaunay complexof P. Speci cally, let f be a face of
dimension k of Vor(P) and let intf be the set of points off that do not
belong to any proper subface off . All the points of int f have the same
subset of closest points inP and f is the intersection of the Voronoi cells
of the points in . Accordingly, is a simplex in the Delaunay complex.
See Figurg 4.4. We denote by DeR) the Delaunay complex of the setP.

This de nition can be rephrased in terms of empty balls. A ball B 2 R4
is said to be empty of points of P if the interior of B includes no points of
P. We say that a d-ball circumscribes a nite subset of points if the sphere
bounding B passes through all the points of the subset. The following lemma
is just another view of the de nition of the Delaunay complex.

Lemma 4.1 (The empty ball property) Any subset P is a simplex
of the Delaunay complex ofP i it has a circumscribing (open) ball empty
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of points of P. Such a ball is called aDelaunay ball.

The Delaunay complex cannot always be embedded ifRY. Consider, for
example, the case of a seP consisting ofm >d + 1 points lying on a same
hypersphere. The center of the hypersphere belongs to the Voronoi cells
of all the m points, which implies that the Delaunay complex contains the
(m 1)-simplex whose vertex set isP. This simplex cannot be embedded
in RY since its dimensionm 1 is greater thand.

However, as shown below, the Delaunay complex can be embedded R
when the points of P are in general position wrt spheres

De nition 4.2 (General position wrt spheres) We say that a nite set
of points P is in general position wrt spheresif no subset ofd +2 points of
P lie on a same hypersphere.

We can now state Delaunay's fundamental result.

Theorem 4.3 (Delaunay triangulation) If a nite set of points P 2 RY
is in general position wrt spheres, then the Delaunay complekel(P) has a
natural embeddinﬂ] in RY. This embedding is a triangulation of P called the
Delaunay triangulation of P.

Proof We identify RY with the hyperplane of R%1 of equationx(d+1) = 0
and introduce a lifting map  that maps points and balls of RY to points
of R%1. We then consider the lower hull of the set of lifted points (P)
and show that the projection onto RY embeds this lower hull as a geometric
simplicial complex of RY. We will see that this complex is identical to the
natural embedding of the Delaunay complex DelP). Further, we will prove
that it is a triangulation of P.

Let b = b(c;r) be a d-ball of RY with center ¢ and radius r. The lifting
map associates tob the point (b) = (¢;& r?) of R%1. A point x of
RY can be considered as a ball with null radius and is mapped to the point
(x) = ( x;x?) of R%1 . Observe that the lift of a point lies on the paraboloid
of revolution Q = fx 2 R¥! : x(d+ 1) = x2g. We then use inR%! the

'De ned in Section
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Figure 4.5: The empty ball property.

point hyperplane duality de ned in Section and denote by (b) the
hyperplane of R%1 that is the dual of (b):

() = fx2 R™ :x(d+1) 2cx+c® r?=0g:

The sphere@tbounding b(c; r) is the projection onto RY of the intersection

of Q with the hyperplan (b) (see Figure). Furthermore, the point x

belongs to the (open) ballbi  (x) belongs to the halfspace (b below
(b) . Therefore, we have:

X2 @b ( x)2 (b (4.1)
x2b ( x)2 (b : (4.2)

Consider now a setP of n points in general position wrt spheres and let
be a subset ofd + 1 points of P. We write b for the ball that circumscribes

. According to Lemma[4.], is a Delaunay simplex i the ball bis empty
of points of P. Then, from Equations and[4.2, the hyperplane (b)
contains ( ) and the halfspace (b) does not contain any point of (P).
We conclude that is a Delaunay simplex i the convex hull of ( )is a
facet of the lower hull D(P) of the lifted points (P).

Since P is in general position wrt spheres, (P) is in general position wrt
hyperplanes (i.e., in the usual sense). It follows thatD(P) is a simplicial
complex embedded inR%*1. Consider now the projection onto RY, called
the vertical projection. The restriction of the vertical projection to D(P)
is 1-1 (see Exercis¢ 3.17), and therefore the vertical projection dD(P) is
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Figure 4.6: The polar hyperplane of a ball.

a simplicial complex embedded inRY. From the previous paragraph, the
facets of D(P) are in bijective correspondence with the Delaunay simplices
of Del(P). Furthermore, for each simplex of Del(P), the corresponding
facet of D(P) is the convex hull of the lift ( ) of so that its vertical
projection is the convex hull of . It follows that the projection of the lower
hull D(P) is the natural embedding of the Delaunay complex DelP).

Let us further show that the natural embedding of Del(P) is a triangulation
of P. By de nition, the set of vertices of Del(P) is P. Furthermore, since
D(P) is the lower hull of (P), its vertical projection coincides with the
vertical projection of the convex hull of (P) which is just the convex hull
of P. It follows that the natural embedding of Del( P) is a triangulation of
P. This concludes the proof of Delaunay triangulation theorem.

Since the Delaunay complex DelP) is de ned as the nerve of the cell com-
plex Vor(P), there is a dual correspondence between the faces of these two
complexes, i.e. a bijective correspondence between their faces that pre-
serves incidences and reverses inclusions. The duality between lower hulls
and upper envelopes introduced in Section 3|2 yields another dual corre-
spondence between Vo) and Del(P). Indeed, notice that the set of hy-
perplanesfhsi;hy;:::hyg de ning the upper envelope V(P) are the duals
f (p1) ; (p2) ;::: (pn) g of the lifted points (P). Therefore, by the re-
sults of Section[3.2, the upper envelop&/(P) and the lower hull D(P) are
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dual complexes. Since the vertical projection induces a bijection between
the cellular complexesV(P) and Vor(P), and since the lifting map induces
another bijection between the complexesD(P) and Del(P), we get a dual
correspondence between VoF) and Del(P) through the duality between
V(P) and D(P). In fact the proof of the Delaunay triangulation theorem
shows that the two correspondences between VoR) and Del(P) coincide,
so that the following diagram commutes:

V(P) dyalty D (P)
" #
Delaunay Complex Del(P)

Voronoi Diagram Vor(P) ferve

It follows that the combinatorial complexity of the Delaunay complex of

n points is the same as the combinatorial complexity of its dual Voronoi
diagram. Moreover, the Delaunay complex oh points of RY can be deduced
from the dual Voronoi diagram and vice versa in time proportional to their
size. We also deduce from what precedes that computing the Delaunay
complex ofn points of RY reduces to constructing the convex hull ofn points
of R%*1 . The following theorem is then a direct consequence of Theorenlis 3.9
and[3.11.

Theorem 4.4 The combinatorial complexity of the Voronoi diagram of a
set of n points of RY and of its Delaunay complex is nd2€ | Both struc-

tures can be computed in optimal time nlogn + ndse

The bounds in this theorem are tight in the worst case. In particular, the
Voronoi diagram of n points of R® may be quadratic (see ExercisS).
However, under some assumptions on the point distribution, better bounds
can be obtained (see Sectiop 51).

If the points of P are not in general position wrt spheres, the Delaunay
complex may be of dimension greater than the dimensionl of the embedding
space and therefore cannot be embedded iRY. Accordingly the hyperplane
set (P) and the point set (P) are not in general position. HenceV(P) is
not simple and D(P) is not simplicial. The diagram above won't commute.

Nevertheless, the projection ofD(P) will still be a cell complex. Let f be a
j -face of D(P) that is not a simplex. Its projection is no longer a simplex
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but is still a convex j-polytope we denote byf® Moreover, f 9is still the
convex hull of the vertices of ak-simplex of the nerve of Vor(P) with
k >j . We say that f %is the shadowof . An embedded triangulation can
then be obtained by triangulating the shadows that are not simplices (see
Exercise[4.6). Any such triangulation is calleda Delaunay triangulation.
Since there are several ways of triangulating the faces of a polytopeR
admits several Delaunay triangulations.

4.4 \Weighted Delaunay complexes

4.4.1 Weighted points and weighted distance

A weighted point p = (p; w) is an element ofRY R where the pointp 2 R% is
called the centerof pandw 2 R is called itsweight A point is identi ed with

a weighted poiBt of weight 0. Whenw is non negative,g*can be considered
as the ballb(p;” w) centered atp and of squared radiusw. Since considering
negative weights will cause no problem in our developments, we favour the
name of weighted point.

We de ne the weighted distance between two weighted pointspf* = ( p1;w1)
and B, = (p2; w2) as

D(Pi;P2) =(pr P22 w1 wy

Note that the weighted distance is not a distance in the usual sense since it
is not positive and does not satisfy the triangular inequality. Two weighted
points are said to beorthogonalif their distance is zero. The term orthogonal
comes from the observation that, when the weights are non negative, two
weighted points are orthogonal i the spheres bounding the associated balls
are orthogonal spheres (see Figutle 4.7). The weighted distand(x; p) from
an unweighted point x to a weighted point p = ( p; w) whose weightw is
non negative is also called thepower of point x with respect to the sphere
bounding the ball b(p;" w).

4.4.2 Weighted Voronoi diagrams

Let B = fpy;:::;Png be a set of weighted points ofRY R. To eachp =
(pi;w;), we associate the celV(p;)) RY consisting of the points x of RY



82 CHAPTER 4. DELAUNAY COMPLEXES

Figure 4.7: The weighted distance: two weighted points with respectively a
negative (left), null (middle) and positive (right) weighted distance.

whose weighted distance t@?is not larger than its weighted distance to any
other weighted points of P :

V(p)=fx2RI:D(x;p) D(xp):8p 2 Pa:

The set of points of RY that are at equal distance from two weighted points
B and B is a hyperplane called the bisecting hyperplane opi"and ;. This
hyperplane is orthogonal to the line joining the centers ofpi* and g . The cell
V(i) is the intersection of the n 1 half-spaces bounded by the bisecting
hyperplanes ofp and each of the other weighted points ofP. If this inter-
section is not empty, it is a convex polyhedron, possibly unbounded. We
call weighted Voronoi cellsthe non empty cellsV (), i 2 [1 :n].

We de ne the weighted Voronoi diagram of P, noted Vor(P), as the cell
complex whose faces are the weighted Voronoi cells and their faces. Note
that the set of weighted Voronoi diagrams includes Voronoi diagrams. In-
deed, when all weighted points have the same weight, their weighted Voronoi
diagram is identical to the Voronoi diagram of their centers.

Equivalently, the weighted Voronoi diagram of P can be de ned as the mini-

that, for any x, argmin; D(X; ) = argmax;(2p; X pi2 + w;), we obtain
that the weighted Voronoi diagram of P is the maximization diagram of the

fi(x)=2p x pé+w:
The graph of f;(x) is a non vertical hyperplane of R%*! that we denote by
hii
hi = f(x;x(d+1)) 2RY R; x(d+1)=2p x P

hyperplanes ofH . The maximization diagram of F is obtained by projecting
vertically the faces of the upper envelopeV(P).



4.4, WEIGHTED DELAUNAY COMPLEXES 83

Figure 4.8: A weighted Voronoi diagram.

Hence, the faces of the weighted Voronoi diagram Voi) are the vertical
projections of the faces ofV(P).

Weighted Voronoi diagrams are very similar to Voronoi diagrams: the main
di erence is that some weighted point g in P may have an empty Voronoi
cell in Vor(P) (see the small circle in the upper left corner of Figur).
Equivalently, the corresponding hyperplaneh; does not contribute to a face
of the upper envelopeV(P). Notice however that if the weights are non
negative and small enough so that the weighted points in® correspond to
disjoint balls, then all the weighted points have a non empty Voronoi cell,

(Exercise[4.13).

4.4.3 Weighted Delaunay complexes

Let P be a nite set of weighted points of RY and write as before Vor()

for its Voronoi diagram. The nerve of the collection of all cells of Vor@) is

an abstract simplicial complex denoted by Del@) and called the weighted
Delaunay complexof P. Speci cally, let f be a face of dimensiork of Vor(P)

and letintf be the set of points off that do not belong to any proper subface
of f . All the points of int f have the same subset %f closest weighted points
in P (for the weighted distance), andf is the intersection of the weighted
Voronoi cells of the weighted points in A Accordingly, ~ is a simplex in the
weighted Delaunay complex.

Recall that two weighted points are said to beorthogonal if their weighted
distance is zero. A weighted pointx*is said to be orthogonal to a nite set
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Figure 4.9: The weighted delaunay triangulation associated to the weighted
Voronoi diagram of Figure[4.§.

N of weighted points if X is orthogonal to all the weighted points of ~.

We say that the set P of weighted points is in general position when no
weighted point of R R is at equal weighted distance from more thand+ 1
weighted points of P. In the following, we assume that the setP of weighted
points is in general position.

Then, if ~ = fpy; 1 Pag is a subset ofd + 1 weighted points in P, there
exists a unique weighted pointctin RY R orthogonal to ~. The center ¢( )
of ¢ is called the weighted center of 4 and the square root of the weight
of ¢, denoted by r(”), is called the weighted radius of © Observe that the
weighted radius may be imaginary which causes no problem.

A weighted point % is said to be free of weighted points of P if no point
of P has a negative weighted distance tox” Observe that the notion of
free weighted points generalizes the notion of empty balls (see Lemnja 4.1).
Indeed, when the weights of points inP are 0 and the weight ofx‘is positive,
the ball corresponding to X' is an empty ball for P.

Let v be a vertex of Vor(P). The weighted Delaunay simplex * associated
to v is ad-simplex. The vertexv is at equal weighted distancew from all the
weighted points of #, and this distance is smaller than the weighted distance
from v to all other weighted points in P n”~. Therefore the weighted point
(v;w) is orthogonal to ~ and free of points of P. This property generalizes
to faces of Vor(®) of any dimension and the following lemma is just another
view of the de nition of the weighted Delaunay complex.

Lemma 4.5 (The free weighted point property) Any subset® P is
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a simplex of the weighted Delaunay compleRel(P) i there is a weighted
point orthogonal to » and free of weighted points of®.

We proceed now as in Section 4|3 and prove the weighted version of De-
launay's triangulation theorem. With a slight abuse of language, we call
natural embedding of Del(®) in RY, a geometric realization of Del@) in
which each simplex "of Del(P) is embedded as the convex hull of the set

of the centers of the weighted points in »

Theorem 4.6 (Weighted Delaunay triangulation) If a nite set of wei-
ghted pointsP 2 RY R is in general position, then the weighted Delaunay
complex Del(P) has a natural embedding inRY which is a triangulation of
a subsetP®of P. PYis the set of centers of the weighted points i® that
have a non empty cell inVor(P).

Proof We rst de ne the lifting map for weighted points as follows: to a
weighted point p = ( p; w) of RY, we associate the point (p) = (p;p? W) of
R¥1 . Then we consider the lower hull of points of (P), denoted by D(P).
Arguing as in Section, we get that the lower hullD(P) is a geometric
simplicial complex embedded inR%! whose vertical projection onto RY is
the natural embedding of Del(®). Let PObe the subset of weighted points
in P that have non empty cells in Vor(P). The vertex set of D(P) is the set

(P9  (P) and the vertical projection of D(P) is a triangulation of P?
the set of centers of the weighted points o

the hyperplanes dual to the points in (P). Therefore, by the results of
Section, the upper envelop&/(P) and the lower hull D(P) are dual com-
plexes. Arguing once more as in Sectioh 4.3, we get the following diagram
which commutes when the weighted points are in general position :

V(B) daly p By
" #
Vor(P) ferve Del(P)

If the weighted points are not in general position, we can triangulate the non
simplicial facesD(P) as described in Sectio. The vertical projection of
D(P) will then be a triangulation of P°
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4.4.4 Complexity of weighted Delaunay complexes

The following theorem states that computing the weighted Voronoi diagram
of n weighted points of R R (or equivalently its dual weighted Delaunay
triangulation) has the same asymptotic complexity as computing the Eu-
clidean Voronoi diagram or the Delaunay triangulation of n points of RY.
The theorem is a direct consequence of Secti¢n 4.4.3 and of results on convex

hulls (Theorems[3.9 and 3.1]1).

Theorem 4.7 The combinatorial complexity of the weighted Voronoi dia-
gram of n weighted points of R R and of its dual weighted Delaunay

triangulation are nd2€ . Both structures can be computed in optimal

. a
time  nlogn+ nd%€

4.5 Examples of weighted Voronoi diagrams

We have seen that the weighted Voronoi diagram oh weighted points is the

maximization diagram of n a ne functions. The converse is also true (see
Exercise[4.14). We give in this section two examples of weighted Voronoi
diagrams that are of interest in the context of data analysis.

45.1 k-order Voronoi diagrams

Let P be a set ofn points of RY and let Py be the set of all subsets ok
points of P for some xed k 2 [1:n 1]. We de ne the Voronoi cell of a
subsetK 2 Py as the set of points ofRY that are closer to all the sites in K
than to any other site in P nK:

Vi(K)= fx2 R%:8p 2 K; 8pj 2 PnK; kx pk k x pjkg:

Let us consider the subsets oP, whose Voronoi cells are not empty. These
cells are convex polyhedra and form a cell complex whose domain RY
called the k-order diagram of P (see Figur). Fork = 1, we obtain the
usual Voronoi diagram.
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Figure 4.10: The 2-order Voronoi diagram of a set of points (in bold line)
and the corresponding 1-order Voronoi diagram (in thin line).

Theorem 4.8 The k-order diagram of P is the weighted Voronoi diagram

of a set of E weighted points ofRY.

Proof LetKg;:::;Ksbethes= E subsets ofk points of P. For any

point x 2 RY , we have

1 X X

1 . .
X2VK) 0 ¢ PP i a7 sl s
p2Ki0 1 92K
2 1X 1X 2
0 X Z@E pA X+E p
PR PR
X X
x2 2@% oA x+% o
02K 2K

0 D(x; ) D(x6)

whereg} = (¢;w;) is the weighted point centered at tBe center of mass

G =% ok POfKiofweightw;=c? Zwith 7= & ,x«p? Hence,
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x 2 VW(Ki) i x liesin the weighted Voronoi cell of g .

It follows that the k-order Voronoi diagram of a nite set of points P of RY
is a cell complex ofRY whose nerve is a triangulation ofR? under a general
position assumption.

The k-order Voronoi diagram of P can be used as a data structure to com-
pute in sublinear time the k points of P that are closest to a query point
X. The query can be answered by identifying the cell of thek-order Voronoi
diagram that contains x and reading the associated-nearest points ofP.

4.5.2 Bregman diagrams

Let be a convex domain of RY and F a strictly convex and di erentiable
function F (called the generator function of the divergence) de ned over .

Bregman divergenceD (pjjQ) : 7! R associated toF is de ned as

De(pjd)= F(p) F(@ r F(a) (p o (4.3)
wherer F =[ &F :: %:]T denotes the gradient operator.

Informally speaking, Bregman divergenceDg is the tail of the Taylor ex-
pansion of F. Geometrically, the Bregman divergenceD g (pjjq) is measured
as the vertical distance (i.e. along the ¢l + 1)-axis) between g = ( p; F(p))
and the hyperplaneHq tangent to the graph F of F at point 2. Dr (pjjq) =

F(p) Hq(p). See Figuref4.1]L.

We now give some basic properties of Bregman divergences. First, observe
that, for most functions F, the associated Bregman divergence isot sym-
metric, i.e. Dr(pjjq) & De(qjp) (the symbol jj is put to emphasize this
point). Hence, it is not a distance. Nevertheless, the strict convexity of the
generator function F implies that, for any pandqgin , Dg(pjg 0, with
De(pijg) =0 if and only if p= q.

Examples of Bregman divergences

Examples of Bregman divergences are the squared Euclidean distance, ob-
tained with F(x) = x2, and the quadratic distance function Dg (xjjy) =
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Figure 4.11: The Bregman divergence.

%(x y)TQ(x y) (also known as the squared Mahalanobis distance exten-
sively used in Computer Vision and Data Mining), obtained with F(x) =
%XT Qx where Q is a symmetric positive de nite matrix. See Exercise
for other examples.

The notion of Bregman divergence encapsulates various information mea-
sures based on entropic functions such as the Kullback-Leibler divergence
based on the Shannon entropy which is widely used in information the-
ory, image processir]g and various elds. Letp be a discrete probability
distributign so that id=1 p(i) = 1. The Shannon entropy is de ned as
F(p) = ;p(i)log,p(i). F is a convex function and the associated Breg-
man divergence between two probability distributions p and g is easily shown
to be

e W . . W . .
De(pii) = p(i)logzp(i)  d)logzali) (p o) r F(d)
i=1 i=1
o (i) TR
= pl)log, <= (since  p(i)= o()=1)
i=1 at) i=1 i=1
T KL (pijo):

KL (pjjg) is called the Kullback-Leibler divergenceor the relative entropy of
the two probability distributions p and g.
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Bregman diagrams

Let P = fpy;:::;png be a nite point set of RY. We associate to each
site p; the distance function, Dj(x) = Dg (Xjjpi). The minimization diagram

we denote by Voi= (P). The d-dimensional cells of this diagram are inl1-1
correspondencewith the sites p; and the d-dimensional cell ofp; is de ned

as
def

VE(pi) = fx2  jDe(xjp) De(xjjp) 8p 2 Pg:
It is easy to see that the minimization diagram of the n functions Dg (Xjjp;)
i =1;::::n, is the maximization of the n a ne functions

hixX)=(x p) r F(p)+ F(p); 1=1;:::;n:

Hence, Bregman diagrams are weighted Voronoi diagrams. More precisely,
we have

Theorem 4.9 The Bregman Voronoi diagram of n sites is identical to the
restriction to  of the weighted Voronoi diagram of then weighted points
(pwi), i =1;::5n, wherep?= r F(pi) andwi = p>+2(F(p) pi p)-

Proof Dr(xjjpi)) Dr(xjip) i

F(m) (x m) P F) x p) Ak

Multiplying by 2 the two sides of the inequality and adding x? to both sides
yields

2

x? 2 p 2F(p)+2p pY X 2 p) 2F(p)+2p P

0 o) xop)ow xop) xop) W

wherew; = p®+2(F(p) pi p)andw = pZ+2(F(p) p p). The
last inequality means that the weighted distance ofx to the weighted point
(pio; w;) is no more than its weighted distance to the weighted point @-O;wj ).

It is to be observed that not all weighted Voronoi diagrams are Bregman
Voronoi diagrams. Indeed, in weighted Voronoi diagrams, some weighted
points may have empty cells while each site has necessarily a non empty cell
in a Bregman Voronoi diagram.
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Bregman complexes

We de ne the Bregman complex of P as the nerve of the Bregman diagram
of P, Vorg(P). We denote it by Delg(P). An analogue of Delaunay's
triangulation theorem also exists in this context.

Let P be the lifted image of P on the graphF of F, i.e. P = f(p;F(p));p 2

Pg 2 R®1. Write T for the lower hull of P. We assume in this section
that P is in general position meaning that there is no point x 2 whose

divergences tod + 2 points of P are equal. Equivalently, P is in general
position if P contains no subset ofd + 2 points on a same hyperplane.

Assume that P is in general position. Then, for the same reasons as for

Delaunay triangulations (see Sectio),T is a simplicial complex and the

vertical projection of T onto RY is a triangulation that is equal to Delf (P)

by the lifting map argument given in the beginning of Section (see

Figure g:bregman-lift). In other words, Del ¢ (P) naturally embeds in

RY. We call Delg (P) the Bregman triangulation of P. When F (x) = x2 and
= RY, Delg (P) is the Delaunay triangulation of P.

We now show that the empty ball property of Delaunay triangulations
(Lemma [4.1) naturally extends to Bregman triangulations. We de ne the
Bregman ball centered atc and of radiusr as

b=(c;r)= fx2 jDg(xjjo)<rg:

It is easy to see that any Bregman ballb: is obtained as the vertical projec-
tion of the intersection of F with a halfspace below a non-vertical hyperplane
(see Figure[ 4.6 for the case wher€ = x?).

A Bregman ball is said to be empty if it does not contain any point of P.
Let =[po;:::;pg] be a (geometric)d-simplex of Breg: (P). The a ne hull

of the lifted points fo;::: ;g is a hyperplaneh of R%*1 whose intersection
with F projects vertically onto the boundary of the (unique) Bregman ball
b that circumscribes . Since, by construction, convf®;:::;pq) 2 h is a

facet of the lower hull of B, b must be empty.

It also follows from the discussion that, under the general position assump-
tion, Bregman complexes naturally embeds inRY. This is another extension
of Delaunay's triangulation theorem.
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Bregman diagrams and complexes of the second type

We have de ned Bregman diagrams as the minimization diagram of the
functions De (Xjjpi). A symmetric de nition can be given when exchanging
the variable x and the site p; and consideringDr (p;jjx). The bisectors are
no longer hyperplanes and the diagram is no longer a weighted Voronoi
diagram. Still, Legendre duality, an essential notion in convex analysis,
allows to transform a diagram of the second type into a diagram of the rst

type as explained next (Lemma[ 4.1]1).

Legendre duality

Let F be a strictly convex and di erentiable real-valued function on

The gradient of F, r F, is well de ned as well as its inverser F, and

rfF r ¥ =r F r F areidentity maps. We write x°for r F(x) and
Ofor the gradient spacefr F(x)jx 2 @.

The Legendre transformation associates toF a convex conjugatefunction
F : 97! R given by [119]:

Fx%=x x° FX): (4.4)

Taking the derivative of Equation we get
rF (xy dx®=x dx%+ x% dx r F(x) dx=x dx°=r F(xY dx®
from which we deduce thatr F =r 1F.

Figure gives a geometric interpretation of the Legendre transforma-
tion. Consider the hyperplane hy tangent to the graph F of F at &. This

hyperplane intersects the ¢+ 1)-axis at the point (0; F (x9). Indeed, the

equation of hy isy(d+1) = x° (y x)+ Fx)= x°y F (x9. Hence,

the (d + 1)-axis intercept of hy is equal to F (x9. Any hyperplane pass-

ing through another point of F and parallel to hy necessarily intersects the
z-axis above F (x9.

To ensure that D is a Bregman divergence, we need®to be convex. This
is trivial if has no boundary and, in particular, when =  RY. Otherwise,
we will further require that F is a function of Legendre type, i.e. that
the norm of the gradient of F goes to in nity whenever we approach the
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Figure 4.12: Thez-intercept (0; F (xY) of the tangent hyperplane hy of F

at ® de nes the value of the Legendre transformF for the dual coordinate
0

X",

boundary of (see [L19]). Under the additional assumption that F is of
Legendre type, we can associate to the conjugate functiof a Bregman
divergenceDg . We have the following remarkable result:

Lemma 4.10 De(pjjo)= F(p+ F () p o= D (9ip%

Proof By Equation .3 De (pjig) = F(p) F(d) (p o) g’ and, according
to Equation .4, we haveF(p)= p° p F (P and F()=® q F (O.
Hence,

De(pij)) = F( F@ ( o o
= pPp F@E pd+F (@
= F@ F@® p@ M
= De (qfird

where the last equality holds sincep=r F r F(p)=r F (p9.

Observe that, whenDg is symmetric, Dg is also symmetric.

The Legendre transform of the quadratic formF (x) = %XT Qx, whereQ is
a symmetric invertible matrix, is F (x9 = 3x7Q x% We say that F is
self dual. Observe that the corresponding divergenceBg and D are both
generalized quadratic distances.
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To compute F , we can use the fact thatr F = r F ! (see above). How-
ever, integrating functions symbolically may be di cult or even not possible,
and, in some cases, it will be required to approximate numerically the inverse
gradient r 1F (x).

We can now de ne Bregman diagrams of the second type where the cell of
pi is de ned as

def . .. ..
Ve (p) T fx2  jDe(pijix)) Dr(piix) 8p 2 Pg:

In contrast with the diagram of the rst-type Vor ¢ (P), the diagram of the
second typeYor(P) has, in general, curved faces. From the Legendre duality
between divergences, we deduce correspondences between the diagrams of
the rst and the second types. As usual, F denotes the convex conjugate

of F.

Lemma 4.11 We have

Yor=(P)=r F(Vorg (PY) and Vorg(P)=r *F(9org (PY):

Proof By Lemma [4.13, we haveDr (xjjy) = Dg (y9jx9, which gives
VE(p) = fx 2 jDr (fix) D (fiix9 8002 PY =1 F(VE (p).
This proves the second part of the lemma. The proof of the rst part follows
the same path.

Hence, constructingYorg (P), the (curved) Bregman diagram of the second-
type, reduces to constructing an a ne diagram in the gradient space °

(and mapping the cells byr F). The nerve of the Bregman diagram of
the second-type is a simplicial complex called the Bregman triangulation of
the second type. It follows from Lemmg 4.11 that the Bregman triangulation

of the second type ofP can be realized as the (curved) image by F of

the Bregman Delaunay triangulation of the rst type of P°

4.6 Exercises

Exercise 4.1 (Space of spheres) Let b be ad-ball of R? of center ¢ and
radiusr and lets = ¢ r2. We associate tobthe point of Rl ()= (c;9).
Show that the image by of a point, considered as a ball of radius 0, is a
point of the paraboloid Q of equation Xg+1 = X2.
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Show that the image by of the balls whose bounding spheres pass through a
given point p of RY is the hyperplaneh, of R4 of equationxg+1 =2p X p?,
which is tangent to Q at  (p) = ( p; pP).

What are the preimages by of the points of R4 that lie above Q, on a
line ? The same question can be asked about the image of the balls that
contain p.

Exercise 4.2 (Farthest point diagram) Consider the diagram obtained
by projecting the faces ofh, \  \ h, vertically, where the hy are de ned
as in Exercise[4.l. Characterize the points that belong to a face of this
diagram.

Dually, project vertically the faces of the upper convex hull of the (p;) =
(pi;p?), i = 1;::;n. Show that we obtain a triangulation of the vertices of
conv(P) such that each ball circumscribing a simplex contains all the points
of P.

Exercise 4.3 (Upper bound) Contsider rst the case of a set of points
P lying on two non coplanar lines of R3. Let n; +1 and n, + 1 be the
numbers of points on each of the lines. Show that the Delaunay complex
of P hasnin, tetrahedra (or, equivalently, that their Voronoi diagram has
nin, vertices).

Show that the moment curve M ¢ RY (de ned in Exercise [3.13) can be
drawn on the paraboloid Q of equation Xgs1 = x2. Deduce then from
Exercise[3.12 that the bound in Theoren{ 4.4 is tight.

Exercise 4.4 (Triangulation of linear size) Prove that any set of n points
of RY in general position admits a triangulation of size O(n).

Exercise 4.5 (in _ball predicate) Let B be a ball of RY whose bounding

of RY lies on S, in the interior of B or outside B, depending whether the
determinant of the (d+2) (d+ 2) matrix

1 1
in _sphere(po;:::;Pd+1) = Po Pd+1
p% p§+1
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is 0, negative or positive. Show that this predicate is the only numerical
operation that is required to check if a triangulation is a Delaunay triangu-
lation.

Show that the only numerical operation that is required to check if a trian-
gulation is the weighted Delaunay triangulation of a set of weighted points
P1;:::; P is the evaluation of signs of determinants of i+2) (d+2) matrices
of the form

1 1
power_test (Pi,; 5 Pig, ) = , Pi, , Pig.2
piO WiO pid+1 Wid+l

wherep; and w; are respectively the center and the weight op{ (Hint : use
the lifting map and Exercise[3.16).

Exercise 4.6 (Triangulation of a convex polytope) Describe an algo-
rithm to triangulate a convex polytope (Hint: proceed by faces of increasing
dimensions).

Exercise 4.7 (Minimal spanning tree) Let P be a nite set of points
of RY. A spanning tree of P is a tree whose vertices are the points oP.
A spanning tree is called a minimum spanning tree (MST) if the sum of
the lengths of its edges is minimal among all spanning trees. Show that
MST(P) Del(P).

Exercise 4.8 (Delaunay complexes contain a triangulation) Let P be
any nite set of points of RY. Show that there exists a subcomplexK
Del(P) that is a triangulation of P.

Exercise 4.9 (Natural coordinates) Let P = fpyg;::;png be a nite set
of points of RY. As usual, Vor(P) denotes the Voronoi diagram of P and
V (pi) the cell of p; in Vor(P). Given a point x 2 conv(P), we write P* =
P [f xg, V*(x) for the Voronoi cell of x in or(P*), V*(x;pi) = V*(x)\
V*(pi) and W(x;pi) = V*(X)\ V(p) = V(pi) nV*(pi). HOW we de ne
vi(x) = vol( V* (X;pi)), Vi(x) = vi(x)=kx pk and v(ﬁ) = L vi(x) In
addition, we de ne w;(x) = vol( W (x; pi)) and w(x) = i”=1 w; (X).

We call Laplace coordinates then functions 1;:::; , dened by ;(x) =
Vvi(x)=v(x) for x 62P, and i(p;) = j otherwise, where j is the Kronecker
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delta. We call Sibson's coordinates then functions &(x) = w; (xp,zw(x), i =
1;:::;n. Show that the set of ; is a partition of unity, i.e. x =, i(X)pi.
Same question for the set of&.

(Hint : for Laplace coordinates, apply Exercise[3.1B toV* (x). For Sibson's
coordinates, apply Exercisg 3.18 to the polytope oR%*! whose boundary is
V(P*) nV(P), where V(P) is de ned in Section [4.3).

Exercise 4.10 (Conservation law) Prove the following conservation law
for ows entering a weighted Voronoi cell V( ) no|5mally to the facets of the
cell: if fjj,j 2 J, are the facets ofL( i), we have ,; vol(fj) kg g:k =0:
This property makes Voronoi and weighted Voronoi diagrams useful when

applying nite volume methods in uid dynamics. (Hint: use Exercise 8.18).

Exercise 4.11 (Section of a Voronoi diagram) Let H be a k-dimen-
sional ane space of RY. Show that the intersection Ly of H with the
weighted Voronoi diagram of n weighted points RY is the weighted Voronoi
diagram of n weighted points of H.

Exercise 4.12 (Union of balls) Show that the combinatorial complexity
of the union of n balls of RY is the same as the combinatorial complexity of
their weighted Voronoi diagram. Design a worst-case optimal algorithm to
compute such a union of balls. (Hint : bound rst the number of vertices.)

Exercise 4.13 (Centered triangulation) ) Let P be a nite set of wei-
ghted points with non negative weights. Let P be the set of their centers
and let | = minp.op kp gk be the minimal distance between two centers.
Prove that, if the weights are less than'z, all weighted points of P have a
non empty weighted Voronoi cell and each center belongs to the cell of its
own weighted point.

Exercise 4.14 (Maximization diagrams) Show that the maximization
diagram of n a ne functions de ned over RY is the weighted Voronoi diagram
of n weighted points of RC.

Exercise 4.15 (Complexity of k-order Voronoi diagrams) Use The-
orems[3.12 and 3.9 to show that the combinatorial complexity of all k-
order Voronoi diagrams is ( kd*5-e nbd%lc). Propose an e cient algorithm

to compute all these diagrams.
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Exercise 4.16 (Examples of divergences) The Itakura-Saito (or Burg)
divergence is de ned as

X «
De (xjjy) = = log=
i Vi Yi

1

The Itakura-Saito divergence is classical tool in speech recognition. Show
that the Itakura-Saito divergence is the Bregman divergence associated to
the convex function F(x) = logx (Burg entropy). Show that the gradient
and inverse gradient of F are identical, so that it is self-dual i.e. F = F .

Show that, for the exponential function F(x) = exp x, we haveF (y) =
ylogy v (the unnormalized Shannon entropy) and, for the dual bit entropy
F (x) = log(1+exp x), we haveF (y) = ylog 1y—y+log(1 y), the bit entropy.

Exercise 4.17 We de ne the Bregman ball of the second type centered at
c and of radiusr as

B =fx2 jDe(gjx)<rag:

Show that if, F is of Legendre type,bx is contractible.

Exercise 4.18 De ne the -Bregman complex as the restriction of the
Bregman complex to the union of the Bregman balls of radius . Con-
sider the two types associated to the two types of balls. Show that, in both
cases, the -Bregman complex has the same homotopy type as the union of
the Bregman balls.

4.7 Bibliographical notes

Voronoi diagrams are very natural constructions that have been discovered
several times and appear in the literature under various names like Dirichlet
tesselations or Thiessen diagrams. The observation that Voronoi diagrams
of RY are projections of convex polyhedra ofR%*! goes back to Voronoi

himself. Delaunay has de ned the triangulations that bear his name and

proved Theorem in his seminal paper[63].

Voronoi diagrams and Delaunay triangulations are fundamental geometric
structures that have received a lot a attention. Main results can be found
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in most textbooks on discrete and computational geometry[[60, 25, 7] and
more comprehensive treatments can be found in the books by Okabe et
al. [113] and Aurenhammer et al. [7].

The space of spheres we referred to in Exercige 4.1 is fully developed in the
books by Pedoe[[115] and Bergel[8].

Weighted Voronoi diagrams appear also in the literature under the names of
Laguerre diagrams or power diagrams. Weighted Delaunay triangulations
are also named regular triangulations. They were rst studied in a sys-

tematic way by Aurenhammer [6] who proved Theorem. The solution

to Exercise[4.15 is due to Clarkson and Shor [58]. Bregman Voronoi dia-
grams were introduced by Boissonnat, Nielsen and Nock[21]. The fact that
the -Bregman complex has the same homotopy type as the union of the
Bregman balls (Exercis) has been rst observed by Edelsbrunner and
Wagner [76]. A recent survey on a ne and curved Voronoi diagrams can be

found in [23].

Natural coordinates (Exercise) have been introduced by Sibsor [124,
123].

The cgal library [L2] (www.cgal.org ) o ers fully reliable and e cient im-
plementations of algorithms to construct Delaunay and weighted Delaunay
triangulations in arbitrary dimensions.
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In this chapter, we are interested in constructing simplicial complexes with
a guaranteed quality. On one hand, we would like to control the density of
their vertices and, on the other hand, we would like to control the shape of
the simplices and avoid simplices that are too at.

In Section [5.1, we introduce"-nets in order to capture a notion of good
sample of a bounded subset RY. We will see that, for xed d, the
complexity of Voronoi diagrams and Delaunay complexes of afi-net of of
sizen is linear in n. This is to be compared with the bound ( nd%e) given
in Chapter @ which is tight in the worst case.

Although Delaunay triangulations have many beautiful properties, their sim-
plices, in dimension greater than 2, may have an arbitrarily small volume
even if their vertices are well distributed. Avoiding such bad simplices is a
major issue and the importance of thick triangulations, to be introduced in
Section[5.2, has been recognized since the early days of di erential topology.
Thick triangulations play a central role in many works on the triangulation

of manifolds (see Part@[) and appear to be crucial in scienti c computing
to ensure the convergence of numerical methods.

In order to improve the quality of the simplices of a Delaunay complex,
one can perturb the position of the vertices or the metric of the space. We
introduce in Section[5.3 a perturbation scheme that associates to each point
a weight and replaces the Delaunay complex by its weighted version. We
show that the weight assigned to each point can be computed so that the
resulting weighted Delaunay complex has some guaranteed thickness. The
method is an algorithmic application of the Lowsz local lemma which is
recalled in Section[5.3.4.

5.1 Nets

5.1.1 Nets in Euclidean space

We consider a bounded subset ofRY and denote byP a nite set of points
in . The Hausdor distance dy(P; ) is called the sampling radius of P
and denoted by". We also say thatP is an"-dense samplef . We further
call = minpqpp kp ok the separationof P and = =" the separation
ratio of P.
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Any nite point set P of whose sampling radius is " and whose separation
ratiois is called an ('; )-net of . Note that for any nite set of distinct
points P, there is some positive " and such that P is an (*; )-net for
. Thus " and are simply parameters that describe properties oP in .

In the sequel, we will often consider the subset of'( )-samples of where
is lower bounded by a positive constant. Such point sets will be called
"-nets for short.

Lemma 5.1 Let P be an("; )-net of . If the radius of the smallest ball
enclosing any connected component of is greater than", then for any point
p 2 P, the distanceL (p) from p to its nearest neighbor inP nfpg is at most
2". Therefore we must have 2.

Proof SinceP is"-dense in , the union of the balls B(p;"), p2 P, covers
. Now let r>" and assume for a contradiction that there exists a point
p 2 P such that B(p;2r) does not contain any point of P other than p.
Then intersects the spherical shell B(p;r) nB(p;") and this intersection
is not covered by any ballB(q;"), g2 P, violating the hypothesis that P is
"-dense in .

The next lemma shows that nets exist.

Lemma 5.2 (Existence of "-nets) Let be a bounded subset &% and
" be any positive real. Then admits an ("; 1)-net.

Proof We apply the following procedure : while there exists a pointp 2

at distance at least" from P, insert p in P. Since the domain is compact
and the algorithm inserts no point at distance less than" from a previously
inserted point, the algorithm terminates. Upon termination, any point of

is at distance less than" from P.

Lemma 5.3 (Size of an "-net) Let be a bounded domain oRY. The
number n("; ) of points of an ("; )-net satis es

volg( 2)
volg(B (7))

volg()

wlg8(y) ")
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where B (r) denotes ad-ball of radiusr, = ", and
n . o]
2= x2RYd(X; ) >
If volg() > O, thenn("; )= X where the constant in the depends

on the geometry of and on 9.

Proof The ball B(p;") of radius " that are centered at the pointsp 2 P

cover . This yields the left inequality. The balls B(p;5) of radius 5 that

are centered at the pointsp 2 P are disjoint and they are all contained in
7. This leads to the right inequality.

5.1.2 Delaunay complex of a net

Let be a subset of RY of positive d-volume and let P a nite set of points
in . The nerve of the covering of by the Voronoi cells of P is called the
restriction of Del(P) to and denoted by Del ; (P). Equivalently, Del; (P)
is the subcomplex of DelP) whose dual Voronoi faces intersect .

We consider now the case wher® is an ("; )-net of . We already observed
that every simplex of Del; (P) must have a circumradius not greater than

Observe also that all Delaunay simplices with a vertex at distance greater
than 2" from the boundary of belong to Del; (P) (see Exercisg 5]1).

Lemma 5.4 (Delaunay complex of a net) Let be a bounded subset of
RY, P an ("; )-net of , and assume thatd and are positive constants.
The restriction of the Delaunay complex ofP to  has size2°(®)jPj (i.e.
the size is linear for xed d).

Proof Let p be a point of P. We rst bound the number of neighbors
of p, i.e. the vertices of the link of p in Del; (P). Let be a simplex of
Del; (P) in the star of p. As observed above, the diameter of is at most
2". Moreover, all the open ballsB(q;%), g 2 P, are disjoint by de nition
of the separation. Hence, the number of neighbors gb is at most

- volg B(2" + ) _ .4 d
P volg B(+)
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where B (r) denotes a ball of radiusr.

Assuming without real loss of generality that n,  d+ 1, we deduce that
the number of simplices in the star ofp is at most

1
x n_p = 20(d?).
| ;

i=1

We will show now that the randomized incremental construction (see The-
orems[4.4 and 3.1]1) constructs the Delaunay complex of any ne®? in time
O(nlogn) time where n = jPj. Remarkably, we don't need to modify the
algorithm whose behaviour will automatically adapt to the fact that the
input point set is a net. To analyze the complexity of the algorithm in this
context, it is su cient to show that the expected complexity of the Delau-
nay complex of a random sampleS of P has linear sizeO(jSj). Indeed,
the expected number of simplices that appear in the Delaunay complex of a
point set P 2 RY during the randomized incremental construction, is
|
X
o~ % up)

i=1
where o(i; P ) is the expected size of the Delaunay complex of a random
sample of size, drawn from the point set P. It will then immediately follow
from the analysis of the complexity of the randomized algorithm that the
complexity of the algorithm is O(nlogn) when P is a net.

Lemma 5.5 A random subsampleS of an "-net P has a Delaunay complex
of expected size2°(®)jSj (i.e. the expected size is linear for xedd).

Proof We rst give the proof in the case where S is a Bernoulli sample,
i.e. it is obtained from P by picking every point p 2 P with probability $ .
For convenience, we will write$ = ("= )d.

Letus x apoint p2 P; we shall upper bound the size of stang; Del(S)), i.e.
the set of simplices of Del8) with vertex p. Let I, = [2X 1;2K), k 2 N.
Consider ad-tuple of points of P such that the d-simplex formed by the
pointsin = [f pg, has circumcentrec and circumradiusr . Then, given
that p2 S, the eventE() = (2 Del(S)) could occur only if the following
two events occur:
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() E{)=(8pP2 ; pO29)

(i) Eg ) = (B(c;r )\ S=;), where B(x;r) is the open ball centered at
X with radius r.

Given that p 2 S, the probability that 2 Del(S) can be therefore upper-
bounded as follows. We writen = P\ B(p;r ) (r =")9 (by a packing
argument).

probalE ( )] proba[E '~ E{ )]

= $9probalE} ']
$d@ $)n (5.1)
$ d e $n

n 2
B G TS

If has circumradiusr 2 Iy, we get

probalE ( )] ("= )Fe 2 V0

By the triangle inequality, if 2 Del(S) has a circumradiusr , then all the
points in  must lie in the ball B(p;2r ). Therefore, the number of potential
d-tuples which can contribute to star(p;Del(S)) is at most ((4r =")9)d =
(4r =% (@22 =)F Let

if 2Del(S) : p2;r 2[2k1:2¢)gj; p2S;

Zp(k) = 0; otherwise

denote the number of Delaunay simplices which containp 2 S and have
circumradiusr 2 l¢. Then we get

X
E[Zp(K)] probalE ( )]
2(P\ B(p;2r))d
(2k+2 =) (= )%e
4d22kd2e 2(I< 1)d

ok 1d

=]
Dene Yp = &:1 Zp(k) to be the number of Delaunay simplices in starf; Del(S)).
Summing k over all allowed ranges ofr, Summing over all allowed ranges of
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r, we get
ELY,] * g 20 DY pkd?
k=1
2 >€- 0 2
= 4% el KM 2 (with k=2 Dd)
ko=1
- 8c12)é e KO K
=1
2?_1 d d2
g e X x9%dx = 8% (d+1)
x=0
= 20,
Rl .
where (t):= , e Xx! ldx denotes theGamma function. Therefore, the
expected size of Delf) is given by
X
E[jDel(S)j] probalp 2 S]E[Y,] ng 200 = E[jsj] 2°0@:
p2P

The previous result does not apply directly to the randomized construction
of the Delaunay complex ofP. When the points are inserted in a random
order, the i-th point to be inserted is a random point in a uniform sample
of sizei of P. We thus consider now the case of a random subs& P
of sizes. Given that p 2 S, choosing the rest of the random subsamplé&
is equivalent to choosing a random sample o§ 1 elements fromP n fpg.
Now from Equation 5.1 and Exercis€ 5.2, we get:

d (r =m)d
s 1 s 1
robalE( ) 1
P [ ] n 1 n 1
s d (r =)¢
%, S
n n
= sia )

where$ = s=nis the probability for a point of P to belong to S. The rest
of the computations follows as previously leading to the same asymptotic
bound on E[jDel(S)j].

We conclude from the discussion above and Lemma §.5:
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Theorem 5.6 Let P be an"-net in RY. The randomized incremental con-
struction of a Delaunay complex ofP requires on expectation2°(4)jPj mem-
ory space and2°(®)jPjlogjPj time.

5.1.3 Nets in discrete metric spaces

So far, we have considered nets in subsets of Euclidean spaces. However nets
can be de ned in more general metric spaces. In this section, we consider
the case where is a nite set of points that we rename W to emphasize
the distinction. We do not assume that W is embedded in Euclidean space
and the points are not given a location. Instead, we only assume to know
the distance matrix of W, i.e. the jWj j Wj matrix M whose elementm;;

is the distance between the pointsw; and w;. W together with M de nes a
discrete metric space Nets can be de ned in discrete metric spaces in very
much the same way they have been de ned in Euclidean space.

Extracting from W a coarser sample that is a net oV will allow to bene t
from the nice properties of nets. It will also allow to represent data at
various resolutions, to cluster data and to construct withess complexes, a
weak variant of Delaunay complexes that can be de ned and constructed in
any discrete metric space (Sectiof 6]2).

We rst prove the existence of nets in the context of discrete metric spaces
(see Lemmd 5.p for its analog in the Euclidean case).

Lemma 5.7 (Existence of nets) Let W be a nite set of points such that
the distance of any pointg2 W to W nfqg is at most" and let ". One
can extract from W a subsamplel that is a (; 1)-net of W.

In preparation for Section [6.4, we will often refer to the points of L as
landmarks and to the points of W as withesses.

Proof We construct the sample L by inserting points of W one by one.
Initially L := ; and W%:= W. At each step, we pick a point of WC say p,
insert it in L, and removep from W°as well as all the points ofW°whose
distance to p is less than . We stop when W% is empty. The algorithm
necessarily terminates sincéV is nite. Upon termination, all the points of
W are at distance at most from a point of L (since otherwise it would be
inserted in L) and two points of L are at distance at least (since we never
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insert a point at distance less than from the current set L). It follows that
L isa(; 1)-net of W.

We can improve the algorithm described in the proof of Lemma] 5.7 by
inserting, at each step, a pointp 2 W that is farthest from the current set
of landmarks L (see Algorithm [3 (Case 1)).

We maintain for each point w of WCits closest pointL (w) in L and, at each
step, we select the pointw 2 W%which is most distant from its closest land-
mark L(w). The algorithm requires O(jWj) storage and its time complexity
is easily seen to beO(jLj ] Wj).

Algorithm 3  Farthest point insertion

Input:  the distance matrix of a nite point set W and either a positive
constant (Case 1) or an integerk (Case 2)
L:=;
wWo:=w
L(w) = ps forallw2 W%fp; is a fake point at in nite distance from
Wg
= maxyowokw  L(w)k
w :=apoint p2 W%such thatkp L(p)k =
while either > (Case 1) orjLj <k (Case 2)do
addw to L and removew from W?°
for each pointw of W%such that kw w k< kw L(w)k do
L(w):=w
update andw
Output : L W, a(; 1)-net of W (Case 1), an approximate solution
to the k-centers problem (Case 2)

The next lemma shows that this strategy implies that the separation ratio
remains constant over the re nement.

Forany i> 0, letL; and ; denote respectivelyL and = maxowokw
L(w)k at the end of the i-th iteration of the main loop of the algorithm. If
we label the points by their insertion order, we havel; = fpi;::;pig and

i = d(pi;Li 1). Since L; grows with i, ; is a decreasing function ofi.
Moreover:

Lemma 5.8 At each iteration i > O, L; is a ( i;1)-net of W.
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Proof The factthat L;is j-dense inW follows directly from the de nition

of ;. Let us show that L; is ; separated. Consider a closest pair of
points papp of L; and assume thatp, has been inserted afterp,. Then
Kpa pok= i. This implies that L; is j-separated.

In some applications, we are interested in selecting a given numbek of

points. We are then interested in the following k-centers problem: select

from W a subsetL of k points that are as far apart from each other as possi-
ble. More precisely, we want to choose a subsét of k points of W in such a

way as to maximize the separation ofL_, i.e. the minimum pairwise distance

between the points ofL. We can use Algorithm[3 (Case 2) for that purpose.
Interestingly, this simple greedy algorithm provides a 2-approximation to

the problem.

Lemma 5.9 (Approximation of the k-centers problem)  Algorithm E]
(Case 2) provides an approximation ratio of 2 for thek-centers problem.

Proof Let Ly = I;:::; 1k be the set of thek rst selected points by the
algorithm, labelled according to the order they have been selected. Lety
denote the distance of thek-th point from all previously selected points |;,
i =1;:;k 1. Consider the set of ballsB (I;; ), i;:::;k 1. Their union
contains all the points of W and therefore all the points of any optimal
solution L opt to the k-centers problem. SincglLopj = k and there arek 1
balls, there must be two points of Loyt that fall in the same ball B(li; «)
for somei k 1. It follows that there exists a pair of points in Lo that
is at distance at most 2 by the triangular inequality.

On the other hand, the distance between any two points ofLy is at least
by Lemma|5.§. It follows that Algorithm {](Case 2) provides an approxi-
mation ratio of 2 for the k-centers problem.

5.2 Thick simplices

For a given set of pointsP 2 R2, Del(P) maximizes, over all possible trian-

gulations of P, the smallest angle of the triangles (Exercis¢ 5|6) and it can
be easily shown that, if P is a net, then the angles of the triangles are lower
bounded by some positive constant (Exercis¢ 5|5). However, the property
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Figure 5.1: The four vertices of a squared facd of a uniform grid are
cocircular and can be circumscribed by a sphere centered at the center of
the face. This sphere does not enclose any other vertex of the grid. We can
then slightly perturb the vertices of f so that the convex hull of the vertices
of f is now a tetrahedron of positive volume whose circumscribing sphere
does not include any other vertex of the grid. Hence, it is a tetrahedron in
the Delaunay triangulation of the (perturbed) vertices of the grid.

does not hold for higher dimensional Delaunay triangulations and one can-
not bound the dihedral angles of higher dimensional simplices as shown in

Figure [5.7.

For any vertex p of a simplex , the face oppositep, denoted by , is the
convex hull of the other vertices of . The altitude of pin is the distance
D(p; ) = d(p;a( p)) from p to the ane space a ( p) spanned by .
The altitude D( ) of is the minimum over all verticespof of D(p; ). A
poorly-shaped simplex can be characterized by the existence of a relatively
small altitude. The thicknessof a j-simplex is the dimensionless quantity

( .
1 ifj=0

()= jD(( )) otherwise,

where () denotes thediameter of , i.e. the length of its longest edge.
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5.2.1 Thickness and singular value

We will show in the next lemma that the thickness of a simplex is related to
the singular values of a matrix. Before stating the lemma, we recall some well
known results on matrices and their singular values and refer the reader to
the book of Trefethen and Bau [127] for an excellent introduction to singular
values. IfAisad | matrix with j d, we assume that the singular values
of A are ordered according to decreasing absolute values and we denote the
i singular value by sj(A). We have s;(A) = kAK = sup =1 kKAxk and

Sj (A) = inf k=1 kKAxk. We will employ the following standard observation:

Lemma 5.10 If > Oﬁs an upper bound on the norms of the columns of
A, then s;(A) = KAk i

From the given de nitions, one can verify that if A is an invertible d d ma-
trix, then sy(A 1) = sq(A) 1, butitis convenient to also accommodate non-
square matrices, corresponding to simplices that are not full dimensional. If
Aisad | matrixofrank j d, then the pseudo-inverseAY = (ATA) AT
is the unique left inverse of A whose kernel is the orthogonal complement of
the column space ofA. We have the following general observation[[127]:

Lemma 5.11 Let Abead | matrixofrank j dand letAY be its pseudo
inverse = (ATA) AT. We have

si(AY) =5 w1 (A) Yfori=1;:)

In particular, s;j(A)= si(AY) L.

The columns of A form a basis for the column space ofA. The pseudo-
inverse can also be described in terms of theual basis If we denote the
columns of A by fa;g, then the it" dual vector, w;, is the unique vector in
the column space ofA such that wia; =1 and wi g =0 if i 6 j. Then AY
isthej d matrix whose i™ row is w/ .

By exploiting a close connection between the altitudes of a simplex and the
vectors dual to a basis de ned by the simplex, we obtain the following key
lemma that relates the thickness of a simplex to the smallest singular value
of an associated matrix:
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Figure 5.2: Choosingpg as the origin, the edges emanating fronpg in =

that the dual basis f w;g consists of vectors that are orthogonal to the facets,
and with magnitude equal to the inverse of the corresponding altitude.

Lemma 5.12 (Thickness and singular value) Let =conv(po;:::;p;)
be a non-degeneratg -simplex in RY, with j > 0, and let P be thed j
matrix whosei™ column is pi po. Then

P-_P-
s(P) D(C)= 1= jC)C )

Proof We rst show that the i™ row of P is given by w', where w; is
orthogonal to a ( ), and

kwik=D(p; )

Indeed, by the de nition of PY, it follows that w; belongs to the column
space ofP, and it is orthogonal to all (pio  po) for i%6 i. Let uj = w;=kw;k.
By the de nition of w;, we havew] (pi po) =1 = kwiku'(pi po). By the
de nition of the altitude of a vertex, we have ul(pi po) = D(pi; ). Thus
kwik = D(pi; ) ! Since

1
maxD(p; ) *= minD(p; ) =@ () NN

i 1]
Lemmal5.10, yields p_
ss(P) (j( ) )t

The stated bound ons; (P) follows from Lemma|5.11.
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The proof of Lemma|5.12 shows that the pseudoinverse d? has a natu-
ral geometric interpretation in terms of the altitudes of , and thus the
altitudes_provide a convenient lower bound ons;j(P). By Lemma ,
s1(P) j (), and thus

() :EE): In other words, () ! provides a convenient upper bound
on the condition number of P. Roughly speaking, thickness imparts a kind
of stability on the geometric properties of a simplex. This is exactly what
is required when we want to show that a small change in a simplex will not
yield a large change in some geometric quantity of interest.

5.2.2 Whitney's angle bound

The following lemma is due to Whitney. It shows that, if the vertices of a
simplex are at small relative distance from an a ne spaceH, and if the
thickness of the simplex is bounded away from 0, then the angle between the
ane hull of and H is small. Before stating the lemma, we de ne angles
between vector spaces.

De nition 5.13 (Angles between subspaces) If U and V are vector
subspaces oRY, with dimU dimV, the angle between them is de ned

by
sin\ (U;V)= sup ku vuk; (5.2)
u2U
kuk=1

where v is the orthogonal projection ontoV.
Alternatively, the angle between vector subspacé$ and V can be de ned as:

\ (U V) = mu%fvmzl\rll\ (u;v)g (5.3)

The angle between a ne subspace& andH is de ned as the angle between
the corresponding parallel vector subspaces.

Lemma 5.14 (Whitney's angle bound) Suppose is aj-simplex ofRY,
j <d, whose vertices all lie within a distance from a k-dimensional a ne
spaceh RY with k j. Then

3 _ 2
p() ()( )

sin\ (a( );h)
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Proof Suppose =conv(po;:::;pj). Choosepg as the origin of RY and let
h :RY1 h be the orthogonal projection onto h. Let u be any unit vector
ina( ). Since the vectorsv; = (p; po), | 2f1;:::;jg form a basis for

a( ), we may write u = Pa, whereP is thed | matrix whose i column
isvi, and a2 RI is the vector of coe cients. Then, dening X = P hP,
we get

ku huk = kXak k Xk kak:

Sinced(pi;h) hforall0 i j, ky nvik 2 . It follows then from
Lemmal[5.10 that b
kXk 2 j:

Observing that 1 = kuk = kPak k ak infyyy=1 kPxk = kaks; (P), we nd

1

kak ———;
si (P)

and the result follows from Lemmal5.12.

Whitney's angle bound will be especially useful in Chapterl 8. Thereh will
be the tangent spaceT, at a point p of a smooth manifold M , and  will
be a thick simplex whose vertices are close (relatively to the diameter of the
simplex) to Tp. Whitney's lemma asserts that the ane hull of  makes
a small angle with Tp. Thickness plays a crucial role here as the following
example shows. The Schwarz lantern is a polyhedral surface inscribed in
a cylinder as shown in Figure[5.8. By increasing the number of vertices
of the lantern, we can make the Hausdor distance between the lantern
and the cylinder arbitrarily small but increasing the sampling density does
not guarantee that the planes of the facets of the lantern provide a good
approximation of the tangent planes of the cylinder. In fact, the angle
between the normal to a facet and the normal to the cylinder at any of the
vertices of the facet can be made arbitrarily close to=2. Such a situation
cannot happen if the facets have a bounded thickness as stated by Whitney's
lemma.

5.3 Thick triangulations via weighting

The notion of thickness introduced in Sectior[ 5.2 is an important measure of
the shape of a simplex. A simplicial complex is thick when all its simplices
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Figure 5.3: The Schwarz lantern.

are thick. We have seen (Figur) that Delaunay triangulations are not
necessarily thick even if the vertices form an(; )-net. The goal of this sec-
tion is to show that a thick simplicial complex can nevertheless be obtained
from an ("; )-net by assigning (relatively small) weights to the points of the

net and considering the weighted Delaunay triangulation of the resulting set
of weighted points.

To keep the exposition simple, we depart from the rest of this book and
will work in this section in the at torus T9 = RY=Z9 instead of RY. As
a consequence, iP is a nite set of points in TY, the Delaunay complex
and weighted Delaunay complexes oP have no boundary. Boundary issues
obscure the central properties we want to develop. It is not dicult to
extend the results to the case of a bounded domain dR¢, provided that we
only look su ciently far away from the boundary of the domain.

5.3.1 Weighting schemes

We consider a set of pointsP that is an ("; )-net in T9. A weighting
schemeon P is a function w from P to R which assigns to each pointp 2 P
a weight w(p) 2 R. We denote by P the resulting set of weighted points,
i. e. P=f(p;w(p) : p2 Pg, and by Del(P) the corresponding weighted
Delaunay triangulation.
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We restrict the weighting scheme to non negative weights. The relative
amplitude w of the weighting schemew is de ned as

w(p)

"SR ()
where L(p) is the distance from p to its nearest neighbor in P np. We
also wish that each point of P appears as a vertex of Del?). As shown

in Section , this condition is ensured if, for eactp 2 P, w(p) < #fp).
From now on, we will only consider weighting schemes that have a relative
amplitude smaller than %1, that is w  wg where wy is a constant smaller
than 1.

4

The main result of this section is that, for any ("; )-net P of T9, given a
small enough constant g, there are weighting schemes with relative ampli-
tude smaller than wy < % and such that the weighted Delaunay triangulation
Del(P) has noj -simplex with thickness less than b, forj =1;:::;d. More-
over, as we will see in Sectioh 5|3, such weighting schemes can be computed
by a simple randomized algorithm.

In the rest of this section, we use the same notation for a geometric simplex
with vertices in P and for its abstract counterpart which is just the subset
of P formed by the vertices of . Given a weighting schemew de ned on P,
each simplex P corresponds to a subset of P: A = f(p;w(p): p2 g.
Two weighted points are said to beorthogonal if their weighted distance is
zero.

A weighted point orthogonal to all the weighted points of ” is said to be
orthogonal to ~. If is a simplex of dimension, the weighted points orthog-
onal to ~ are centered on an a ne subspace of dimensiod j orthogonal
to the a ne subspace a ( ). The intersection point of these two subspaces
is denoted byc(”). Let (¢(*); R?(")) be the weighted point centered onc(”™)
and orthogonal to . The weighted point (¢(*); R?(")) is the weighted point
with minimal weight among all the weighted points orthogonal to ~. The
point ¢(”) is called the weighted centerof the simplex and R(") is called
the weighted radiusof

Note that weighted center ¢(") and the weighted radiusR(*) depend on the
weights assigned to the vertices of and are di erent from the center c( )
and circumradius R( ) of . We will make use of the following lemma that
bounds the weighted radii and the diameters of the simplexes in DeR).
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Lemma 5.15 (Weighted radii and diameters of simplices in Del(P))
Let P be an("; )-net of T? and assume that a non negative weighting scheme
with relative amplitude smaller thanwg < % has been de ned onP. Then,
any simplex of Del(P) has a \ﬁeighted radiuR(") that is at most and a
diameter ( ) thatis at most2 2".

Proof Let be asimplex of DeIP). The simplex being included in some
d-simplex of Del(P), the weighted radius R(*) of is at most the weighted
radius R(") of . We now prove that R(") is at most . Indeed otherwise,
since P is "-dense, the ballB (c(*); R(")) associated to the weighted center
(c(™); R?(™) of  would include a point g of P. Then the weighted distance
from g to (c(*);R?(")) is negative, and this contradicts the fact that
belongs to Del@®).

Let us consider now the Euclidean distanced(c(”);p) from the weighted
circumcenter ¢(*) to any vertex p of . We have:

de("):p? = R()Z+w(p)
"2 + wol.(p)?

where L (p) is the distance from p to its nearest neighbobin P nfpg. From
Lemma[5.1, we have Lp) 2" and thus d(c(*);p) " 1+4wp 2",
Since this bound hold?)for any vertexp of , we conclude that the diameter
( )of isatmost2 2"

5.3.2 o-thickness and akes

A simplex that is not thick has a relatively small altitude. We focus here on
a special class of non-thick simplices, calledhkes in which all the altitudes
are relatively small. Let ¢ be a constant smaller than 1.

De nition 5.16 ( o- akes) A j-simplex is o-thick if ( ) jo. A
o- ake is a simplex that is not o-thick but whose proper faces are all
o-thick.

Observe that a ake must have dimension at least 2, since ( ) =1 for any
simplex with dimension j < 2.
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A simplicial complex whose simplices are all -thick is said to be -thick.
Observe that a simplicial complex is ¢-thick i it includes no o- ake.
Indeed, if is not o-thick, then either itis a (- ake or it has a proper
j -face | that is not  -thick. By considering such a face with minimal
dimension, we arrive at the following observation:

Lemma 5.17 A simplex is not o-thick if and only if it has a face that is
a o- ake.

We show in Lemma[5.19 below an upper bound on the altitudes of a o-
ake. First, we provide a general relationship between the altitudes of a
simplex:

Lemma 5.18 Let be aj-simplex withj 2. If p and q are two vertices
of , we note , the subface nfpg of and g the subface nfqg. The
altitudes D(p; ) and D(p; ) of p within respectively and 4 and the
altitudes D(q; ) and D(q; p) of g within respectively and | satisfy the
following relation

D(p; ) _ D(a; ).

D(pi o) D(a; p)

Proof The proof follows from a volume computation. Letvol;( ), vol; 1( p)
and vol; 2( pg) be the volumes of the simplices , ,and pq= nfp;ag
respectively. We have

voli () = le(p: ol 1( ) = mll)D(p: )D(a; VOl 2( po):

The similar relation, obtained replacing p by g, obviously holds and both
relations together prove the lemma.

We arrive at the following important observation about ake simplices:

Lemma 5.19 (Flakes have small altitudes) If a k-simplex isa o-
ake, then for every vertexp 2 , the altitude D(p; ) satis es the bound
() o (1) o
N < )
PRI T PO

where () and L( ) are the lengths of the longest and shortest edges of
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Proof Recalling Lemma[5.18, we have

D(qg; )D(p; q).

D(p: )= = pp (5.4)
and taking q to be a vertex with minimal altitude in , we have
D(a; )=k( )( )<k §( ) (5.5)
Moreover, since pis o-thick, we have:
D(a; p) (kK 1D( p( p (K 1) §'L(): (5.6)
Furthermore:
D(p; o0 ( o ( ) (5.7)

Plugging Equations[5.5,[5.6 and 5.7 into Equation[5.}4 yields the claimed
bound.

5.3.3 The weight range of a ake with small radius

Let bea (o ake of dimensionj. If we assign weights to the vertices of

, the weighted radiusR(*) of depends on the weights of its vertices. We
show here that to keep the weighted radiusR(") smaller than a given" we
have to choose the weight of each vertex of within a small interval whose
measure is linear in .

Lemma 5.20 Let bea (- ake and assume that we are given a weighting
scheme with non negative weights on the vertices of If the weighted radius

R(*) of is smaller than", the weightw(p) of any vertexp of belongs to

an interval 1 (;p) whose measurgl (;p)j satis es:

( )2 ",
L(y
If furthermore the vertices of belongs to an("; )-net, and the weighting

scheme has a relative amplitude smaller thamy < %, the measure ofl (;p)
satis es:

jitG;p)j 8

2
. . . def
jHGp)i i 11564 o—:
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Figure 5.4: For the proof of Lemma[5.2).

Proof Let c(®) and R(") be respectively the weighted center and weighted
radius of . Likewise, we usec("p) and R("p) for respectively the weighted
center and the weighted radius of ,, where , is the subface np of
Referring to Figure 5.4, we get :

R2(") = d*(c(*);c(*p) + R2(Mp); (5.8)
The set of points of R with equal weighted distances to the vertices of p IS

an a ne subspace we denote byN (*p). Writing d(p; N (~p)) for the distance
from p to N (*p), we have:

R?(")+ w(p) = d®(p;o(")) = d(MN(p)+(D(p; ) H(P")? (5.9)

where D (p; ) is the altitude of pin and H (p;*) = d(c(*);c("p)) if p and
c(”) are on the same side of a ( p) and H(p;*) =  d(c("); c("p)) otherwise.

Using Equations[5.8 and 5.9 together, we get:

PPN+ (D(P; ) H@EA)? R*(Y)
d?(p;N("p) + D3(p; ) R?*(™p) 2D(p; IH(p:™):

w(p)
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Writing F(p;*) = d*(p;N("p)) + D?(p; ) R?*("p), we get:
w(p) = F(p;")  2D(p; )H(p;"):
Hence,
jw(p)  F(p:i™)i = 2D(p; )d(c(");c("p)): (5.10)

Observe that F (p; ) depends on the locations of the vertices of and on
the weights of the vertices of ,, but does not depend on the weightw(p) of

p.

LC)
d(c(”); c("p)) is at most R(*). Therefore, if R(*) ", the weight w(p) of p

belongs to the interval | (;p ), centered at F (p;”), of measure

From Lemmal5.19,D(p; ) 2 o( )Z,and,from Equation, we get that

irGp)i 8

0" (5.11)

In the case where b%opgs to an (; )-net, we havelL( ) and, from
Lemma[5.13, ( ) 2 2'. The weight rangejl (;p)j then satis es

2
jHGip)i 64 o—:

5.3.4 Lowasz local lemma

We will see in Section] 5.8 how to to compute, for a given input set of points
P, a weighting scheme yielding to a thick weighted Delaunay triangulation.
This construction relies on the constructive proof of the Lovasz local lemma
due to Moser and Tardos. In this section, we recall without proof these
important results.

Lowasz local lemma [1] is a powerful tool to prove the existence of combinato-
rial objects. Let A be a nite collection of \bad" events in some probability
space. The lemma shows that the probability that none of these events oc-
cur is positive provided that the individual events occur with a su ciently
small probability and there is limited dependence among them. Here is the
lemma in a simple form that will be su cient for our purposes.
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Theorem 5.21 (Lowasz local lemma) Let A = fA1;:::;ANg be a -
nite set of events in some probability space. Suppose that each evéntis
independent of all but at most of the other events and thatPr[A;] $

forall 1 i N.If
1
_ 5.12
$ e( +1) ( )
where e denotes the base of the natural logarithm, then the probability that
none of the events inA occurs is strictly positive.

Assume that the events are determined by a set of independent random
variables. Each event is determined by a subset of those random variables.
Two events are independent if the subsets of random variables determining
each of them do not overlap. In such a case, Moser and Tardos gave a
constructive proof of the Lowasz lemma [106,[125]. The proof leads to a
simple and natural algorithm that repeatedly checks whether some event
in A occurs. In the a rmative, the algorithm picks an arbitrary occurring
event, say A, and resamplesA, where we call resampling of an eventA
the operation that consists in choosing new random values for the variables
determining A.

Algorithm 4 Moser Tardos algorithm

Input: a nite set A of events determined by a nite setP of independent
random variables
for all P 2P do
Vp a random evaluation of P
while some event ofA occursdo
pick any such eventA 2 A
resampleA
return fvp;P 2 Pg

Moser and Tardos proved that this simple algorithm quickly terminates,
providing an assignment of the random variables that avoids all of the events
in A. It is important to note that the selection mechanism for picking
an occurring event in the while loop is arbitrary and does not a ect the
correctness of the algorithm.

Theorem 5.22 (Moser Tardos) Assume that the same conditions as in
Theorem [5.2] hold. Assume, in addition, that the events are determined
by a setP of n independent random variables. Moser Tardos randomized
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algorithm computes an assignment of values for the variables iP such
that no event in A occurs. The algorithm resamples each event at most
expected times and the expected total number of resampling steps is at most
o(n).

5.3.5 Applying the Lowasz local lemma to remove akes

Let P be an (; )-net of RY and wy a constant less than 4. Now we take
for the weights of the points in P independent random variables and we pick
the weight of each point p uniformly at random in the interval [0 ; woL 2(p)].

An event occurs when there exists a o- ake P that has a weighted
radius R(") not greater than ". Since we know from Lemma[5.15, that
all simplices in Del(P) have a weighted radius R(*) not greater than ",

removing all events will lead to a o-thick complex. For convenience, we
will often identify an event and the associated ake.

Lemma 5.23 The probability that an event occurs is$ 6455

Proof Let be a g-ake included in P and assume that the weights of
all the vertices of except one, sayp, have already been assigned. We know
from Lemma that if the weighted radius R(*) is not greater than ", the
weight w(p) belongs to an interval of measure less tharjlj = 64 0—2. It
follows that the probability that an event occurs is at most
i 0 .
wol 2(p) 64Wo 3

which implies the same bound on the probability of the event .

Lemma 5.24 Each event overlaps at most other events, where

d(d+1)
+1 E’ :

Proof Let be a (-ake with weighted center c(*) and weighted radius
R(“) ". Anevent that overlaps isa o-ake Owith a weighted radius
at most " that shares a vertexp with . Let g be a vertex of % We have:

d(c("); ) g(C("):p) + d(p; g
RM)Z+wp)+ (9
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SinceR(*) ", w(p) woL(p)? 4wp"? by Lemmal[5.1, and ( 9 Pz

by Lemma[5.15, we get:
d(c(*); 0) 3 7

Therefore, any vert%xiof an event that overlap lies in the ball B (c();r)
of radiusr = r* =3 2". SinceP is -separated, this ball contains at most
J(r) points of P, with

NI

_\d d
(r+ ) _ 1+2i 1+
()¢

11 ¢

J(r)

where the last inequality uses the fact that 2.

Since the o-ake also has its vertices within the ball B (¢(*);r), we can
bound +1 by the number of simplices with vertices within B (c(");r), i.e.
|
©d+l
114"

15 J(ir) @+3rn*t 1+ =

Using 2 and the fact that, forall a2 R* andb2 R*, ad+ b (a+ b9,

we get:
+1 — :

We are now ready to apply the Lowsz local lemma. We will assume that

13 d(d+1)
13 64

1
W o (5.13)
In view of Lemmas[5.28 and 5.244, this condition ensures that we hav$
e(%, and therefore there exists a weight assignment orP with relative
amplitude less than wyp, such that P includes no (- akes with a weighted
radius less than". Since any simplex in the weighted Delaunay triangulation
Del(P) has a weighted radius less thar' (Lemma ), we conclude that
such an assignment yields a weighted Delaunay triangulation Del) that
has no (- akes.
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Theorem 5.25 Let P be an(*; )-net of T9 andwy 1. If Equation
is satis ed, there is a weight assignment onP with relative amplitude less
than wy such that the weighted Delaunay triangulatiorDel(P) is  o-thick.

Observe that the thickness ¢ that we can guarantee is bounded by Equa-
tion that constrains o to be small enough with respect to and wy.
Note that the bound is very small and depends as 2% on d. Still it does
not depend on the sampling density".

5.3.6 Algorithm

Based on the results of the previous subsections, we will apply Moser Tardos
algorithm to our context so as to obtain a weighted Delaunay triangulation
that is  o-thick. Algorithm Eﬂtakes as input an ("; )-net P of T9, a con-
stant wo < 1=4 and a constant o small enough to satisfy Equation/5.18. As
proved below, the algorithm outputs a weighting scheme orP whose relative
amplitude is smaller than wy and such that the weighted Delaunay triangu-
lation Del(P) is o-thick. The algorithm maintains the weighted Delaunay
triangulation Del( P) while resampling the - akes that occur in Del( P)
until they all disappear. Resampling a simplex consists in reassigned ran-
dom weights to the vertices of . As already mentioned, the weights of the
di erent vertices are picked independently and the weight w(p) of vertex p
is taken uniformly at random in the interval [0 ; woL 2(p)].

Algorithm 5 Thick weighted Delaunay triangulation
Input: P,wgy o
Initialize all weights to 0 and compute Del(P) = Del( P)
while there are - akes in Del(P) do
choose a ¢-ake in Del(P)
resample
update Del(P)
Output: A weighting scheme onP and the corresponding weighted De-
launay triangulation which is granted to be -thick.

Theorem 5.26 If P is an ("; )-net of T9, wy a constant less thanl=4 and
o a constant such that Equatiorj 5.1IB holds, Algorithni b outputs a weighting
schemeP on P whose relative amplitude is smaller thamw and such that the
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weighted Delaunay triangulationDel(P) is  o-thick. Its expected complexity
is linear with respect to the size ofP.

Proof Algorithm §resamples the (- akes that occur in the weighted De-
launay triangulation Del( P). Since the ¢- akes in Del(P) have weighted
radii at most ", they are events as de ned in Sectiorj 5.3]5. Therefore Algo-
rithm §lis a variant of Moser Tardos algorithm applied to the (- akes with
small weighted radii. The main di erence is that Algorithm 5 |keeps only
track of - akes in the current Del( P) and not of all possible - akes
with small weighted radii included in P. According to Theorem|[5.22, Con-
dition 5.13] ensures that Moser Tardos algorithm terminates whatever may
be the order in which the events are resampled. Therefore the condition, a
fortiori, guarantees the termination of Algorithm %

Each resampling involves the reweighting of at mostd + 1 vertices. SinceP
is an (*; )-net, and the weighting scheme has bounded relative amplitude,
the weighted Delaunay complex DelP) can be updated in constant time.
Thus the expected complexity of Agorithm[5 is proportional to the number
of resampling which isO(jPj) by Theorem [5.22.

5.4 Protection

We introduce now the notion of protection of a simplex. The notion of
protection is stronger than the notion of thickness (see Lemm7) and
some positive protection can be obtained by perturbing the position of the
points of P. This is another mean to ensure Delaunay triangulations to
have positive thickness (other than weight assignment as discussed in the
previous section). Protection will also be used in Sectiof 6]2.

We say that a simplex Del(P) is -protected if there exists a point c ,
called a -protection center of such that

ke gk>kc pk+ 8p2 and 8q2Pn: (5.14)
We willwriite = =. Note that Equation p.14]implies the following inequality

ke ogk®>kc pk’+ 2 8p2 and 8g2Pn: (5.15)



128 CHAPTER 5. GOOD TRIANGULATIONS

Lemma 5.27 (Separation and thickness from protection) Let P be an
("; )-net of a bounded domain RY. Assume thatjPj >d + 1 and that
every d-simplex in Del(P) is -protected. Then the separation ratio of P
satis es

and the thickness of any simplex (of any dimension) of Del(P) is at least

Before we prove the lemma, we state and prove two easy claims that will be
useful to prove the second part of the lemma.

Claim 5.28 Let B = B(c;R) and B® = B(c®R9 be two n-balls whose
bounding spheres@Band @B intersect, and let H be the bisecting hyper-
plane of B and BC i.e. the hyperplane that contains the(n 2)-sphere
S= @B\ @B Let be the angle of the congc;S). Writing = % and
ke ck= R, we have

cos() = (5.16)

If R RS we havecos() 5:

Proof Let g2 S; applying the cosine rule to the triangle [cdy] gives

2R2+ R2 2R 2cos() = R%; (5.17)
which proves Equation[5.16. IfR  RY then 1, and cos() =2

immediately follows from Equation [5.1§.

If B = B(c;R) is a d-ball, we denote byB* the ball B(c;IO R2+ 2),

Claim 5.29 Let B = B(c;R) and B® = B(c®R9 be two n-balls whose
bounding spheres@Band @B intersect, and let ~ be the angle of the cone
(c;8) where§ = @B\ @B . Writing kc ¢k = R, we have

2

cos(?) =cos( ) RZ
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Figure 5.5: Construction used in Claims[5.2 and 5.29.

Proof Let &2 S, applying the cosine rule to the triangle ccH] gives
2R2+ R2 2R 2cos()= R®+ 2

Subtracting Equation from the previous equality yields 2 =2 R ?(cos( )
cos()), which proves the lemma.

Proof of Lemma 527 | 1. Let p and g be two closest points ofP. The
edge pq is an edge of DelP). We denote by a d-simplex of Del(P) that

contains [pq and by %a d-simplex of Del(P) that contains one of the two
vertices of [pq] but not the other. Since Cis -protected, we must have

kp ok

2. Since () ( ) for any simplex , it is su cient to consider the

case of ad-simplex . SincejPj > d + 1, there exists at least one other
d-simplex Cof Del(P) that share a facet with . Let B( )= B(c;R) and
B( 9= B(c%RY be the circumscribing balls of and Crespectively. The
spheres@Band @B intersectin a (d 2)-sphere$ which is contained in
a hyperplane 1§ parallel to the hyperplaneH =a ( ). Forany 2 § we

have
2

d(i¥;H) = d(e;H) = R(cos() cos()) = m;

where the last equality follows from Claim andd(#4; H ) denotes the
distance between the two parallel hyperplanes. See Figuie §.5 for an illus-
tration. Since p2 @B p belongs toB( 9* if and only if p lies in the strip
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bounded by H and i, which is equivalent to

2
d(p;H) = D(p; )< mi

We conclude that, if is -protected, the ball
p___
B()" =B(c; R?+ 2) B(c;R + )

does not contain points of P n , which implies from the inequality above

that
2

d(p;H) = D(p; ) m5

For any simplex , we haveD(p; ) 2R( ) forall p2 , whereR( )
denotes the radius of the circumsphere of . For any in the triangulation
of an"-net, we haveR( ) ". ThusD(p; ) 2", and the inequality above
yieldskc ¢k 4.

We further obtain
()= Minez D) 2 _ %
d( ) 8d"2 8d’

2

In Section[5.3.5, we have used a variant of Moser Tardos algorithm to ob-
tain a thick weightedDelaunay complex. Instead of weighting the points, we
can perturb their positions so that the Delaunay triangulation of the per-
turbed point set PYis -protected for some small enough > 0. Thanks to
Lemma|5.27, the Delaunay triangulation of the perturbed points will have
some positive thickness (see Exercige 5]12).

5.5 Exercises

Exercise 5.1 Let be asubsetof RYand P a nite "-dense set of points in
. Show that all Delaunay simplices of P with a vertex at distance greater
than 2" from the boundary of belong to Del; (P).

Exercise 5.2 (Hypergeometric distribution) Supposea; b; c are posi-
tive integers, with maxfa;bg  c. The hypergeometric distribution with
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parameters a; b; cis the distribution of the random variable X = jA\ Bj,
where A is a random sample of sizea, from a universe C of size ¢, which
has a subsetB of sizeb. Prove that given b  a, the probability that the
random sampleA contains B, and is disjoint from another xed set T with

b

cardinality t, T\ B =;,isatmost & = 1 £ tfora;c A

Exercise 5.3 (Delaunay re nement) Adapt Algorithm iﬂo add sample
points in T9 so that the sampleP is an "-net of T9,

Exercise 5.4 ( k-center clustering)  Given is a set of points P and an
integer k. The k-clustering problem consists in partitioning P into k clusters
S0 as to minimize the maximum diameter of a cluster. Propose an algorithm
that gives an approximation ratio of 2 for the k-clustering problem.

Exercise 5.5 Let be an open subset of R and P an ("; )-net of in
general position wrt circles. Show that all triangles of Dej (P) have all
their angles greater or equal to arcsing).

Exercise 5.6 (Max-min) Let P be a nite set of points in general position
in the plane. To any triangulation T of P we attach the vector V(T) =
( 1;: 3t) where the ; 2 [0; ] are the angles of thet triangles of T,
sorted by increasing values. Show that DelP) is, among all triangulations
of P, the one that maximizesV (T) for the lexicographic order. In particular,
Del(P) maximizes the smallest angle.

Exercise 5.7 Let U andV be two vector spaces oRY with dim U dim V.
Show that \ (U;V) =\ (V?;U?) where U? (resp., V?) denotes the vector
space normal toU (resp., V).

Exercise 5.8 Let h and h® be two ane spaces of the same dimension
embedded inRY, and let u be a vector ofRY. Show that\ (u;h9 \ (u;h)+
\ (h; h9.

Exercise 5.9 Let beaj-simplex. ShowthatL( ) D(p; ) j'( )( )
(see Lemmd 5.1 for the notations).
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Exercise 5.10 Bound from below the dihedral angles of ad-simplex of RY
as a function of its thickness.

Exercise 5.11 (Inheritance of protection) Let P be an (; )-net of a
bounded domain RY. We say that a simplex is -power protected if
Equation is satis ed, i.e. there exists a pointc such that

ke ogk®>kc pk’+ 2 8p2 and 8g2Ln:

Show that if every d-simplex in Del(P) is -power protected, then all sim-
plices (of all dimensions) in DelP) are at least “power protected where
0= g- deduce a similar result if one replaces the power protection by the
protection as de ned in Section. (Hint : use the lifting map introduced

in the proofs of Theoremg 4.8 and 4)6)

Exercise 5.12 (Protection via perturbation) Let P bean (*; )-net P
of the at torus TY9 = RY9=z9. Propose an algorithm that perturbs the
points of P so that the Delaunay triangulation of the perturbed point set
POis -protected for some a small enough > 0 (and thus has some positive
thickness by Lemma). Ifp is a point of P, the associated perturbed
point is picked at random in the ball B(p; ) for some > 0. Use a variant
of Moser Tardos algorithm .

5.6 Bibliographical notes

The farthest point insertion algorithm (Algorithm Eﬂ]has been popularized
by Gonzales in the context of clustering data sets[[91] and has found numer-
ous applications in many elds. Gonzales proved Lemma 519 and Feder and
Greene [80] showed that no polynomial-time algorithm exists with a con-
stant approximation ratio close to 2 unlessP = NP . They also improved
the O(n?) time complexity of Algorithm ﬂo O(nlogk) when the points live
in Euclidean space. See also the paper by Har-Peled and Mend&l [95] that
contains further improvements and extensions, and, in particular, shows how
to construct a hierarchical representation of a point set, called thenet-tree,
from the sequence of points provided by the farthest point insertion. The
proof of the complexity of the incremental randomized construction of nets
(Theorem ) is due to Boissonnat, Devillers, Dutta and Glisse[[26]. Their
paper contains also a solution to Exercis¢ 5|2.
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The notion of thick triangulations goes back to the early work on di erential
topology by Cairns [32], Whitehead [130], Whitney [131], Munkres [[109]
and others. Thick triangulations also play a central role in the work of
Cheeger et al. [[54] and Fu[[84] on curvature measures. Since this notion
appeared in di erent places and contexts, various names have been used, e.g.
thickness, fullness or relative thickness. Our presentation follows the work
of Boissonnat, Dyer and Ghosh[[14]. Lemma 5.34 is due to Whitney [131].

More recently, thick triangulations have been found important in mesh gen-
eration where numerical simulations require meshes to be thick [68]. The
notion of ake simplex introduced in this chapter is an extension of the no-
tion of sliver introduced by Cheng et al. in the context of 3-dimensional
mesh generation [[55/°68] : a sliver is a ake with an upper bound on the
ratio of its cicumradius to the length of its shortest edge. Sliver removal in
higher dimensions has been discussed in [99,156].

Our weighting mechanism to remove akes is inspired from the one used by
Cheng et al. to remove slivers from 3-dimensional Delaunay triangulations.
The weighting mechanism can be seen as a perturbation of the Euclidean
metric. Itis also possible to remove akes and inconsistencies by perturbing
the position of the points. This kind of perturbation may be prefered to the
weighting mechanism in the context of mesh generation [99, 24, 74].

The notion of protection has been introduced by Boissonnat, Dyer and
Ghosh to study the stability of Delaunay triangulations and the construc-
tion of Delaunay triangulations of manifolds [14, [13,[27]. A solution to
Exercise[5.12 can be deduced from results in[13] and [15].

The Lowasz local lemma, proved initially by Lovasz and Erdes [1], is a cel-

ebrated result with a long history. The constructive proof of Moser and

Tardos has been a breakthrough which is still the subject of intense re-
search [[106]. Its rst introduction in Computational Geometry appears

in [15].
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In this chapter, we introduce two simplicial complexes which have strong
ties with Delaunay complexes. Their common point is that they allow to
de ne ltrations. Filtrations, de ned in Chapter 2,[dre sequences of nested
complexes that allow to represent a set of points at various scales. They
play an important role in persistent homology, a central tool in Topological
Data Analysis, as will be demonstrated in Chapter[1].

We rst de ne the alpha-complex, or -complex, of a nite set of points P,
which is a subcomplex of the Delaunay complex. Here is a real parameter
and varying  will lead to a ltration of the Delaunay complex. The de -
nition extends to sets of weighted points : the weighted -complex of a set
of weighted points P is a subcomplex of the weighted Delaunay triangula-
tion of P, and varying  will lead to a ltration of the weighted Delaunay
complex.

The -complex of P is a combinatorial representation of the union of the

ballsB(p; ) ofradius centered at the points ofP. It is thus closely related

to the Cech complex introduced in Sectior] 2.3. In fact, the -complex shares
with the Cech complex the property of having the same homotopy type as
the union of the balls. A major di erence between the two complexes is
related to their size: the -complex is usually much smaller than theCech

complex and can be computed more e ciently.

Owing to their capacity of representing union of balls and their topology, -

complexes play an important role in the description of proteins and macro
molecules, and in drug design. In Geometric Inference, -complexes also
play an important role and we will see in Section8.1 that they capture the
homotopy type of well sampled manifolds.

Alpha shapes are constructed from the Delaunay complex and are therefore
di cult to compute in high dimensions. In Section .2, we will introduce
another complex, the so-calledwitness complex The witness complex is
de ned from two point sets : L, which is the vertex set of the complex,
and W that can be seen as an approximation of the space that contains
L. In applications, L is usually a crude subset oW that can be extracted
from W using, for example, the algorithms of Sectiorf 5]1. The witness com-
plex can be de ned and constructed in any discrete metric space and does
not require the points to be embedded in a speci ¢ ambient metric space:
we only need to know the pairwise distances between the points df and
W. This is a critical advantage in high dimensions over the Delaunay com-
plex whose construction requires to evaluate thein _ball predicate whose
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algebraic complexity depends on the dimensiom of the ambient space (Ex-
ercise[4.5). In the case where the points live in Euclidean space, we will
see that, under appropriate conditions, witness complexes and Delaunay
complexes are identical. We will also introduce a variant called the relaxed
witness which o ers another lItration.

6.1 Alpha complexes

6.1.1 De nitions

Alpha complexes. Let P be a set of points inRY. From Lemma, we
know that the simplices in the Delaunay complex DelP) are characterized
by the empty ball propertymeaning that a simplex with vertices in P belong
to Del(P) i itadmits an empty circumscribing ball i.e. a circumscribing ball
whose interior includes no point ofP. We are interested here in sorting the
simplices of DelP) according to the squared radius of their smallest empty
circumscribing ball. For a simplex , we call this quantity the lItration
value of and write it ().

Now, for any 2 R, we consider the subsetA(P; ) of the simplices in
Del(P) that have a lItration value at most . Because a ball circumscribing
a simplex circumscribes any face of this simplexA(P; ) is a subcomplex
of Del(P). It is called the -complexof P.

Since the -complex of P is a subcomplex of the Delaunay complex oP,

it has a natural embedding if P is in general position wrt spheres (The-

orem ). The underlying space of the -complex A(P; ) is called the
-shapeof P.

If P is in general position wrt spheres, the dimension of the -complex
A(P; ) is at most the dimension d of the embedding space. It should be
noted that the dimension of the -complex may be strictly less that d and
that the complex may not be pure, having some simplices which are not
faces of simplices of maximal dimension.

The Delaunay lItration. The -complex evolves when increases, from
the empty set for < 0, to the set of vertices of DelP) when =0, and
nally to the whole Delaunay triangulation Del( P) when is large enough.
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Figure 6.1: The -complex of a set of points inR? for increasing value of
the parameter

The parameter de nes an order on the simplices. This order is not total
and some simplices may have the same value of the parameter. We de ne
a total order by rst sorting the simplices with a same by increasing
dimensions and then breaking ties arbitrarily. The total order we then obtain
yields a ltration of the Delaunay complex.

We recall that a Itration of a simplicial complex K, as de ned in Section2.4,
is a sequence of nested subcomplexes Kf such that each subcomplex is
obtained from the previous one by adding a simplex ofK. The Itration
of Del(P) obtained by inserting the simplices in the order de ned above is
called aDelaunay Itration of P.

6.1.2 Computing alpha complexes and ltrations

Let P be a set of points inRY and let Del(P) be the corresponding Delaunay
complex. For ad-simplex in RY, there is a unique ball ofRY circumscribing
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. We denote byc( ) and r( ) respectively the center and the radius of this
ball. According to the de nition, a d-simplex of Del(P) belongs to the
-complex A(P; )i r( )2

Things are a bit more complicated for simplices of dimension strictly less
than d. Let be a simplex of dimensionk < d. The centers of thed-balls

circumscribing form a (d k)- at of RY we denote byh( ). Consider the

circumscribing ball of that has the smallest radius. The center of this
smallest circumscribing ball, ¢( ), is called the center of and its radius,

r( )), is called the circumradius of . The center ¢( ) is the point where

h( ) intersects thek-ata ( ) spanned by .

Given a set of points P, we say that is a Gabriel simplex if its smallest
circumball contains no point of P in its interior. Plainly, a Gabriel simplex
is a simplex of DelP) but the converse is not necessarily true: &k-simplex

of Del(P) is a Gabriel simplex i c¢( ) belongs to the faceV( ) of the
Voronoi diagram Vor(P) dual to

We conclude from the discussion that, if is a Gabriel simplex, its smallest
enclosing ball is empty and it belongs to all -complexesA(P; ) for
r( ). If a Delaunay simplex that is not Gabriel, the smallest empty ball
that circumscribes circumscribes a coface of and therefore will have
the same ltration value  as one of its cofaces. To prove this, consider the
function w(x) that associates to each pointx in h( ) its squared distance
to the vertices in . Finding the lItration value () of amounts to
minimizing w(x) under the condition that x 2 V( ). Sincew(Xx) is a convex
function and V( ) is a convex polyhedron, the minimum ofw(x) on V( )
is reached atc( )i c( )2 V( ) or on the boundary of V( ) otherwise. In
the rst case, the simplex is a Gabriel simplex. In the last case, if we call
the coface of higher dimension of whose dual Voronoi face contains( )
in its interior, we have ()= ().

For any 2 Del(P) with dimension k < d, we denote byU( ) the set of
cofaces of in Del(P) with dimension k +1. Algorithm § tomputes for each
simplex in Del(P), the critical value ( ) atwhich entersthe - complex
A(P; ).
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Algorithm 6  Computing Delaunay ltrations

Input: the set of points P in RY
Compute the Delaunay complex Del@)
for eachd-simplex 2 Del(P) do
set ()= r( )? (the squared circumradius of )
for k=d 1;:::;0do
for eachd-simplex 2 Del(P) do
if is a Gabriel simplexthen
( ) = r( )? (the squared smallest circumradius of )
else
()=min 2ycy ()
Output:  The critical -value of each simplex in DelP) has been com-
puted

6.1.3 Weighted alpha complex

The de nition of -complexes and -shapes extend to the weighted case. Let
P be a set of weighted points and let be a simplex with vertex setP  P.
Let us recall that two weighted points are said to be orthogonal when their
weighted distance is zero. A weighted point is said to be orthogonal to
P when it is orthogonal to all weighted points in P and it is said to be
free of any weighted point in P when it has a positive or null distance to
any weighted point of P. From Lemma , a simplex with vertex set
P P belongs to the weighted Delaunay triangulation Del@®) i there is a
weighted point orthogonal to P and free of weighted points inP. For any
value of 2 R, we consider the subsetA(P; ) of simplices in Del(P) for
which there is a weighted point with weight at most , orthogonal to P and
free of weighted points inP. The simplices in A(P; ) form a subcomplex
of Del(P) which is called the weighted -complexof P. Under the usual
general position assumption, this complex naturally embeds inR? and the
underlying space ofA(P; ) is called the weighted -shapeof the setP for
the parameter value . Notice that -complexes and -shapes are special
cases of respectively weighted -complexes and weighted -shapes, obtained
when all the weights of the considered weighted points are equal.

As before, we associate to each simplex of Del(P) a ltration value ()
that corresponds to the rsttime enters the lItration.

Algorithm §]extends almost verbatim to the case of weighted points, pro-
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vided that we replace circumballs by orthogonal weighted points and empty
balls by free weighted points. LetP be a set of weighted points inRY, a
simplex of Del(P) and P the subset of P associated to the vertices of . We
now say that is a Gabriel simplex i the ball with smallest radius that is
orthogonal to P is free of weighted points inP. Likewise, the function w(x)
used to prove the correctness of Algorithn] § is now the weighted distance
to the vertices of ,i. e. w(x) = D(x;p) = d(x;p)? wp, if p=(p;wp) is
the weighted point associated to the vertexp of

6.1.4 Application to union of balls

Lemma 6.1 Let B be a nite set of balls in RY. The union U(B) of balls
in B is homotopy equivalent to the -complexA(B; 0).

See Figurd 6. for an illustration of this fact.

Proof Each ball bin B may be regarded as a weighted point ¢(b); r2(b))
where c(b) and r?(b) are respectively the center and the squared radius of
b. We denote by DelB), Vor(B) and A(B; ) respectively the Delaunay
complex, Voronoi diagram and -shape of the balls inB. Let V(b) be the
cell of bin Vor(B). We claim that fb\ V(b);b2 Bg forms a nite convex
cover ofU(B) as de ned in Section. First, becauseb and V (b) are both
convex subsets ofRY, each subsetb\ V(b) is convex. We show next that
fb\ V(b;b2 Bgis a cover ofU(B), i.e.:

U(B) = [ b\ V(b):
b2 B

The inclusion szs b\ V(b) U(B)is trivial. To show the reverse inclusion,
let us consider a pointp in U(B). Point p belongs to at least one ballby
of B and let b(p) be the ball in B whose Voronoi cell containsp. Since
p 2 by, the weighted distanceD (p; by) is negative and, sinceb(p) minimizes
the weighted distance top, we have:

D(p;(p)) D(p;by) O

g/hich means that p belongs tob(p) and therefore to b(p) \ V (b(p)) and to
g P\ V(D). The claim is proved.

It follows from the claim and the Nerve theorem (Theorem[2.8) that the
union U(B) of balls in B is homotopy equivalent to the nerve of the cover
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S
g O\ V(D). We now show that the nerve of this cover is just the -

complex A(B; 0). Let B B be a subset ofB. The subsletB0 belongs to
the nerve of the coverfb\ V(b);b2 Bgi the intersection | ,50b\ V(b)is

nor empty. This in turn is equivalent to say that that there exists a point x

in gob\ V(b). Such a point x is at an equal negative weighted distance
w(x) to the balls in B® and at a greater weighted distance to any ball of
B nB% In other words, the weighted point ® = ( x; w(x)) is orthogonal to

any ball in B® and has a positive weighted distance to any ball inB nB®

Therefore B? belongs to Del@) and, since w(x) 0, to the -complex

A(B; 0).

Let us consider the special case where all the balls iB have the same ra-
dius. Let B(P;r) be the set of balls with radiusr, centered at points of the
set P. The union U(B(P;r)) of these balls is homotopy equivalent to the
Cech complexCech(P;r) de ned (in Section as the nerve of the cover
of U(B(P;r)) by balls in B(P;r). Therefore, the Cech complexCech(P;r)

and the -complexA(B(P;r);0) have the same homotopy type and capture
both the homotopy type of the union of balls U(B (P;r)). However, the Cech
complex Cech(P;r) is often much bigger than the -complexA(B(P;r);0).

In particular, the dimension of the Cech complexCech(P;r) may be larger
than d, in fact it may be as large as the number of balls inB(P;r). Ac-

cordingly the Cech complexCech(P;r) usually does not embed naturally in
RY. Dierently, the -complexA (B (P;r);0), being a subcomplex of DelB),

embeds naturally in RY under general position assumption.

6.2 Witness complexes

In this section, we introduce the witness complex, a variant of the Delaunay
complex that can be de ned using only distances (and not empty spheres).
Hence the witness complex can be de ned in any nite metric space where
the input consists of the distance matrix of the data points that stores
the pairwise distances (Sectior] 5.1]3). Not every nite metric space can
be isometrically embedded in a Euclidean space but if it is the case, we
provide conditions under which the witness and the Delaunay complexes
are identical. A practical situation, encountered for example in the context
of sensor networks, is when the points come from some Euclidean space but
their actual locations are not known.

The witness complex is de ned from two sets of pointsL and W. The rst
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Figure 6.2: Union of balls and -shapes.

one, called the set oflandmarks is nite. The other one, called the set
of witnesses serves as an approximation of the ambient space. A typical
situation is when L is a subset of W, possibly a net of W extracted using
one of the algorithms of Section[5.1.8. The witness complex Wit(; W)
can be seen as a weak notion of Delaunay triangulation which is easy to
compute, even in high dimensions, since it only involves comparisons of
distances between input points.

De nition 6.2 (Witness of a simplex) Let be a simplex with vertices
inL RY and letw be a point of W RY9. We say thatw is a witness of
if
kw pk kw gk 8p2 and 8q2Ln:

De nition 6.3 (Witness complex) The witness complexWit( L; W) is
the complex consisting of all simplexes such that any simplex has a
witness in W. In other words, Wit( L; W) is the maximal simplicial complex
with the property that all its simplices have a witness inW.

In this section, we use the Euclidean distance to de ne withess complexes
but the de nition is general and extend to more general metric spaces and,
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Figure 6.3: A simplex and one of its withesses.

in particular, to nite metric spaces where the only information we have
about the input points is the distances between any two of them. In Eu-
clidean space, the only predicates involved in the construction of Wit{_; W)
are (squared) distance comparisons, i.e. polynomials of degree 2 in the coor-
dinates of the points. This is to be compared with the predicate that decides
whether a point lies inside the ball circumscribing ad-simplex, whose degree
depends ond (see Exercis¢ 4)5).

6.2.1 Identity of witness and Delaunay complexes

When the points W and L live in Euclidean space, the withess complex
can be seen as a weak Delaunay complex. The results below make this
connection more precise. We rst make the following easy observation.

Lemma 6.4 If WO W, then Wit(L;W 9  Wit(L;W).

Let be a subset of RY. As before (see Sectioﬁ 5.112), we write Del(L) for
the restriction of Del(L) to , i.e. the subcomplex of Del( L) whose simplices
have a circumcenter in .

Lemma 6.5 Let be a subset oR% Del; (L) Wit(L; ) .

Proof By de nition, any simplex  of Del, (L) has an empty circumscrib-
ing ball whose centerc belongs to . This center is a witness of , and itis
also a witness for all the faces of .
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The following remarkable result provides a weak characterization of Delau-
nay complexes. It shows that Delaunay and witness complexes are identical
when the set of witnesses cover the whole spad®®.

Theorem 6.6 (Weak characterization) For any convex RY and
any nite point set L , we haveWit( L; )=Del ; (L).

Proof We have already proved that De| (L) Wit(L; ) (Lemma
We prove now the converse inclusion by an induction on the dimensiolk of
the simplices. The claim holds fork = 0 since any vertex of Wit(L; ) is a
point of L and thus a vertex of De| (L).

Figure 6.4: Proof of Lemma[6.§.

Assume now that any simplex of Wit(L; ) of dimension upto k 1is
a simplex of De| (L) and let = [po;:::;pk] be ak-simplex of Wit(L; )
witnessed by a pointw. We will say for convenience that a ballB witnesses

if B\ L = . We denote by B be the smallest ball centered atw that
witnesses and by S the sphere boundingB .

If all the vertices of belong to S, is a Delaunay simplex and we are
done. Otherwise, we will show that one can nd a new ball that witnesses

such that its bounding sphere contains one more vertex of than S . Refer
to Figure[6.4. Write = S \ . By the induction hypothesis, is a simplex
of Del; (L) and therefore there exists an empty ballB centered in that

circumscribes . Write c for its center. Consider the set of ballsF centered
on the line segments = [w(] and circumscribing . Any ball in F is
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Figure 6.5: Two triangles that have a witness but not their common edge,
even if W = RY. These two triangles are not Delaunay triangles.

included in B [ B and it circumscribes . Hence its interior contains no
point of L n . Moreover, since the interior of B is empty but the interior

of B is not, there exists a point z on s such that the ball of F centered at
z, witnesses and containsj j+ 1 points of on its boundary. Call this
new ball B . We can then carry on the induction and obtain a witness ball
B whose bounding sphere contains all the vertices of. Such a ball is thus
a Delaunay ball and is a Delaunay simplex.

It is worth noticing that, for a simplex  to belong to the witness complex,
we required all the faces of to have a witness. As illustrated in Figure[6.5,
this is mandatory for the theorem to hold.

We deduce from Lemmd 6.4 and Theorer 6|6 the following corollary

Corollary 6.7 Let be a convex subset oRY and let W . We have
Wit( L;W) Del; (L) Del(L).

If the points L are in general position with respect to spheres, we know that
Del(L) is embedded inRY by Delaunay's theorem|4.3. It therefore follows
from Corollary that the same is true for Wit(L; W ). In particular, the
dimension of Wit(L; W ) is at most d. When W is not the whole spaceR? but
a nite set of points, Theorem no longer holds. However, the following
lemma shows that both complexes are identical provided thatwW is dense
enough andL is protected enough (refer to Sectio for a de nition of
protection).

Lemma 6.8 (ldentity from protection) Let be a convex subset dRd
and let W and L be two nite sets of points in . If W is "-dense in and
if all simplices (of all dimensions) of Del; (L) are -protected with 2",
then Wit( L; W )) = Del; (L).
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Proof By Corollary we have Wit(L;W) Del; (L). We now prove
the other inclusion. Let be a simplex in De| (L). By hypothesis, is
-protected. Then there exists a pointc2 such that

8p2 ; 8y2Ln,; kc pk kc ok

SinceW is "-dense in , there exists a point w 2 W such that kw ck ".
Using the triangular inequality, we have foranyp2 andqg2 L n

kw pk kw ck+(kc gk )
kw gk+2kw ck
kw gk+2"

Hence, when 2", wis a witness for .

The above lemma requires the simplices of all dimensions to beprotected.
In fact it is su cient to check d-simplices only. Indeed, it can be proved that
if the d-dimensional simplices are %protected, for ©slightly bigger than
then all simplices of all dimensions are also protected. See Exercige 5.11.

6.2.2 Computing witness complexes

Let L and W be two nite sets of points and Wit( L; W) their withess com-
plex. We assume, for convenience, that no two points oL are at the same
distance from a point in W. We describe how to compute thek-skeleton of
Wit( L; W), denoted by WitX(L; W), for any xed k.

Let M be a matrix of sizejWj k. The lines in M are associated to the
elements of W and the line M (w) associated tow 2 W stores the list of the
k landmarks that are closest tow, sorted by increasing distance fromw (M
can be trivially computed in time O(jWj j LjlogjLj) and, with more clever
algorithms, in time O(jWj (logjWj + k) time) (see the bibliographical notes
in Section[6.4). We write M (w) = (M1(w); ::5; My (w)). Algorithm T below
computes Wit“(L; W) from M. We assume without real loss of generality
that L W.

Under the general position assumption above, the number of-simplices of
Wit(L; W) isat most jWjforanyi k. Hence the total number of simplices
of WitX(L; W) is at most kjwj = O(jwj).
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Algorithm 7 Construction of the k-skeleton of a withess complex
Input: W a nite pointset, L W, k, M
Wit “(L; W) = ;
WO:= W fa set of active witnesseg
for i=0;:;k 1do
for eachw 2 W%do
if the i-simplex (W) =[M1(w);:::; Mi+1 (W)] 62Wit X(L; W) then
if allthe (i 1)-faces of (w) are in Wit *(L; W) then
add (w) to Wit X(L; W)
else
W2:= WOnfwg
Output: Wit ¥(L; W)

The total number of for loops that are executed isjWit “(L; W )j + jWj =
O(jWj). Indeed, each loop either constructs a new simplex or removes a
point from the set of active witnessesW® A loop has to decide if ai-
simplex as well as itsi facets belong to the current complex Wit‘(L; W ).
Each of these tests can be done in timé&(logjLj) if one uses for example
the simplex tree described in Exercis¢ 2]1. Since k, the cost of a single
loop is thus O(k logjLj) The overall complexity of the algorithm is therefore
O(k jWj logjLj).

The algorithm is general and applies to any distance matrixM . In the case
whereL and W belong to RY, and if the points of L are in general position
with respect to spheres, we know that Wit(L; W ) is a subcomplex of Del()
and thus embedded inRY and of dimension at mostd. Hence the entire
witness complex is computed if one takek = d.

6.2.3 Relaxed witness complexes

As before, W and L denote two sets of points in some subset RI, L is
nite.

De nition 6.9 (Relaxed witness) Let be a simplex with vertices inL.
We say that a pointw 2 W is an -witness of if

kw pk kw ogk+ 8p2 and 8g2Ln:



6.2. WITNESS COMPLEXES 149

De nition 6.10 (Relaxed witness complex) The -relaxed witness com-
plex Wit (L; W) is the maximal simplicial complex with vertex sel. whose
simplices have an -witness in W.

For =0, the relaxed witness complex is the standard witness complex.
The parameter de nes a ltration on the witness complex, which can be
used to compute persistent homology (Chaptef 11]5).

Construction

We adapt Algorithm Flabove. At each stepj, we insert, for each witnessw,
the j-dimensional simplices which are -witnessed byw. Dierently from
the standard witness complex, there may be more than oné-simplex that
is witnessed by a given witnessw 2 W. Consequently, we do not maintain
a pointer from each active witness to the last inserted simplex it witnesses.
We use simple top-down insertions from the root of the simplex treg 2]7.

Given a witnessw and a dimensionj , we generate all thej -dimensional sim-
plices which are -witnessed byw. For the ease of exposition, we suppose we
are given the sorted list of nearest neighbors ofv in L, notedfzo  z; 19,
and their distance to w, noted m; = d(w;z), with mg M 1,
breaking ties arbitrarily. Note that if one wants to construct only the k-
skeleton of the complex, it is su cient to know the list of neighbors of w
that are at distance at most my + from w. We preprocess this list of
neighbors for all witnesses. Foii 2f0; ;jLj 1g, we de ne the setA; of
landmarks z such that m; d(w;z) m;+ . Fori |j+1, w -witnesses
all the j -simplices that containfzg; ;z iganda( +1 i)-subset ofA;,
provided jA;j j+1 i. We see that allj-simplices that are -witnessed
by w are obtained this way, and exactly once, wheri ranges from 0 toj +1.

Foralli 2f0; ;j+1g, we computeA; and generate all the simplices
which contain f zg; ;Z; 19 and a subset ofA; of size { +1 i). In order

to easily update A; wheni is incremented, we maintain two pointers to the
list of neighbors, one toz and the other to the end of A;. We check in
constant time if A; contains more thanj +1 i vertices, and compute all
the subsets ofA; of cardinality j +1 i accordingly. See Figurg 6.6.
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Figure 6.6: Computation of the -witnessed simplices of dimension 5. If
zz is the rst neighbor of w notin , then contains in particular f zg; z1; z,g
and any 3-uplet of Az = fz4; ;zg0.

Restricted Delaunay complex and relaxed witness complex

We consider now the case where  RY is not necessarily convex and extend
Lemmal[6.8. Specically, we will show that, for a large enough relaxation,
Del; (L) is contained in the relaxed witness complex.

Lemma 6.11 Let be a subset oRY (not necessarily convex). Assume that
W is "-dense in and that all the simplices ofDel, (L) are -protected. If
max(0;2" ), then Del, (L) Wit (L;W).

Proof Let be ad-simplex of De} (L) and write ¢ for its circumcenter.
SinceW is "-dense in , there exists a point w in W such thatkc ~ wk "
Forany p2 andqg2L n ,we then have
kw  pk kc pk+kc wk
kc ok + ke wk
kw gk+2kc wk
kw gk+2"

which proves the lemma.

Note that if 2", the lemma gives De| (L)  Wit( L; W) (as in Lemma[6.8).

6.3 Exercises

Exercise 6.1 (Full classi cation with respect to the -complex.) Let
P be a set of weighted points inRY. Each simplex of the Delaunay trian-
gulation Del(P) can be classi ed with respect to the -complexA(P; ) as
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external if it does not belong to A(P; ), singular if it belongs to A(P; )
but none of its coface in Del@) does, boundaryif it belongs to the boundary
of -complex and is not singular, which means that some of its cofaces be-
long to A(P; ) while others do not, and at last internal if it belongs to the
interior of the -complex, meaning that all its cofaces belong toA (P; ).

Modify Algorithm fﬂso that it computes for any simplex  of Del(P), the
at most three values of the parameter where the status of the simplex
changes from external to singular and then to boundary and interior.

Exercise 6.2 (Weighted witness complex) Show that the withess com-
plex can be extended to weighted points and the weighted distance. Show
that the identity results of Section 6.2.7] still hold when the Delaunay com-
plex is replaced by its weighted counterpart.

Exercise 6.3 Show that, if L is a -sample ofRY, the circumradius R  of
any simplex in Wit( L; W) is at most . (Hint : use Corollary p.7).

Exercise 6.4 (Relaxed Delaunay complex) Let W and L be two nite
sets of points in RY. Let be a simplex with vertices inL. We say that
a point w2 W is an -center of if

kw pk kw gk+ 8p 2 and 8qg2 L:

The -relaxed Delaunay complex Del (L; W) is the maximal simplicial com-
plex with vertex set L whosed-simplices have an -center in W. Show how
to construct Del (L;W). Prove that Del(L) Del (L;W) for 2" if W
is an"-sample of .

6.4 Bibliographical notes

Alpha-shapes were introduced by Edelsbrunner, Kirkpatrick and Seidel(72,
75]. Alpha-shapes are also widely used to represent union of balls [67] and
to study the structure of macro molecules and various related problems like
the docking of two molecules, see e.g |70, 100]

Witness complexes and relaxed Delaunay triangulations have been intro-
duced in the seminal work of de Silval[61] who rst proved Theorenj 6.6 and
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several of its variants including the case of weighted points (Exercis@].Z).
The proof presented in Sectior] 6.p is due to Attali et al. [4]. The 1-skeleton
of the witness complex has been introduced earlier by Martinez and Schul-
ten [104]. They showed that Del() and Wit( L; RY) have the same 1-skeleton
and they proposed a dynamic algorithm for approximating the topology of

a region of space, by a graph represented as a neural network.

The identity of withess and Delaunay complexes when the number of wit-
nesses is nite is taken from[[15]. The paper describes an algorithm to obtain
Del(L) from Wit( L; W) using the algorithmic version of the local Lowasz
lemma (see Exercis¢ 5.12 and Sectidn 5.8.4). The paper also describes an
algorithm to compute the relaxed Delaunay complex in time sublinear in
the number of witnesses (Exercis¢ 6|4).

Given a set ofn points P RY one can construct a data structure called a
well-separated pair decompaosition. This data structure has many applica-
tions and can be used, in particular, to compute thek-nearest neighbors of
all the points in P in time O(nlogn + kn) [33]. See the book of Har-Peled
for a recent account on well-separated decomposition§ [94].
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Triangulating an object M entails computing a simplicial complex which
is homeomorphic toM . This is a demanding quest and, in this chapter,
we will assume thatM is a smooth and compact submanifold ofR? with-
out boundary. The main goal of the chapter is to prove Theorem 7.1 that
provides su cient conditions under which a simplicial complex M is a trian-
gulation of a submanifold M of RY. These conditions require the simplices
to be su ciently small and thick and rely on the concepts of reach and of
"-net on a manifold. To prove the theorem, we will prove that the projection
map that associates to a point ofM' its closest point onM is a homeomor-
phism. The results of this chapter will be used in Chapter[8 to triangulate
a submanifold M given only a nite point seton M .

7.1 Reach and "-nets on submanifolds

7.1.1 Submanifolds

Given an open setU  RY and a non negative integerc, amap :U! R

is said to bec-di erentiable , or of classC* on U if its successive derivatives
up to order c are well-de ned and continuous onU. In particular, a O-

di erentiable map is a continuous map. If moreover, :U! V = (U)is

a bijection and ':V ! U is alsoc-di erentiable, then s said to be a
c-di erentiable di eomorphism .

De nition 7.1 (Submanifold) A compact subsetM RY is a c-di eren-
tiable submanifold of dimensionk d, if for any p2 M there exist an open
setU RY containing p, a c-di erentiable di eomorphism  from U to an
open setV RY, and an ane k-dimensional subspaceA RY such that

(U\M )= A\ V:

Intuitively, a submanifold of dimension k is a subset ofRY that is locally

homeomorphic to an a ne space of dimensionk (see gure ). A curve
is a 1-dimensional submanifold ofRY, and a surfaceis a 2-dimensional sub-
manifold of RY. The submanifolds we will consider are di erentiable and
have no boundary, even if not explicitly mentioned.

The tangent spaceTpM of a c-dierentiable (¢ > 0) submanifold M at
a point p 2 M is the vector space spanned by the tangent vectors 40)
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Figure 7.1: A k-dimensional submanifoldM of R? (herek =1 and d = 2) is
a subset ofRY that is locally di eomorphic to an open set of a k-dimensional
a ne subspace.

where :( ;1) ! M RY belongs to the set of dierentiable curves
contained in M such that (0) = p. If M is of dimensionk, then T,M is a
k-dimensional vector space. By an abuse of notation, we will also denote by
TpM the ane subspace spanned by ToM and passing throughp and we
will denote by NyM the (d  k)-dimensional a ne subspace orthogonal to
TpoM (see Figur). In the sequel, to avoid heavy notation, when there is
no ambiguity, we will drop the reference toM and denote ToM and NpM
by T, and N, respectively.

In this chapter, we focus on submanifolds and do not consider manifolds
de ned in an intrinsic way, independently of any embedding in RY. However,
the main results of the chapter and in particular the triangulation theorem
(Theorem [7.18) can be extended to intrinsic smooth manifolds. See the
bibliographical notes.

7.1.2 Projection map, medial axis and reach

Let M be a submanifold of R9. The medial axis of M is de ned as the
closure of the set of pointsx 2 RY that have more than one closest point on
M (see Figure[7.8). We denote it by ax(1 ).

We can associate to each point of ax{l ) a ball that is centered at that point,
whose interior does not intersectM and that is maximal for inclusion. Such
a ball will be called a medial ball
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Figure 7.2: The tangent and normal spaces to a 2-dimensional submanifold
M of R3 at a point p2 M .

Figure 7.3: The medial axis of a closed curve. We only show the component
of the medial axis that is contained in the domain bounded by the curve.
Various o sets of the curve are also shown as thin curves.
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We de ne the projection onto M as the mapping
RiYnax(M) ! M
that maps a point x to its (unique) closest point on M .

The reach of M, written rch( M ), is the in mum of the distance from a
point of M to the medial axis ax(M ). As we will see, the reach encodes
both local curvature considerations as well as global ones.

In this chapter, we will restrict our attention to the class of submanifolds

of RY with positive reach introduced by Federer [81]. This class includes
all submanifolds of classC? and also some submanifolds whose principal
curvatures may be discontinuous on subsets of measure 0. An example of
such a submanifold is ther-o set of a solid cube, i.e. the set of points at
distance at mostr from the cube.

We now state some properties of submanifolds with positive reach.

Lemma 7.2 (Tubular neighborhood) Let M be a manifold with posi-
tive reachrch(M ) and let By, (r) be the intersection of the ballB (p;r) with
the normal space atp. If r < rch(M), then, for every point x 2 By, (r),

(x)=p.

The proof of this lemma for C? submanifolds follows from rather standard
arguments in di erential geometry. The result for submanifolds of positive
reach is due to Federer([81]. From Lemma 72, we easily deduce the following
lemma.

Lemma 7.3 Let M be a submanifold of positive reach, and let 2 M . Any
open ball that is tangent toM at x and whose radius is at mostch(M ) does
not intersect M .

Proof Let B(c;r) be a ball tangent to M at x and assume thatr <
rch(M ). If the intersection of M and the open ball B(c;r) is not empty,
then ( ¢) 6 x, contradicting Lemma . The result forr = rch( M ) now
follows by taking the limit.

Lemma 7.4 Let B be a closed ball that intersectdM . If B\M is not a
topological ball, thenB contains a point of the medial axis ofM .
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Figure 7.4: For the proof of Lemma[7.4.

Proof Write c for the center of B. The result is trivial when c belongs to
the medial axis of M . Therefore assume thatc 62ax(M ).

Let y be the (unique) point of M closest toc. We denote by By the closed
ball centered atc with radius kc  yk (see Figure 7.4). Plainly, the interior of
By does not intersectM and By\M = fyg, otherwise c would be a point of
the medial axis. Hencey is an isolated critical point of the distance function
from c, i.e. the function d¢c : R4! R, d¢(x) = kx ck. dc is minimal at y
and, for a small enough radiusr strictly larger than ky ck, B(c;r)\M
is a topological ball of the same dimension aM . SinceB \M is not a
topological ball, it follows from a basic result in Di erential Topology [105;
Theorem 3.1that there exists another critical point of d¢;, sayz2 M ;z 6 v,
such that rc = k¢ zk > kc yk and the ball B(c;r¢) is tangent to M at
z. Consider the setB, of closed balls that are tangent toM at z and are
centered on the line segment4c]. Note that B (c;r) is the ball of B, centered
at c. Since the interior of B(c;rc) contains y and therefore intersectsM ,
there must exist a ball B, 2 B, maximal for the inclusion whose interior
does not intersectM . The center of B, belongs to ax(M ) and also to B
sinceB,; B(c;r) B. The lemma is proved.

If x 2 M , B(x;r) cannot intersect the medial axis ofM for any r < rch(x).
Lemmal7.4 thus implies

!Let a= dc(y)and b= r and suppose that the setd, *(a;b), consisting ofall p2 M with
a dc(p) b, contains no critical points of d. (i.e. no point qof M where B(c;kc gk) is
tangentto M ). Then M® = fx 2M ;d. agis homeomorphictoM ®= fx 2M ;d. bg.
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Corollary 7.5 For any x of M, and anyr < rch(x), the intersection of M
with the ball B(x;r) centered atx of radius r is a topological ball.

Assume that we are given a nite set of pointsP on M and let Vor(P) be
the Voronoi diagram of P in the ambient spaceRY. The following lemma
shows that the Voronoi cell of anyp 2 P has a large extent in the normal
spaceNj at p.

Lemma 7.6 Letp2 P M and write Ny for the normal space ofM
at p. Then the ambient Voronoi cell V(p) of p has a large extent inN.
Speci cally, B(p;rch(M ))\ Np  V(p), where B (c;r) denotes, as usual, the
open ball centered atc of radius r.

Proof  Supposew 2 (B(p;rch(M ))\ Np) nV(p). Then the line segment
[pw] crosses the boundary ofV (p) at some point z and there exists some
u2 P M ,distinct from p, such that kz uk = kz pk. Sincez 2 Ny,

p is the closest point toz on M , and we have reached a contradiction with
the de nition of the reach.

7.1.3 "-nets on a submanifold

We give a variant of the de nition of "-nets introduced in Section[5.]. This
new de nition is better adapted to the case of point samples on a submani-
fold and is sensitive to the reach of the manifold.

De nition 7.7 ( ("; )-net) LetM be a submanifold oRY of positive reach.
A nite point set P M is called an("; )-net of M ifitis

1. "-dense: any point x of M is at distance at most"” rch(M ) from a
point of P (the distance is the Euclidean distance inRY),

2. -separated: for any two points p;gof P, kp gk rch(M ), where

We call " the sampling radius ofP and the separation ratio of P. Note
that, di erently from Section " here is a dimensionless quantity.
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This de nition does not allow the sampling radius to vary over the sub-
manifold. Hence, we are con ned to uniform samples, which may be quite
restrictive in practice. The results of this chapter can be extended to non-
uniform "-nets but, in order to keep the exposition simple and better outline
the key ideas, we will restrict our attention to uniform "-nets. We leave the
extension to non-uniform "-nets as an exercise (Exercis@A). See also the
bibliographical notes.

7.2 Projection maps

In the rest of this chapter, M denotes a submanifold olRY of positive reach
rch(M ). The tangent space atx 2 M is denoted by Tx. The angle between
two vector subspaced) and V of RY is denoted by\ (U; V) (see Sectior] 5.2.2
for a de nition).

If is a simplex, we denote by ( ) its diameter (i.e. the length of its
longest edge) and ( ) its thickness. We further write for convenience

( )= ()rch(M).

Lemma 7.8 Let p and g be two points ofM . We have

- - k k N
1. sin\ (pg; Tp) %

kp ok?

2. the distance fromq to Ty is at most 5 w7 -

Proof 1. Let ¢°be the orthogonal projection ofqonto T, and let H be the
plane (pad). Let in addition D be the open disk ofH of radius rch(M ) that
is tangent to M at p and whose centerc is on the same side off,\ H as
g (Refer to Figure ). SinceD is tangent to M and its radius is rch(M ),
it follows from Lemma that d(c;M ) = kc pk and that D does not
intersect M . Hence q does not belong to the interior of D (Lemma ).
Assume that the line segment pq] intersects the boundary of D in a point
q®distinct from p. We have

kp ok kp ¢k=2rch(M)sin\ (pg;Tp)

which proves the rst statement.
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Figure 7.5: An illustration of the proof of Lemma [7.8 in the case whereM
is a curve ofR%2. =\ (pg; Tp).

2. We havekq gk =kp gksin\ (pg;Tp) %
The previous lemma allows us to bound the Hausdor distance betweerM
and a simplex which has its vertices onM .

Lemma 7.9 Let be a simplex with its vertices onM and assume that
( ) < 1. Then, for any point x 2 , we haved(x; M) 2 ?( )rch(M):

Proof  Write x°the point of M closest to x and note that kx x% =
d(x; M) = d(x; Tyo). For any vertex p of , we have

kp x% kp xk+kx x% 2kp xk 2( )=2 ( )rch(M):

Applying Lemma [7.8, we then getd(p; Txo) 2 2( )rch(M ). This is true
for all vertices p of and, since the functiond(:; Txo) isane on , itis also
true for x and we haved(x; Tyo) = kx x% 2 2( )rch(M).

The following lemma bounds the angle between two tangent spaces. Its
proof relies on notions of di erential geometry that go beyond the scope of
this book. See the bibliographic notes (SectioS) for references.

Lemma 7.10 (Angle between tangent spaces) Let p;g2 M. Then
sin\ (Tp; Tq) k p gk=rch(M):
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We now introduce the important notion of distortion of a map.

De nition 7.11 (  -distortion map) A mapF :U RY! Rlisa -
distortion map if for all x;y 2 U we have

JKF(X) F(y)k k x vk kx  yk;
or equivalently if

1 )HYkx yk kF(X) F(yk @+ )kx vyk:

We will need the next lemma.

Lemma 7.12 Let U be a subset oRY. A -distortion map F : U ! R¢
is an embedding (i.e. a homeomorphism onto its image) if < 1. If itis
smooth, then we havgkJ uk 1] , Where J denotes the Jacobian matrix
of F and u is any unit vector of RY.

Proof  Continuity and injectivity directly follow from De nition 7.11. The
continuity of the inverse follows from Exercise[7.9. This proves thatF is an
embedding. The second part of the lemma follows from De nition[7.11.

We now study two maps that will play a crucial role in proving the main
theorem of this chapter (Theorem ). The rst map has already been
de ned. It is the projection : R%nax(M)!M that maps a point to its
closest point onM .

We show now that is Lipschitz continuous in a neighborhood of M , and
that its restriction to a simplex with vertices on M has adistortion that is
bounded as a function of the diameter and of the thickness of the simplex.

Lemma 7.13 (Distortion of ) 1. Let x and y be two points of R4 n
ax(M ). Write x°= ( x) andy°= ( ) for their (unique) projections onto
M. If kx x% rch(M ) and ky y% rch(M) with < 1, then
kx yk - kx o yk

2. Let be a simplex with its vertices orM , and assume that ( ) % and
() 5 (). Then the restriction of to is a -distortion map where

=4 2( )+ %(())< 1 and thus embeds in M
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Figure 7.6: For the proof of Lemma[7.18 (1).

Proof Referto Figure[7.6. Let x =\ (y® x%Ty)and y =\ (y° x8Tyo).
From Lemma [E both sin x and sin y are bounded by
ky® x%
- 7.1
2rch(M) (7.1)

1. Let x%and y°be the orthogonal projections ofx and y onto the line
(x%Y9. Let Hy be the hyperplane passing throughx® and orthogonal to xx°,
and write x =\ (x° y%Hy)andobservethat x = 5 \ (x° y%x x9=
\ (x  x%x  x%. By denition of angles, x  x sinceTyo Hy. Using

(7.3), we have

kx® x% = kx x%sin x k x x%sin 4 rch(M )sin Eky0 x%:
Likewise : ky® y% = -ky® x%. So

kx  yk k x% yo% k y0 x% k x° x% ky® y%R @ kO x%

The rst part of the lemma follows.

2. Refer to Figure[7.7. Letx and y be two points of , x°= ( x) and
y°= ( y). By Lemma|[7.9, we know thatkx x% andky y% are at most
rch(M ) where =2 ?( ) 1=2.
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Figure 7.7: For the proof of Lemma[7.13 (2).

From the rst part of the lemma, we have

kx®  y% kx yk (1+2 )kx vyk 2kx vyk (7.2)

1
We now prove a lower bound onkx® y%=kx yk.
Let, as before,H denote the hyperplane passing through®and orthogonal

to xx° Let z be the projection of y onto Hy, z°the projection of y° onto
Hy and write =\ (x y;x° 2)=\(x y;Hy) (See Figure[7.7). We have

kx yk k x® z% k x® zk k z° zk=kx vykcos k z° zk (7.3)
Let us bound cos and kz® zk. We have
- .0 _ : .
=\ (x y;x* z) = rvnzlgx\ (X y;v)
B v

max min \ (u;v)
u2a( )v2T,o

= \@f( ) Txo:

By the proof of Lemma [7.9, the vertices of are at distance at most
rch(M ) from Tyo. We then deduce from Lemmd 5.14

. 4 16 2
sin = and so cos 1 ()

()yc )y ) ()

(7.4)
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Write. =\ (Tyo;Hy) \ (Tyo; Tyo). By Lemma[7.10, we have

. kx0  y%
sin -
rch(M )
Lett=\(y zy VY9 . Using ky  y% rch(M ) and (7.2), we
deduce
kz° zk=ky y% sint kx vk 2 kx yk: (7.5)
Using (7.3), (74) and (73) and =2 ?( ), we get
2
kx®  y% 1 42(0) 16°0) yk=(1 )kx vyk

()

From (7.2) and =2 2( ), we also have
kx® yk @+4 ?( ) kx yk @1+ )kx yk
We conclude that
1 Hkx yk kx° yk @+ Ykx vk
Hence the restriction of to is a -distortion map. It then follows from
Lemma[7.12 that embeds inM if < 1.
If () 5() wehavesince () 1

2
020) 20,

— 2 2
=4O 50y 3

We introduce now a second map o : RY 1 Tp that maps points of RY to its
closest point on the tangent spacel,, at p. We now bound the distortion of
the restriction of | to a neighbourhood of ap on M and of the restriction
of |, to a simplex.

Lemma 7.14 (Distortion of p) Let p2 M, and write B(p;r) for the
ball of RY centered atp of radius r and By (p;r) for B(p;r)\M

1. Let be a positive scalar such that < % and letr = rch(M). The
restriction of , to By (p;r) is a 4 2-distortion map.
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2. Let be a simplex incident top with its verticesonM . If () > (),
2
then the restriction of pto isa 2(( >)-distortion map which embeds
in Tp.

Proof 1. Forall x andy 2 By (p;r), we have from Lemmag 7.8 andl 7.J0
sin\ (xy; Tp) sin\ (xy; Ty)+sin\ (Ty; Tp) 2 < 1 (7.6)

Write x%= ,(x), Y°= o(y) and =\ (xy;Tp). Using (7-6), we get
kx yk kx% yk = kx vyk(@ cos)
k x yk(1 1 42
4 2kx  yk:
Adding the fact that kx® y% k x yk, this shows that the restriction of
pto Bm (p;r)isa4 2_distortion map. It then follows from Lemma

that |, embedsBy (p;r) in Tp. This ends the proof of the rst part of the
lemma.

2. Letxy 2, x9= p(x), 0= p(y),and = \(x y;x° y9
\(@( );Tp). By Lemma [7.8, the vertices of are at distance at most

hrch(M ) from Ty, whereh = % It then follows from Lemma that

. 2h ().
sin O -1 (7.7)
Using (7.7), we get
kx yk = kx ykcs:os
k x k ()
L0
k x yk 1 22(( ))
We deduce
1 22(()) kx yk kx%° yk kx yk 1+ 22(()) kx yk

The restriction of ,to is thus a :Z%—distortion map and Lemma [7.13
ensures that , embeds in Tp. This completes the proof of the lemma.




7.3. TRIANGULATION OF SUBMANIFOLDS 169

7.3 Triangulation of submanifolds

De nition 7.15 (Triangulation of a topological space) A triangulation
of a topological spaceX is a simplicial complex K and a homeomorphism
h:jKj! X.

The following theorem provides su cient conditions for a simplicial complex
M to be a triangulation of a submanifold M embedded inRY. This theorem
will be used in Chapter[§ to reconstruct submanifolds from nite point sets.
We recall that denotes the projection onto M and | the orthogonal
projection onto the tangent spaceT, at p2 M .

Theorem 7.16 (Triangulation of submanifolds) LetM bea closeﬁ k-
submanifold of RY of positive reachrch(M ) and let M be a combinatorial
k-manifold without boundary embedded irRY that satis es the following as-
sumptions :

(a) The vertices of M belong toM and each connected component df/
contains some vertices of\M ,

(b) The diameter of any k-simplex of M' is less than o = orch(M)
where o 15,

(c) The thickness of thek-simplices of M’ is at least o 9 2= o, where
Lo= orch(M) is a lower bound on the edge lengths of the simplices,

(d) For any vertex p2 M', |, embedsstar(p;M).

(e) Letr = % orch(M). Any vertex q of M that belongs toB (p;r) and
is mapped by , onto a point @°2 p(star(p)) has to be a vertex of
star(p).

Then the following facts hold :

1. The restriction of to M is a homeomorphism and thusM' is a
triangulation of M .

2. The Hausdor distance betweenM' and M is at most 2 arch(M ).

2j.e. compact and without boundary.
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3. If is ak-simplex of M and p one of its vertices, we have

sin\ @ ( )Ty 2
0

The proof is given in the following sections. A more general version of the
theorem holds. Indeed, we can remove the assumption that the simplicial
complex M is embedded inRY. The fact that the complex is naturally
embedded inRY is a consequence of this more general version of the theorem.
In the sequel, we will denote byP the set of vertices ofM .

7.3.1 Proof of statement 1

Write as before for the projection onto M and consider M MM

the restriction of to M. Note that ., is well de ned since M does
not intersect the medial axis of M as o < 1. We will prove that ;s is a

homeomorphism, which implies that M is a triangulation of M .

Here is an overview of the proof. We have already seen that embeds any
simplex of M’ into M (Lemma (2)). We will extend this result and
prove that s is a local homeomorphism (Lemm3). More speci cally,

we de ne an open cover ofM' as follows. We attach to each vertexp of M

an open setV,, such that the union of the V,, for all vertices p of M, covers
M . Speci cally W, is de ned as the set of points of starf) M whose
barycentric coordinate with respect to p is at least ﬁ and V, is an open
set that contains W, and is arbitrarily close to W,. Since the barycentric
coordinates in eachk-simplex sum to 1, this ensures that the setsv, cover
M . We will show that embeds each Vp, which will prove that M is a
local homeomorphism.

We will then prove that 4 is injective (Lemma) and surjective (Lem-

ma). Furthermore, 4 is continuous by Lemma 7.1]3(1) and its inverse

is also continuous sinceM and M are both k-manifolds without boundary
(see Sectiol). It will follow that ;4 is @ homeomorphism and that

M and M are homeomorphic.
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Figure 7.8: For the proof of Lemma[7.2}.

7.3.2 Whitney's lemma

We write starqp) for p(star(p)) and V) for (V). With a slight abuse
of notation, in the rest of the proof of Theorem E we write pl for
the inverse of the restriction of | to star(p), which is well de ned since
embeds starp) by Hypothesis (d). We further de ne the map Fy : starqp)
Tp! TpasFp= o o' See Figure 7.8. By construction,F, leaves
the vertices of stadp) xed: if qis a vertex of sta{p), then Fp(q) = q.
Our goal is to show that F, embedsV,"= (V;). To do so, we will use the
following result due to WhitneyE] that we state without proof [L31] App. II,
Lemma 15a].

De nition 7.17  Let C be ak-simplicial complex embedded irRK. We say
thatamapF : C! RK is simplexwise positive if it is smooth and 1-1 on
eachk-simplex of C, and if the Jacobian of F is positive there.

Lemma 7.18 (Whitney's lemma) AssumeC is a combinatorial k-mani-
fold with boundary embedded irRK. Let F : C! RX be simplexwise positive
in C. Then for any connected open subset of RKnF (@G, any two points
of not in the image of the (k 1)-skeleton of C are covered the same
number of times. If this number is 1, then F, considered in the open subset
F () of C only, is one to one onto

SWhitney proved a more general result which does not assume that C is embedded in
RK.
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7.3.3 Satisfying the conditions of Whitney's lemma

We will apply Whitney's lemma to = Vp, C = starqp) = p(star(p))
and to F = Fp. This section contains the geometric arguments needed to
prove that the conditions of Whitney's lemma are satis ed. After recalling
that star( p) is an oriented combinatorial k-manifold (Point 1), we show that
Fp is simplexwise positive (Point 2). We then exhibit a point in Fy(Vp) n
Fp(@tar(p)) that is covered only once (Point 3) and nally prove that F,(V;)
is included in a single component ofp(star(p)) nFp(@tar(p)) (Point 4). The
proofs use extensively the bounds on the distortion of the two maps and

p of Section[7.2.

1. SinceM is a combinatorial k-manifold and p eémbeds starp) (Hypoth-
esis (d)), star{p) is a combinatorial k-manifold embedded in Tp. We can
then assume that it is oriented.

2. We now prove that Fp = o ! is simplexwise positive.

Lemma 7.19 (Distortion of Fp on a simplex) Under the hypotheses of

Theorem|7.16, the distortion of the restriction of Fy to any simplex of M is

33
less than =2 < 1.
0

Proof Rename, for convenience, pl asfq, the restriction of to star( p)
asf,, and the restriction of , to Uy, = (star( p)) as f3. We have Fp =
fg fo f1. Write ; for the distortion of f;,i =1;2;3, and for the distortion
of Fy.

By hypothesis, the diameter of any simplex in star() is at most ¢ and its
thickness is at least . Moreover, Uy is contained in a ball centered atp of
radiusr = orch(M )(1+2 ¢) < rch(M )=3 (Lemmal[7.9).

Using the assumptions of Theorenj 7.16 and Lemmgs 7.JLl4 and 7]13, we get

2
% 64 2
- o3z (Exercise[7.9, Lemmd 7.4(2) and o 8 o)
- 0
0
,, 165 5
) 40+7(2) 20—(2) (Lemma[7.13 (2) and o 1)

1
3 431+20)%<83 8 (Lemmal[7.14(1) and o z)

onfon
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Using Exercise[7.1D and ¢ > 9 o, we obtain

1t 2+t 3+ 12+ 23+ 31+ 123

0 .
< — <L
0

It follows from Lemma that F, embeds any simplex of star{p) and,
from Lemma(7.12, that the Jacobian ofF, does not vanish on . It remains
to prove that it is positive. To do so, observe that the di erential of the
restriction of Fp to  at the point p 2 is the identity. This follows from
the observation that the di erential of at p restricted to Ty, is the identity,
sincep lies on the manifold.

3. We will now prove that there is a point in Fp(Vp) nFp(@tar(p)) and not
in the image of the (k 1)-skeleton that is covered once. For this purpose,
we choose the image of the barycenter of &-simplex of star{p).

Lemma 7.20 Assume that the conditions of Theoren] 7.16 hold and let’
be the barycenter of e&k-simplex %in star{p). Then the image oft’, Fp(bP),
is covered once, i.e.F, 1(Fy(t)) = fb.

Proof We denote as usual by ( 9the diameter of © by L( 9 the length
of the shortest edge of % and by D(p; 9 the altitude of pin © Let
= ' 9 and write for the distortion of the restriction of , to .
By Lemma [7.19, we have 4= 2 and, using Conditions (b) and (c)
in Theorem and o 1, we get 1=45. We thus haveD (p; 9
(1 )D(p; ). Now observe that the distanced(b® @ 9 from the barycenter
b’ to the boundary of %is minpyyery o % A lower bound on d(b*> @9
is then obtained using the de nition of thickness, k 1 and Condition (c):

k@ )()(C ) @ ) oorch(M) 9 ) grch(M)

0
d @9 k+1 2 2

Using the bound on above, we obtain

dv* @9 %2 2rch(M) (7.8)
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Since the distortion of the restriction of Fj to Ois less than 1 (Lemm),
Fp embeds °(Lemma(7.12) and therefore no pointz®2 O distinct from b°
can verify Fp(z% = Fp(b). Let us consider now the case of a pointz® of
star{p) n © write b=} andz= ,(z9. Using Lemma, we get

kFp(t) bk=k p(( b bk k (b bk 23rch(M)
and similarly for kFp(z9 z%.
Hence,

kFp(t)  Fp(zBk  k b? z% k Fp(t) bk k Fp(zd z%
dp’@9 4 §reh(M)

%2 2rch(M) 4 2rch(M) (By Equation
> 0

It follows that Fp() 6 Fp(29.

Sinceb’2 V), the previous lemma implies that there exists a point inFy(V,)
that is covered exactly once.

4. The next lemma shows thatFp(V) \ Fy(@tar{p)) = ;.

Lemma 7.21 Assume that the conditions of Theorem[ 7.16 hold and let
x2 9 starp) andy 2 @dtar{p). If the barycentric coordinate of x with
respect top is at least 1, then Fy(x) 6 Fp(y).

Proof Arguing as in the proof of Lemma[7.20, we get

KFp(X) Fp(y)k k x yk k Fp(x) xk k Fp(y) vyk
d(x; @tar{p)) 4 frch(M)

Using Lemmal[7.22, we can conclude in very much the same way as in the
proof of Lemma[7.20.

Lemma 7.22 Let 9be ak-simplex of star{p) and let x be a point of ©°
whose barycentric coordinate associated tp in  © satis es p(X) . Then
d(x; @tar{p)) k(1L )Lo o, Wwhere is an upper bound on the distortion
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of the restriction of | to a simplex of M, Lo = orch(M) is a lower
bound on the edge lengths of the simplices and; is a lower bound on their
thickness.

Proof Let © be a line segment joining two pointsx o and y o of %and
denote by ,(x o)and p(y o) respectively their p-th barycentric coordinates.
Thenj % j p(x o) p(y 0jD(p; 9, whereD(p; 9 denotes the altitude
of pin %and we indicate the length of a curve byj j. As noted in the proof

of Lemma[7.20.D(p; 9 (@ )D(p; )

Let star®(p) = fz 2 star(p); p(2) g. Equivalently, star(p) is the image
of star{p) by the homothety of center p and ratio 1 . Consider a short-
est line segment connecting a point of @tar{p) to a point of @tar’(p).
Plainly, intersects staf{p) and star®(p) only at its endpoints and the inter-
section of with any simplex ©of star{p), if non empty, is a line segment
we denote by o. If we now note that the barycentric coordinates coincide
on a face that is shared by two simplices we see that:

X
ii= 00 i p(x%)  p(y)iD(p; 9
0 0

i p(x%)  pyik@ ) o ()

0

X
(p(x)  pYNkE@ ) o( )

0

k(1 ) olLo

where x° is the point where enters ®and y° where it leaves.

7.3.4 Local homeomorphism

Lemma 7.23 ( M is a local homeomorphism)  If the conditions of The-

orem hold, then embedsV, in M and the restriction of to M' is a
local homeomorphism.

Proof We have proved in the previous section that the conditions of Whit-
ney's lemma are ful lled for F = Fp. Hence,F, embedsV,)in T, and, since
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Fp = pl , must embed V, into M. Moreover, since the set

of all V, for all vertices of M cover M', we have proved that the map
restricted to M' is a local homeomorphism orM . This completes the proof
of Lemmal[Z7.23.

7.3.5 The restriction of to M is injective

Lemma 7.24 (Injectivity of ;M) Under the conditions of Theore,
is injective on M.

Proof Let x be a point of ( M"). jlv%(x) is non empty and nite since

embeds each simplex off (Lemma@) and there are only nitely many
simplexes inM . For each pointy 2 (x)\ M, we choose a su ciently
small open neighborhoodU(y) of y such that the U(y) are disjoint and
each U(y) is homeomorphic to ak-ball and contained in someV,. This
is possible since theVy,, p 2 P, constitute an open cover ofM'. Since, as
already noticed, embeds any V, on M , it also embeds eachU(y) in M .
Hence the preimage under M of any su ciently small open neighborhood
U(x) of a point x of M is a union of disjoint open sets, each of which is
contained in someV, M and mapped homeomorphically ontoU(x) by .
(In topological terms, (M'; ) is a covering space of ( M').)

We now show that the cardinality of j M} (x) is constant over each connected

component ofM . Indeed, consider the functionG that associates to a point
x of M the cardinality of Ml(x). From the above discussion,G is locally
constant, which implies that it is constant on each connected component of
M . Hence M covers all the points of a connected component of its image

( M) the same number of times. This number is 1 as is shown next.

Assume, for a contradiction, that there exists a vertexq and a simplex

of M such that q belongs to the image ( ) but g is not a vertex of
Specically, let x 2 be such that ( x) = g. In the rest of the proof, we
denote by p a vertex of such that the associated barycentric coordinate of
X satises p(x) ﬁ (which must exist).

We write for conveniencex® = ,(x) and ¢° = p(g). Recall that F, =
o o1 and observe thatFy(x9 = Fy(c?) for any vertex p of . Plainly,
x% belongs to ,( ) but ¢® does not belong to stalp) =  p(star(p)) by
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Hypothesis (e). We conclude that Fp(x% 6 Fp(c9) from Lemma [7.2, a
contradiction.

7.3.6 The restriction of to M is surjective

Lastly we prove that the restriction of to M is surjective.

Lemma 7.25 (Surjectivity of ;M) Under the conditions of Theore,
iM is surjective on M .

Proof SinceM has no boundary, the same is true for (M) by the in-
variance of domain theorenfl Hence any connected component ol that
intersects ( M) has to be totally included in ( M). Since by Hypothesis
1 of TheoremS, every connected component dfl intersects ( M), M

is included in ( M').

7.3.7 End of proof of statement 1

We have shown that ;s is a bijection from M to M . Furthermore, M

is continuous by Lemma(l) and its inverse is also continuous sindd
is compact andM is a metric space (see Sectl.l). It follows that ;s

is a homeomorphism and thatM and M are homeomorphic, which is the
rst statement in Theorem 7.16]

7.3.8 Proof of statements 2 and 3, and of Theorem 7.16 |

To prove the second statement, letx be a point of M and let y be the point
of M such that x = ( y). Such a point y exists by the rst statement. It
then follows from Lemma[7.9 thatkx yk 2 2rch(M ).

The third statement of the theorem follows from Lemma[5.14 as in the proof

of Lemma[7.14 (Equation (7.7)).

4 The invariance of domain theorem states that, given an open subset U RY and an
injective and continuous function f : U! R then f is a homeomorphism betweenU and
f (U). The theorem and its proof are due to L. E. J. Brouwer [110, Theorem 36.5].
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We have thus proved the three statements of Theoren 7.16.

7.4 Exercises

Exercise 7.1 ( "-nets on submanifolds) Let P be an"-dense sample of
a submanifold M . Let P%:= ; and apply the following procedure : while
there exists a point p of P n P9 whose distance to the current setP? is

greater than "rch(M ), insert p in P% Show that P%is an ("rch(M ); 1)-net

of P and a (2 %)-net of M . Adapt the algorithms of Section to the

case of submanifolds.

Exercise 7.2 (Size of nets) Show that the size of an (; )-net of a k-
submanifold with a bounded sampling ratio depends exponentially onk.

Exercise 7.3 (Computing  rch(M)) Let M be a smooth submanifold and
write ax(M ) for the medial axis of M . Show that rch(M ) is the radius of
a ball B(m) centered at a point m 2 ax(M ) and tangent to M . Show that
if B(m) has only one contact point, B(m) is osculating M at the contact
point. If B(m) has two distinct contact points, the two contact points are

the endpoints of a diameter of B(m). Propose an algorithm to compute
rch(M ) when M is a hypersurface ofRY implicitly de ned as f(x) = 0

wheref is a di erentiable function de ned over RY for which 0 is a regular
value.

Exercise 7.4 (Non uniform nets) We de ne the local feature size Ifsk)
at a point x of a submanifold M as the distance fromx to the medial axis
of M, ax(M ). We say that a nite set of points P M is a non uniform
("; )-netif it satis es the following two properties:

1. Any point x of M is at distance at most" Ifs(x) from a point of P.

2. For any two points p;qof P, kp gk min(Ifs(p); Ifs(q)).

Show that Ifs is a 1-Lipschitz function, and, using this fact, extend the results
of this chapter to su ciently dense non uniform "-nets.
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Exercise 7.5 (Size of non-uniform nets) Provide upper and lower bounds
on the size of a non-uniform (; )-net of a k-submanifold as a function ofk
and the integral over M of Ifs(x), the local feature size ofM at x.

Exercise 7.6 (Geodesic distance) Let x andy be two points onM such

that kx yk rch(M), < 1. Show that the length of a shortest path

on M joining x to y is at most 7——.

Exercise 7.7 (Angle between tangent spaces) Prove Lemma[7.10 (with
possibly a bigger constant) using elementary arguments.

Exercise 7.8 Let x be a pointof Byy = B(p;r)\M wherer = rch(M),
< 1. Show that there exists a pointy 2 T, such that ( y) = X, where

denotes the projection onM , and kx yk .

Exercise 7.9 (Distortion) Let F :U RY! RYbe a -distortion map.
Show that F ! is well de ned and that it is a —-distortion map.

Exercise 7.10 If F1 is a j-distortion map and F» is a -distortion map,
thenF; Fpisa( 1+ 2+ 1 p)-distortion map.

Exercise 7.11 (Ambient isotopy) Assume that the conditions of Theo-
rem [7.16 are satis ed. Show that the restriction of to M induces an
ambient isotopy

‘RY [0;1]! RY

such that the map  ( ;0) restricted to M is the identity map on M’ and
(M';1) = M. The isotopy does not move the points by more than
O( 3rch(M)).
Hint: Let
M [0:1]! R% () 7! x+t(( x) x)

Note that ( ;0) is an identity map on M and ( ;1) = i - The map
is an isotopy because the maps

M RY x 7 (xt)
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are homeomorphisms betweet and (M.

Isotopy can be extended to an ambient isotopy :RY [0;1]! RS
suchthat  (;0)js = ( ;0 and (;1)jyp = ( ;1)

Exercise 7.12 (Extension of Theorem 7.1¢) | Remove in Theorem 7.1p
the assumption that the simplicial complex is embedded inRY and assume
instead that we are given an abstract nite simplicial complex K without

boundary. We then consider the piecewise linear map : K ,! RY de ned

by the coordinates of the vertices ofK and dene M as (K). Using es-
sentially the same proof as in Section$ 7.3|[1-7.3.8, prove that  (K) is

homeomorphic to the underlying space ofK j and that M’ is embedded in
RY.

7.5 Bibliographical notes

The medial axis was introduced as a tool in image analysis. It is by now
widely used to represent and analyze shapes. For mathematical and algo-
rithmic properties, we refer the reader to the work of Lieutier [101] and to
the survey paper [3]. Lieutier proved that any bounded open subset oRY

is homotopy equivalent to its medial axis [101]. The notion of local feature
size (Exercise) was introduced by Amenta and Bern in their seminal
paper on surface reconstruction[[?]. See alsb [22,190]. The related notion of
reach has been introduced earlier by Federef [81] who proved Lemmas [.2,
[7.§ and the rst part of Lemma Many other results on sets of positive
reach can also be found in this paper. The link between the reach and the
principal curvatures of a submanifold has been established by Niyogi, Smale
and Weinberger [112] who also proved a weaker form of Lemnfa 7]10. The
improved bound is due to Boissonnat, Lieutier and Wintraecken [[19].

Proving that any smooth manifold can be triangulated has been the sub-
ject of many important developments in the mathematical community by
Cairns [32], Whitehead [130], Whitney [131], Munkres [[109] and others.
Our proof uses Lemma 7.18 which is due to Whitney. More recently, the
Delaunay triangulation turned out to be a useful tool in this context lead-
ing to e cient algorithms. Variants of Theorem 7.16 Jhave been proved by
Cheng and al. [56], Boissonnat and Ghosh[18] and Dyer et al_[65]. The
proof presented here is based on [16]. A proof of Exercill can be found
in [97].
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Let M be an unknown manifold and letP M be a known nite sample.
The reconstruction problem is to recover fromP alone the topological type
of M (manifold reconstruction) or the homotopy type of M (homotopy
reconstruction). More concretely, we look for a simplicial complexM which
approximatesM , and, in particular, is provably homeomorphic or homotopy
equivalent to M .

In Section[8.1, we will see that, under appropriate conditions onP, M has
the same homotopy type as the union of balls centered on the points d?.
It follows that the alpha-shape of P, for an appropriate value of has the
same homotopy type asM . This method however has some limitations. The
complex captures the homotopy type but is not in general a triangulation
of M and computing the alpha-shape is limited to low dimensional spaces.

In the following sections, we overcome these limitations and show how to
reconstruct a simplicial complex with vertex set P that is homeomorphic
to M . We have to face two main di culties. First, even when a point set
is a dense and sparse sampling on a manifolfl , the Delaunay simplexes
of dimension higher than 2 are not guaranteed to be thick (see Secti.2)
and therefore not guaranteed to approximate the tangent bundle ofM (see
Lemmal5.14). This is an issue since the main theorem of Chaptgr] 7, The-
orem|[7.18, that provides conditions to triangulate a submanifold, requires
simplices to be thick. To be able to reconstruct manifolds of dimension
greater than 2, we will need to explicitly take care of non-thick simplices us-
ing techniques similar to what has been done in Chaptef[5 in the Euclidean
case.

The second major di culty comes from the so-called curse of dimension-
ality. We have seen (Theoremg 44 andl 5|4) that the size of the Delaunay
triangulation of n points grows exponentially with the dimension d of the
embedding space. As a consequence, whehnis large, we cannot a ord to
compute the d-dimensional Delaunay triangulation Del(P) or any other sub-
division of RY. Instead, we will introduce a subcomplex of DelP), called
the tangential Delaunay complex, whose complexity depends on the intrin-
sic dimension ofM and not on the ambient dimensiond. This complex is
de ned locally and the various local triangulations are glued together so as
to constitute a manifold complex that is embedded inRY and triangulates
M.
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8.1 Homotopy reconstruction using alpha-shapes

Unions of balls play a central role in manifold reconstruction. Indeed, while
Chapter|[g shows how to capture the homotopy type of a union of balls with a
simplicial complex, this section shows that the homotopy type of a sampled
manifold can be obtained from the homotopy type of a union of balls. More
precisely, we show here that the homotopy type, hence the homology groups,
of a manifold M with positive reach can be obtained from union of balls
centered at the points of a sample ofM provided that the sample is dense
enough with respect to the reach.

Theorem 8.1 Let M be a manifold with positive reachrch(M ), and P
M be a point sample ofM with sampling radius %rch(M ), meaning that
any point x o& M is at distance less than%rch(M ) from the closest sample

point. If "< % the union of balls with radius"” rch(M ) centered onP, is
homotopy equivalent toM .

Proof In the following, we denote by B (p; r) the ball with radius r centered
on p and write for short U for the union of balls with radius "rch(M ) centered
on points of P: [
U= B (p;"rch(M)):
p2P
Obviously, M is included in U. To prove the homotopy equivalence we prove
below that U deformation retracts to M. For all x 2 U and t 2 [0; 1], we
de ne
F(x;t)=(@  t)x+t( x);

where ( x) is the projection on M . F is continuous from Lemma[7.18. For
alx2U,F(x;0)=x,and F(x;1)= ( x)isin M, and for all x 2 M and
t 2 [0;1], F(x;t) = x. Therefore F is a deformation retracts fromU to M ,
provided that F (x;t) belongs toU for any (x;t) 2 U [0; 1], which is proved
NoOw.

Let us consider y, the restriction of to U. The preimage Ul(y) of a
pointy2M is
') = Ny\ U\ B(y;reh(M )); (8.1)

where Ny is the normal subspace oM at y. The ball with radius rch(M )
centered aty, B(y;rch(M)), appears in Equation to remove orphan
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components ofNy \ U, i. e. components which do not containy, and may
arise from the fact that M is curved. Therefore,

[
Ul(y) = B(p;"rch(M))\ Ny\ B(y;rch(M)):
p2P

We also consider the subsest(y) de ned as

[
st(y) = B(p;"rch(M))\ Ny\ B(y;rch(M)):
p2P\ B (y;"rch(M))

Obviously, st(y) Ul(y). Then Lemma below proves thatst(y) is star
shaped with respect toy and Lemma E: proves thatst(y) = Ul(y). It

follows that for any y 2 M Ul(y) is star shaped with respect toy and
that for any (x;t) 2 U [0; 1], F(x;t) belongs toU.

Lemma 8.2 The subsetst(y) is star shaped with respect toy.

Proof Let z be an arbitrary pointin st(y). Then z 2 B(p;"rch(M ))\ Ny\

B(y;rch(M)) for somep 2 P\ B(y;"rch(M)). Since p 2 B(y;"rch(M)),

y 2 B(p;"rch(M)). Since z and y are both in B(p;"rch(M )), the segment
zy is entirely contained in B (p; "rch(M )). At the same time, zy is entirely
contained in Ny and in B (y;rch(M )) and therefore in st(y).

Lemma 8.3 The subsetst(y) coincides with the preimage Ul(y).

Proof We are left to show that Ul(y) st(y). Let z be a point in
B(p;"rch(M))\ Ny \ B(y;rch(M)) where p is a point of P such that p 62
B(y;"rch(M)). Lemma 8.4 shows that the distance fromz to y is at most
"2rch(M ) and Lemmahows that ifP is (%rch(M ))-dense inM with " <
%, there is some pointg2 P\ B(y;"rch(M )) such that z 2 B(q; "rch(M ))
which achieves the proof.

Lemma 8.4 Let z be a point in B(p;"rch(M ))\ Ny\ B(y;rch(M)) where
p is a point of P such thatp 62B(y;"rch(M )). The distance d(y;z) from z
to y is at most "?rch(M ).
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Figure 8.1: For the proof of Lemma[8.3.
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Proof  Let us consider the planeH through y;z and p. See Figurg 8.1L. In
the planeH, we callny the line H\ Ny, and hy the line orthogonal to ny that

passes throughy. Point z belongs tony and point p lies anywhere outside
of the two balls with radius rch(M ) tangent to hy at y. Since the distance
d(y; z) is constrained by the fact that d(p;z) "rch(M ), the maximum of

the distance d(y; z) occurs in the con guration where points p and z lie on

the same side ofhy, as shown in Figure[8.1. We denote byr, the radius
of the circle tangent to M in y and going through p, and by | the angle
\ (hy;yp) betweenhy and yp.

We haverp, rch(M ) and d(y;p) = 2rpsin . Furthermore we have (see

Figure [8.7) :

q
dly;z) = d(y;p)sin p+ d(z;p? d(y;p)?cog p
q
= 2rpsin® p+  d(z;p)2  r2sin?2
q
2rpsin® o+ "2rch(M )2 rZsin?2 ,
def
= f(rp p) (8.2)
We have:
2r2sin2 ,cos2
g . 2rpsin2 ,  g——>" P P
dop "2rch(M )2 r3sin?2 ,
, @ rpCOS2p A .
= 2rpsin2 , @1 g :
"2rch(M )2 r3sin?2
q_

Since " < % < 1 and rch(M ) rp, the function f is monotonically

decreasing with respect to , and reaches its maximum when p is minimum,
i.e. whend(y;p) =2rpsin , = "rch(M ). We have then

q
"rch(M )sin p+ "2rch(M)? "2rch(M )2cog ,

"2rch(M )?
Mp

f(ro; p)

"2rch(M );

2"rch(M)sin o=

which, together with Equation B.2} achieves the proof.
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Figure 8.2: For the proof of Lemma[8.4.

Lemma 8.5 Let z be a pointin B (p;"rch(M ))\ Ny\ beym )(Y) wherepis a
poinaof P such thatp 62B (y;"rch(M )). If P is (5rch(M ))-dense inM with

"< %rch(M ), there is some pointqg2 P\ b(y) such thatz 2 b-(g)\ Ny.

Proof BecauseP is (%rch(M ))-dense in M, there is a pointq 2 P at
distance at most%rch(M ) from y. We prove that z 2 B(q;"). We consider
now the plane H °through y; z and g and write nJ for the line H\ Ny, and
hs for the line orthogonal to H °that passes throughy. Figure , drawn in
the plane H® shows the worst situation for the distanced(z;q). Denoting
now by g the angle\ (h9;yd) betweenh? and yq, we have

diz;9®  dy;q)®cos g+ (d(y;gsin ¢+ d(y;2))?
d(y; @) +2d(y; gd(y; 2)sin g+ d(y;2)*:
Sinced(y; Q) %rch(M Yand d(y;z) "?rch(M ) (Lemma ), we get
n2

d(z; 92 Zrch(M )2+ "3rch(M )?sin ¢+ "4rch(M )2

We have d(y;q) = 2rqsin q %rch(M ) where rq is the radius of the circle
tangent to M at y and going through g. Since point g lies outside the
two balls with radii rch( M ) that are tangent to Ty at y, rq is greater than
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rch(M ) and therefore sin 4 Z Thus,
n2 w4
d(z; 0)? S eh(M )% + S eh(M )2+ "4rch(M )?
1 5
n2 2 L+, 2u2 .
rch(M ) 4+ ] ;

. . " - 3
which is not greater than "?rch(M )2 if "2 3.

8.2 Tangential Delaunay complex

We introduce in this section a data structure, named the tangential Delaunay
complex. LetM be ak-submanifold of RY. The only knowledge we have on
M is a nite set of points P 2 M and the tangent spaces at each point oP.
The tangential Delaunay complex Deky (P) is a k-dimensional subcomplex
of the d-dimensional Delaunay complex DelP). An important property is
that Deltym (P) can be constructed without computing any data structure
of dimension higher than k, and in particular without computing the full
Delaunay complex. We will see in Sectiorj 813 that Dely (P) can be used
to reconstruct a triangulation of M .

8.2.1 De nition

Let P be a nite set of n >k +1 points on M . Let Del(P) be the Delaunay
complex of P, i.e. the collection of all the simplices with vertices in P

that admit an empty circumscribing d-dimensional ball. A ball of RY is
called empty if its interior contains no point of P. For p 2 P, we denote
by Dely(P) the Delaunay complex of P restricted to the tangent spaceTp,

i.e. the subcomplex of DelP) formed by all the simplices with vertices in P

that admit an empty circumscribing ball centered on T,. Equivalently, the

simplices of Dep(P) are the simplices of DelP) whose Voronoi dual face
intersect Tp.

In the rest of this chapter, we assume that the points of P are in general
position wrt spheres so that the Delaunay complex DelP) naturally embeds
in RY as a triangulation of P (see Sectior] 4]3). We will further assume that
P satis es the following transversality condition : T, contains no point that is
equidistant from more than k + 1 points of P. The transversality condition
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Figure 8.3: M is the curve in bold. The sampleP is the set of circles. The
line is the tangent spaceT,, at p. The gure shows the Voronoi diagram and
the Delaunay triangulation of P with, in bold, star( p).

implies that the restricted Delaunay complex Deh(P) is a subcomplex of
dimension at most k. Furthermore, if T, intersects a @ k)-face f of
Vor(P), the intersection consists of a single pointc. The unique point ¢
is the center of an empty ball circumscribing the k-simplex of Del(P) dual
to f. It is easy to see that applying an in nitesimal perturbation to P is
su cient to ensure the transversality condition.

We write star(p) for the closed star ofp in Delp(P), i.e. the subcomplex of
Dely(P) consisting of the simplices of Del(P) that are incident to p together
with their faces (see Figure[8.8). In the following, we will simply call star
a closed star. For ak-simplex in star(p), we write Bp( ) for the ball

centered onTp that circumscribes , ¢,( ) for its center and Rp( ) for its

radius. Observe thatRp( ) R( ), whereR( ) is the radius of the smallest
ball circumscribing

De nition 8.6 (Tangential Delaunay complex) We call tangential De-
launay complex, or tangential complex for short, the simplicial complex
Delym (P)=f; 2 star(p);p2 Pog.

Plainly, Delty (P) is a subcomplex of DelP) and is therefore a simplicial
complex embedded inRY if the points of P are in general position wrt
spheres (see Sectiof 4.3). The following lemma is crucial since it shows
that computing the tangential complex reduces to computing n weighted
Delaunay triangulations in the k-dimensional ats T, p2 P.
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We deneamap ,:P! Ty, R that associates to each pointp; 2 P a
weighted point in Tp. Specically, p(pi) = (p%p"Y 2 T, R, wherep?is
the orthogonal projection of p; onto T, and p®°= k pi  p%2. Observe that,
under the transversality assumption, is 1-1.

It is known that the d-dimensional Voronoi diagram Vor(P) intersects T,
along the weighted k-dimensional Voronoi diagram Vor( (P)) (see Exer-
cise). Accordingly De}(P), the restriction of the d-dimensional Delau-
nay complex Del(P) to Ty, is isomorphic to the weighted Delaunay complex
Del( ,(P)). Note that the transversality condition implies the fact that
the set ( p(P)) is in general position wrt to spheres inTy,. Therefore, the
simplicial complex Del( p(P)) is naturally embedded in T,. Moreover, the
simplices of Del( ,(P)) are obtained by projecting onto Ty, the simplices of
Del,(P). Conversely, the simplices of DgJ(P) can be deduced from the sim-
plices of Del( p(P)) by a piecewise linear map that we call thelifting map.
Speci cally, the lifting map lifts each weighted point ( p® p°y associated to a
vertex of Del( p(P)) to the unique point p 2 P such that (p%p% = p(p).
The lift of a simplex | of Del,(P) is then the geometric simplex whose
vertices are the lifts of the vertices of . Dely(P) is then the image of
Del( p(P)) by the lifting map. We summarize our discussion in the follow-
ing lemma :

Lemma 8.7 If the points of P are in general position and satisfy the transver-
sality condition, Dely(P) is the lift of Del( ,(P)), the k-dimensional weighted
Delaunay triangulation of ,(P) in Tp.

We deduce from the lemma an e cient algorithm to compute star(p) =
star(p; Del,(P)) : project P onto Ty, compute starr, (p) = star( p; Del( ,(P))),
the star of p in Del( p(P)), and then lift star r,(p) to star(p). Apart from
the projection of the points onto Tp, this algorithm involves only operations
in the k-dimensional at T,. If P is an (; )-net of M, we can even re-
strict our attention to the subset of P inside the ball of radius 2' centered
at p. The transversality condition with respect to the tangent plane T, is
therefore only required for points in that ball.

8.2.2 Inconsistent simplices

In general, the tangential complex isnot a combinatorial manifold (see Def-
inition 2.17). This is due to the presence of so-callednconsistent simplices
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De nition 8.8 (Inconsistent simplex) A simplex 2 Delry (P) is cal-
led inconsistent if does not belong to the stars o#ll its vertices. Let
be an inconsistent simplex and lefp; and p; be two vertices of so that
is in star(p;j) but not in star(p;), We say that the pair of vertices(p;; pj)
withesses the inconsistent simplex .

Refer to Figure[8.4. Let be an inconsistentk-simplex witnessed by the pair
of vertices (pi;pj). The simplex belongs to the star ofp; but not to the
star of p;. Equivalently, the Voronoi (d k)-dimensional face Vor( ) dual to
intersects Ty, (at a point ¢y, () but does not intersect Ty, . Observe that
Cp () is the center of an empty d-dimensional ball B, ( ) circumscribing
Let ¢, () denote the intersection of a (Vor( )) with Ty, . Dierently from
Bp (), the d-dimensional ball By, ( ) centered atcy, () that circumscribes
contains a subsetP; ( ) of points of P in its interior. Therefore, the line
segment £, ( ) ¢y, ()] intersects the interior of some Voronoi cells (among
which are the cells of the points of P;( )). Let p be the point of P n
whose Voronoi cell is hit rst by the segment [c, ( ) ¢y ()], when oriented
from ¢y () to ¢y (). We write ' for the (k + 1)-simplex conv( ;p,) and
i( ') for the rst point of the oriented segment [ () cp ()] that belongs
to Vor(p). Observe that since the pointi( ') belongs Vor( )\ Vor(p), 'is
a (k +1)-simplex of Del(P). We say that the simplex ' is aninconsistency
trigger of . Note that an inconsistent simplex may have several pairs of
withesses and several inconsistency triggers, but at most one inconsistency
trigger for each pair of withesses. Considering all pairs of withesses of an
inconsistent simplex , we obtain the set of inconsistency triggers of .

De nition 8.9 (Inconsistency trigger) An inconsistency trigger of ak-
simplex of Delry (P) is a (k + 1) -simplex of Del(P) that is the inconsis-
tency trigger of for some ordered pair of vertices of that witnesses the
inconsistency.

Since we assumed that the points satisfy the transversality condition, the
tangential complex does not contain faces of dimension greater thak. It
follows that no inconsistency trigger can belong to the tangential complex.
Observe also that some of the subfaces of a inconsistency trigger may not
belong to the tangential complex.

Since an inconsistency trigger ! is a (k + 1)-simplex of Del(P), we will use
the same notations for ' as for any other simplex, e.g.R( ') for the radius
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Figure 8.4: The gure shows an example of an inconsistent simplex =
[pi; pj] that belongs to star(p;) and does not belong to star@;). The bisector
of is subdivided in two line segments: the solid black line segment belongs
to Vor( ) and the dashed black line segment belongs to a (Vor()) but not

to Vor( ).

of the smallest circumscribing ball or (') for its thickness. We write Inc(p)
for the set of inconsistency triggers incident top and Inc(P) = [ p2p Inc(p).
We also de ne the completed tangential comple>DeI$,'\,| (P)=Deltmw (P) [

Inc(P). See Figure[8.5.

Calculating DeI?,'\,I (P) is easy once we know DeR). Indeed, it su ces to
detect the inconsistentk-simplices that do not appear in the stars of all their
vertices. Let be an inconsistent simplex witnessed by the pair;; ;). To
compute the associated inconsistency trigger, we need to identify the point
pi. This can be done by computing the restriction of Vor(P) to the line
Lij =(cp( );cp (). This in turn can be done by projecting the points of
P onto Lj and computing a 1-dimensional weighted Voronoi diagram (see

Exercise[4.11).

8.2.3 Geometric properties of inconsistency triggers

We give some simple geometric lemmas that, in particular, bound the thick-
ness of the inconsistency triggers. We will use angles between a ne spaces
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Figure 8.5: Figure (@) shows M , the sample P, the tangent lines at the
sample points, the Voronoi diagram of P and Deky (P). The dashed lines
indicate the inconsistent edges. In Figure £), the line segments denote
Delrv (P) and the grey triangles denote the inconsistency triggers.

as de ned in Section[5.2.2.

Lemma 8.18 Let P be an"-dense sampld of a submanifoldM . Let =
%(1 +2" 1 12'+4"2) " and assume that g < 1=4. Then

1. Vor(p)\ Ty B(p; orch(M)).

2. for any k-simplex 2 star(p), R( ) Rp( ) orch(M) (recall that
and Rp( ) is the radius of the circumscribing ball of centered onTp.)

3. forany 2 Delrm (P), () 2 orch(M).

Proof We prove (i). The other statements easily follow. Letx 2 Vor(p)\ T,
and write kp  xk = rch(M ). Let x°be the point of M closest tox and let
x%0=" (x9. We havekx x% k x pkand by the triangular inequality,
kp x% 2kx pk=2 rch(M). Itthen follows from Lemma that

kp x%?2

0 0
o? %k 2rch(M)

2 2rch(M ):

1See De nition
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Now observe thatkx® x% = kx x% cos , where =\ (Txo;Tp). As-
suming %, we have, by Lemma[7.1p, cos 1 8 2. We conclude

that 5 2 h(M )
rc
k ® = =27
X X 1 g2

SinceP is "-dense inM , there exists a pointq 2 P, such that kx® gk
"rch(M ). Together with x 2 Vor(p), this implies

2
kx pk kx ok kx x%+kx® ok 128 5+ " rch(M) (8.3)
We thus have
22 . 22
1827 1 2 77 (8.4)

where the last inequality is obtained by taking 1=4.

Let o= F(1+2" IO1 12" +4"2)and 1= %(1+2"+p1 12" +4"2)
and note that g “and " o < %1 1. The inequality above is
satis ed either when o or when 1. Hence Vor(p) is contained in

the union of B(p; o) and RYnB(p; 1). However, since Vor) is connected
and contains p, Vor(p) must be entirely contained in B (p; orch(M )).

The following lemmas bound the size and shape of inconsistency triggers.

In particular the lemmas state that if an inconsistent simplex is small, thick
and has a small circumradius, its inconsistency triggers have small circum-

radii (Lemma [8.11)) and cannot be thick (Lemma[8.12).

Lemma 8.11 Let be an inconsistentk-simplex and let ' be a(k +1)-

simplex that triggers the inconsistency of . Writing =maxp2 (\ (@ ( );Tp)),
we have () R()

; | .

sin ( yreh(M) and R( ') cos -

Proof We assume that the vertex pair (pi; p;) is the witness pair of as-
sociated to the trigger ' and use the same notations as in Subsectidn 8.2.2.
Therefore  belongs to De}, (P) but not to Del , (P), and the vertices of '
lie in the closure of Bj = Bp () nBp (). Observe also thatcy ;¢ and
i( ') lieinthe (d k)-atthat contains ¢( ) and is perpendicularto a ( ).
Hence the orthogonal projection of these four points onto a ( ) is c¢( ).
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We now bound =\ (a( );Tp)forany p2 . By Lemma[7.§ (2), we have
for any p;q2 , d(q; Tp) %&Vﬁ) and by Lemma|5.14

o 2()
sin 2ch(M)  _ () .
( )C ) ( )rch(M)
Since the orthogonal projection ofc, ontoa ( )isc( ), ! =\ (pi  Cp ;P
c( ))=min g2 y\ (P Cpiu) . We thus have
- o _R() RQO).
Ro( )= kpi Gpk= cos!  cos

and we get the same bound ifp; is replaced byp; or by any other vertex
p in the above inequality. Sincei( ') 2 [cycy ], we also haveR( ')
kilt') pik R( )=cos:

We deduce from the lemma a bound on the thickness of inconsistency trig-
gers. This is a crucial property to be used later to remove inconsistencies.

Lemma 8.12 The thickness of the(k + 1) -simplex ' that triggers the in-
consistency of ak-simplex satis es :

[
¢ ) 1+ 2
2(k + D)rch( M) ()

("

Proof Let p be the vertex of ' that is not a vertex of . We bound the
altitude D(p;; ')of '. Let g2 . We deduce

D(p; ') = kp oksin\ (o ga( )
( Hsin\ (@ oT)+sin\ (Tga( )
I ) () o B
CD) syt (yrenmy  (Lemmas([78& )

(o, 2

2rch(M ) ! ()

The bound on the thickness then follows from the de nition of thickness

(see Sectior] 52).
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Corollary 8.13 Let P be an"-dense sample oM and let ' be a(k +1)-
simplex that triggers the inconsistency of ak-simplex . Assume that is
o-thick and that ¢ satis es

.2
k> % cosarcsin™ 1+
k+1 § 5

where ¢ is de ned in Lemma[8.10. Then ' is not o-thick.

(8.5)

Proof We need to prove that (') < §". From Lemma|8.12 we have

| (" 2 (" 2
O Swenenmy T T) zkenonmy Tt K

We now bound ( '):

(" 2R( ")
2R( ) cosarcsin# ' (Lemma|8:11)
( )rch(M)
2 !
2 orch(M) cosarcsw% (Lemma[8:10)
0
Hence
2 ! 2
[ inc 0 el
(") ] cosarcsz 1+ 5

It follows that if Equation olds, ( "< §™, which means that ' is
not o-thick.

Note that the condition in the corollary is satis ed when the thickness of
the inconsistent simplexes satisfy ( ) > §= ( "¥k),

8.3 Submanifold reconstruction

Let M denote a submanifold ofRY that is compact, closed, di erentiable,
and whose reach is positive. The only knowledge we have abolM is its
dimension k together with a nite point sample P M and the tangent
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spaces at those points. From that knowledge, we want to construct a trian-
gulation of M . We assume thatP is an ("; )-netof M (See De nition [7.7).
The parameters” and need not to be known but must satisfy some con-
ditions to be made explicit in the analysis of the algorithm. In particular,
we need" to be su ciently small.

The main idea of the proposed reconstruction algorithm is to rely on the
tangential complex Deky (P). However, we know from the previous section
that Del 1y (P) may not be a combinatorial manifold, and our rst goal is to
obtain a complex that is a k-combinatorial manifold. This will be achieved
by assigning weights to the points ofP and resorting to the weighted tangen-
tial complex Delyym (Iﬁ\) which is the natural counterpart of the tangential
complex when the point setP is replaced by a setP of weighted points.
Properties of tangential complexes extend to weighted tangential complexes
and, in particular, we will show that the occurrence of inconsistencies in
Delry (P) is triggered by the existence of non-thick simplices of dimension
at most k + 1 in Del( Iﬁ\). Then, since it is possible to assign weights to the
points of P to get a thick weighted Delaunay complex (Section 5.B), it is
a fortiori possible to get a weighted tangential complex Det (|5\) with no
inconsistency. Finally, an algorithm is derived from Moser Tardos algorithm
(Section ). The algorithm uses data structures of dimension at mosk.
Its output is a k-dimensional combinatorial manifold that we will show to
be homeomorphic toM and close toM .

8.3.1 Weight assignment

We recall the de nition of a weighting schemeintroduced in Section [5.3.
Given a point set P = fpy;:::;png RY, a weighting scheme onP is a

We recall the de nition of the relative amplitude of w asw-= maxp>p W(p).

L2(p)
whereL (p) = min gpnipgliP dj. Notethat2"rch(M) L(p) " rch(M)

sinceP is an ("; )-net.

From this point onwards, we assume that all weights are non negative and
that w  wy, for some constantwy < 1=4. Hence, for any pointp 2 P,
w(p) 2 [O;woL%(p)]  [0; 4w "2rch?(M)].

The condition on w implies in particular that the weighted points in P
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have pairwise positive weighted distances which ensures that any point in
P appears as a vertex of the weighted Delaunay complex Def) (see Sec-

tion f.4.3).

We can extend the de nition of the tangential complex to the case of a
set P of weighted points. We simply need to replace in De nition the
Delaunay complex Delf) by the weighted Delaunay complex Del®). The
role played above by Delaunay balls will be played by Delaunay weighted
points, i.e. weighted points orthogonal to weighted Delaunay simplices and
free of weighted points in P. Lemma remains valid provided that the
mapping p is extended to weighted points as follows. Ifp/*= (pi;w;i) 2
RY R is a weighted point, we dene p(B) = (pi;wi k pi  p%k?), where
p¥ is the orthogonal projection of p; on the tangent spaceTy.

We now extend to the weighted case the properties of the inconsistency
triggers shown in Section[8.P.

Let P be an"-dense sample of a submanifol and assume that the weight-
ing scheme onP has a relative amplitude w  wg < 1=4. We denote by
Delp(lﬁ) the weighted Delaunay complex restricted to T, and by star(p)
the star of p in Delp(lﬁ). We further write Vor("p) for the cell of p in the
weighted Voronoi diagram Vor(P). For any k-simplex in Delp(lﬁ), we de-
note respectively by R( ) and R(”) the circumradius and weighted radius
of , by Rp( ) the radius of the ball centered onT, that circumscribes

and by Rp(*) the radius of the ball centered onT, that is orthogonal to *.

Lemma 8.14 Let

p
"= "(A+2 wy);

P p—
%(1+2" 1 12n+472)  "(1+2  wy);

o
1

A= NgH2" wo "(1"'4pr0)
and assume”o 1. Then we have:
(i) Vor(p)\ Tp B(p;"orch(M)),
(i) for any k-simplex 2 star(p), R(") Rp(*) "orch(M).

(i) forany 2 Delrm (B), () 271irch(M).
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Proof The proof of (i) is an easy adaptation of the proof of Lemmg 8.1].
We de ne x, x%and x%and  as in the proof of Lemma[8.1p and still get

& 2 2rch(M ):

kx 1 82

SinceP is "-dense inM , there exists a pointq 2 P, such that kx® gk
"rch(M ). Sincex is in Vor(p), this implies that

kx  pk?+ w(p) k x ok?+ w(q)
kx pk? (kx  x%+ kx® 0k)?+ w(q);

which yields

Hence,

22 p—
" :
71 2+ 1+2 Wo

which is just Equation where" has been replaced by’ so that we can
end the proof as in Lemmg 8.1ID.

<Letcy(”) be the point of T, that is orthogonal to ~. Property (ii) follows
easily sincec,(*) belongs to Vor(p) \ T and d(cp(*); p)2 = Rp(*)2+ w(p) .
HenceRp(") d(cy(™);p)  "orch(M).

To prove Property (iii), we bound the Euclidean distance d(cy("); q) between
Cp(™) and a vertex g of  as follows:

d(co(™);)* = Rp()?+ w(q)
AZrch(M )2 + 4wp"?rch(M )2:

Hence,
P —
d(co(™); ) No+2" Wwo rch(M)="1rch(M)

Since this bound holds for any vertexq of , the bound given in (iii) for the
diameter () follows.
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Lemma 8.15 Let be an inconsistentk-simplex of Delty (|5\) and let !
be a(k + 1) -simplex that triggers the inconsistency of . If is de ned by
=maxp (\ (@ ( );Tp), we have
() R(")

; Al A
sin T )reh(M) and R("') o5

Proof The proof is the same as the proof of Lemma 8.11

Lemma[8.12 applies verbatim to the weighted case and nally an easy adap-
tation of the proof of Corollary yields the following weighted version.

Corollary 8.16 Let P be an"-dense sample oM and letw be a weighting
scheme onP with a relative amplitudew wy < 1=4. Let be an inconsis-
tent k-simplex and let ' be a(k + 1) -simplex that triggers the inconsistency
of . Assume that is o-thick and that ¢ satises

27y 1
cos arcsin—k

0

N
k+1> 1
0

k+1

2
1+ — (8.6)
0

where ~g and ~; are de ned in Lemma|8.14. Then ' is not -thick.

Proof We need to prove that (') < &*1. From Lemma|8.12 we have

(H .2

(" e
2(k + L)rch(M) ()

(8.7)

We now bound ( '). Let ¢(*') be the weighted center of ! and let q be
any vertex of '. We have

dc(™");a* = R(*")*+ w(q)
ROV 4 4w "2rch(M )2
cos 2 0

A2 4 Awa"2 A2

0 0 2 1 2
——— rch(M ——=—rch(M

S 2 (M) o8 2 (M)

where is given by Lemma[8.1% and 4 is de ned in Lemma[8.14. Since this

is true for any vertex gof ', (') can be bound by 2.2-rch(M ). Plugging

this bound in Equation yields that ( ') < '(‘)‘“1 if is o-thick and
o satis es Equation [8.6.

1
Note that Equation in Corollary is satised if o= ( "k&D),
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8.3.2 Reconstruction algorithm

We conclude from the previous section that ifP is an ("; )-net of M, the
occurrence of inconsistencies in the tangential complex Dely (P) is due to
the occurrence of non-thick simplices of dimension up t&+1 in the Delaunay
complex Del(P). This property still holds in the weighted case provided
that the weighting scheme has a small relative amplitude. We can thus
proceed in a way similar to what has been done in Sectign 5.3 to remove non-
thick simplices from Delaunay complexes using a variant of Moser-Tardos
algorithm. Here we want to nd a weighting scheme on P such that the
simplices of the tangential complex as well as the inconsistency triggers (all
are simplices of Delé\)) are thick. As a consequence, the tangential complex
Delrm (Iﬁ\) won't contain any inconsistency.

The algorithm depends on two parametersmvyand . Here as in Sectionn 5.8,
we call resampling the operation which consists in reassigning the weights of
the vertices of a simplex. The weights are taken independently. The weight
of a vertex p is taken uniformly at random in [0; woL2(p)]. The algorithm
maintains the weighted tangential complex Delry (I5\) and resamplesthe

o- akes that may appear in Delty (I5\) or in the (k + 1) simplices that
trigger an inconsistency. Note that the algorithm does not compute the full
weighted Delaunay complex DeIES\) but only a subcomplex of dimension
k+1.

Algorithm 8  Tangential complex with no inconsistency
Input: P,fTp,p2 Pg, Wo, o
Initialize all weights to 0 and compute Delyy (Iﬁ\)
while there are - akes or inconsistencies in Dety (|5\) do
while thereisa g¢-ake in Delrym (Iﬁ\) do
resample
update Deky (I—J’\)
if there is an inconsistent simplex in Delyy (Iﬁ\) then
compute a trigger simplex ' associated to
resample the ake !
update Delry (Iﬁ\)
Output: A weighting scheme onP and the corresponding weighted tan-
gential Delaunay complex Deky (If\) which is granted to be -thick and
to have no inconsistency.
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Theorem 8.17 Let M be a submanifold of positive reach and leP be an
("; )-net of M for a su ciently small ". Let in addition wp < 1=4 and o
be two constants satisfying Equatior 8J6 and the following Equation

6+a W) ‘32 o2 Wy’ w)? 1
e

cos wo 3 cos

(8.8)

where p__
. 2™ C2'(A+4 wy)
=arcsin —~  arcsin——————:
0 0
Then Algorithm BJterminates and outputs a weight assignment on the points
of P such that the weighted tangential complePelry (P) is free of incon-

sistencies. The expected time complexity of the algorithm i©(jPj).

Proof First note that the algorithm removed inconsistencies only when
there are no ¢- akes in Delty (I—J’\). Then Equation ensures that the
trigger of an inconsistency is not g-thick (Lemma and therefore in-
cludes a (- ake that can be resampled.

The resampled simplices are - akes of DeI(Iﬁ\) that either belong to Delty (Iﬁ\)
or are included in an inconsistency trigger. Let be any resampled ake.
From Lemmas[8.14 and 8.1p, the weighted radiuR (") is at most

VAN
0

h(M);
Src( );

R(")

and, from Lemma[8.14 and the proof of Corollary[8.1p, its diameter is
bounded by

N

27 )
() cos rch(M ):

Therefore Algorithm Blis a variant of Moser-Tardos algorithm similar to the
algorithm of Section that removes from DelP) all  o- akes with small
weighted radii. Then, arguing as in Sectior{ 5.3.p, we show that Algorithn{ 8
terminates provided that the condition expressed in Equation[8.8 (similar
to Equation 5.13) is satis ed. See Exercisg 8]3 for details. The expected
number of resampled simplices iSO(jPj). Since each resampling can be
performed in constant time, the expected complexity of Algorithm|[§ is also
O(jPj).

Assume that and wp < % are xed. Then Equation is satised if ¢
is su ciently large with respect to " and Algorithm 8]terminates provided
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that ¢ is su ciently small with respectto  and wygp and is su ciently large
with respect to ". Those conditions can be satis ed if the sampling radius
" is su ciently small.

8.3.3 Guarantees on the reconstruction

The simplicial complex M = Del 1y (P) output by the algorithm is free of
inconsistencies. In addition, it is a good approximation ofM as stated in
the following theorem.

Theorem 8.18 (Guarantees)  Under the same hypotheses as in Theorem 8/17,
the Delaunay tangential complexM = Delty (P) output by the algorithm
satis es the following properties:

1. All the simplices in M are  (-thick.

2. M is a piecewise lineark-submanifold without boundary;

3. M' is homeomorphic toM ;

4. The Hausdor distance betweenM and M is at most 4"2rch(M );

5. If is ak-simplex of M and p is a vertex of , we have

sin\ (@ ( );Tp) 2"

Proof The rst statement directly follows from the algorithm. Proving
the second statement reduces to proving that the link of any vertex of\M
is a topological (k  1)-sphere. We rst observe that, sinceM contains no
inconsistencies, the star of any vertexp in M' is identical to star(p), the star
of pin Delp(lﬁ). Hence, to prove the second statement, it is enough to prove
that the link of pin Delp(lﬁ) is a topological (k 1)-sphere, which is done
in the next lemma.

Lemma 8.19 M is a simplicial combinatorial manifold.

Proof It is su cient to prove that, for any p2 P, the link of pin M is a
topological (k  1)-sphere. By Lemmg 8.7, starf) is isomorphic to stary(p),
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the star of p in Del( p(If})). Since stary(p) is a k-dimensional triangulated
topological ball under the general position and transversality assumptions,
the same is true for star@. To prove the lemma, it is then su cient to
show that p cannot belong to the boundary of stag(p). Consider the dual
cell V of p= p(p) in the weighted Voronoi diagram Vor( p(If})). V is
the intersection of the Voronoi cell of p with Tp, i.e. V = Vor(p)\ T,.
By Lemma [8.10Q, V is bounded, which implies that p cannot belong to the
boundary of starp(p). It follows that p cannot belong to the boundary of

star(p).

Statements 3 5 in Theorem[8.18 then follow from Theoren{7.16. We need
to check that the ve hypotheses of Theorem[7.16 are satis ed.

Hypotheses @) (c¢) of the theorem are satis ed provided that " is small
enough (see Exercisefs §.2 and 8.3). Hypothesisl)(is satis ed thanks to
Lemma[8.7. We now prove that Hypothesis €) holds also.

Lemma 8.20 Hypothesis(e) of Theorem|[7.1§ is satis ed.

Proof Let qbe a vertex of M’ that q belongs to Up = B(p;r)\M where
r="rch(M)(1+2"). We write ¢°= p(0) for the projection of gonto T, and
star{p) = p(star(p)) for the projection of star(p) onto Tp. To prove that
Hypothesis (e) is satis ed, it is su cient to prove that °is a vertex of the k-
dimensional weighted Delaunay triangulation Del( p(P)) (see Lemm),
which is equivalent to proving the following claim.

Claim The Voronoi cell of g intersects Tp.

Proof of the claim. To prove the claim, we will make use of Lemmd 76
that states that V(q) has a large extent inNg and therefore intersectsT,.
Denote by g°the (unique) intersection point of Ngq and Tp, and by o the
projection of g onto Tp. Sinceq 2 Uy, we havekp gk <" (1+2")rch(M )=

"Orch(M ), and it follows from Lemma that kg gk < M Write
now =\ (Tp;Tg) and recall that < 2'(Lemma[7.1Q). It follows that

k %
kg ok< ?:osq

< rch(M)

by our assumption on". It then follows from Lemma@that q°%2 Vv (qg)\ Tp,
which proves the claim.
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The claim implies that o has a non empty cell in the weighted Voronoi
diagram Vor( p(P)) embedded in T, (see Sectiof 8]7). Equivalently,q is
a vertex of Del,(P) and o® is a vertex of Del( p(P)). Since Del( ,(P))
is a triangulation embedded in T, (under the transversality condition of
Section([8.2.1),q° cannot belong to sta{p) without being a vertex of star{p)
and, accordingly, g must be a vertex of star(P). Therefore, Hypothesis 4
holds and the lemma is proved.

This ends the proof of Lemma[8.2D. All hypotheses of Theorerh 7.16 are
satis ed. This ends the proof of Theorem[8.18.

8.4 Exercises

Exercise 8.1 Given is an (*; )-net P of a dierentiable (unknown) sub-
manifold M 2 RY. Propose a method to approximate the tangent spacdlp
of M atp2 P.

Exercise 8.2 (Distance between components) Let P be an"-dense sam-
ple of a submanifoldM of positive reach rch(M ). Prove that each connected
component of M contains at least one point of P and therefore at least one
vertex of Delry (P). (Hint : show that the distance between any two con-
nected components oM s at least 2rch(M )).

Exercise 8.3 Show that Algorithm §Jterminates if the condition expressed
as Equation[8.8 is satis ed. Observe that, for given values of and wy,
the condition is satis ed if ¢ is su ciently small and " is su ciently small

compared to  §.

Sketch of the proof. Equation is the same as Equatiorn 5.12 of The-
orem applied to the case of Algorithm[B. We use the notations of
Section[8.3.2.

Using the bounds on the weighted radius and the diameter of a resampled
ake (Lemma[8.14), we rst bound, as in Section[5.8, the measure of the
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weight range |l (; p ) of a vertex p of

G 8 ol YRy
’ L0)
VN
5o (M )?
32 o(1+2P oy + 4" o),

2.
o rch(M )<:

Then, the probability $ that such a ake occurs is at most\jv'o(l_%?p;jz (Lemmal5.23),

where L (p) is the length of the shortest edge incident top in Del(P). Thus

32 o(1+2" Wo)1+4" Wo)?.

$ wo 3 cos

We then bound + 1 where is the number of events overlapping a given
ake . Overlapping events are akes that share at least one vertex. Because
resampled akes have their diameter bounded by , = %M akes
overlapping a given ake have their vertices within the ball B (c( );% m)
wherec( ) is the circumcenter of . Using then the fact that two vertiuces
are at least " rch(M ) apart, we bound the number of vertices in this ball

and then + 1 using a by now standard volume argument:
|

3 " k(k+2)
+1 127"‘
5 " rch(M )
6r,  Kk+d) 6(1+4p Wwo) k(k+2)
Cos COos

The condition for the termination of Algorithm g |s then obtained by plug-
ging the bounds on$ and + 1 into Equation 512 pf Theorem $.21]

8.5 Bibliographical notes

Alpha-shapes and weighted alpha-shapes are among the rst tools intro-
duced in the area of shape reconstruction where one seeks to construct an
approximation of the shape of a three-dimensional object from a set of points
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measured on the boundary of the object. References are provided in the bib-
liographical notes of Chapter[§. Theoren] 8.L that states that an -complex
of a nite sample of a manifold has the same homotopy type as the manifold
is due to Niyogi, Smale and Weinberger[[112].

The tangential complex has been independently de ned by Freedman[82]
and by Boissonnat and Flottoto [I7]. Boissonnat and Ghosh later showed
how to remove inconsistencies in the tangential complex by star stitching [18]
and proved Theoremd 8.1 anl 7.16. The tangential complex can be seen as
a light variant of the cocone introduced by Cheng, Dey and Ramos[|56].

The approach followed in this chapter that de nes local triangulations and
remove inconsistencies among the local triangulations has been pioneered by
Shewchuk to maintain triangulations of moving points [122] and by Boisson-
nat, Wormser and Yvinec to generate anisotropic meshes [24]. The central
guestion behind this approach is the stability of Delaunay triangulations
and the existence and construction of Delaunay triangulations on mani-
folds [14,[13,27].

In this chapter, we have assumed that the dimension of the submanifold

is known and that the tangent space can be computed at any data point.

Giesen and Wagner have shown how to estimate the dimension [90]. Esti-
mating the tangent space can be done using principal component analysis
(PCA) [98].

An implementation of the tangential complex can be found in the Gudhi
library [L26]. Fig. B.6 shows a projection inR® of the reconstruction of a
Riemann surface embedded irR8.
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Figure 8.6: A Riemann surface embedded irR® reconstructed using the
tangential Delaunay complex. For visualization purposes, the surface has
been projected inR3.
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9.1 Distance function and Hausdor distance

Given a compact subsetK RY, the distance function dx to K is the
non-negative function de ned by

dk (X) = i/ng d(x;y) forall x2 RY

whered(x;y) = kx ykis the euclidean distance betweex andy in RY. The
distance function to K is continuous and indeed 1-Lipschitz: for allx; x%2
RY, jdk (x) dk (x9] k x x%. Moreover, K is completely characterized
by dx sinceK = d,*(0).

For any non-negative real numberr, the r-oset K" of K is the r-sublevel
set of dx de ned by

K'=d(0;r)= fx2RY:d (x) rg

Recall from Section[1.2.2 that ifK and K °are two compact subsets oR¢,
then the Hausdor distance dy (K;K 9 is the in mum of the sets of non
negative numbersr 0 such that K® K" and K K7, Indeed, the
Hausdor distance can be expressed in various equivalent ways in terms of
distance functions:

Proposition 9.1 Let K;K © RY be two compact sets. The Hausdor dis-
tance dy (K; K 9 betweenK and K %is de ned by any of the following equiv-
alent assertions:

dy (K;K 9 is the smallest numberr such thatKk K% andK® K.
dr (K; K 9 = max (sup ok di o(X); SUPok 0 dk (X))
du (K;K 9= kdk  dy ok := supyopa jdk (X)  di o(X)j.

9.2 Critical points of distance functions

Given a compact setk R, the distance function dx is usually not dif-
ferentiable. For example, if K is the union of the four sides of a square in
the plane, dgx is not di erentiable along the diagonals of K. Nevertheless,
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Figure 9.1: Various o sets of a point cloud data set sampled around a torus
in RS,

it is possible to de ne a generalized gradient vector eldr x : R4 ! RY
for d¢ that coincides with the classical gradient at the points wheredk is
di erentiable.

For any point x 2 RY we denote by k (x) the set of points in K closest to
X:
k(X)= fy2 K :d(x;y) = dc (x)g RY:

This is a non empty compact subset ofK .

Let Bk (x) be the smallest closed ball enclosing g (x) and let ¢k (x) be its
center and Fy (x) its radius (see gure[9.d). For x 2 RYnK, the generalized
gradient r dg (x) is de ned by

X ok (X
1!
and for x 2 K, r dg (x) =0.
The norm of the gradient is given by
Fg (x).

kr dx (X)k? =1 (9.1)

dg (x)°
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Figure 9.2: The gradient of the distance function.

Equivalently, the norm of r dk (x) is the cosine of the half angle of the
smallest circular cone with apexx that contains g (x). Intuitively, the
direction of r dx (x) is the one along which the directional derivative of dg
is the largest or, in other words, the one in which the slope of the graph
f(y;dk (y)) : y 2 Rig  RY1 s the largest at the point (x;dk (x)) (see

Figure [9.3).

The map x 2 R4 ! r dg(x) 2 RYis in general not continuous. In other
words, r dx is a discontinuous vector eld. Nevertheless it is possible to
show [101[117] thatx ! kr  dk (X)k is a lower semi-continuous function, i.e.
forany a2 R, kr dxk 1((1 ;a])is a closed subset oRY. Moreover, r dg
is integrable in the following sense.

Proposition 9.2  There exists a continuous mapC: R. RY! RY such
that for any x 2 RY, the mapt ! C(t;x), called a trajectory of r dg is a
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Figure 9.3: The graph of the distance to a square in the plane. Along the
diagonal of the square, the direction of the gradient is given by the diagonals
and its norm is the slope of the edges of the graph above the diagonals.

solution of the di erential equation

X dex ()

dt
satisfying X (0) = x. Moreover this continuous trajectory can be parametrized
by arc lengths! C(t(s);x) and one has

VA |
de (C(t(1);x)) = dk (x) + . kr dk (C(t(s); x)) kds: (9.2)

The above equation implies thatdk is non decreasing along the trajectories
of r dg . It can also be shown|[[101] thatFk is also non decreasing along the
trajectories of r di .

The gradient r dx allows to de ne the notion of critical point for dgx in the
same way as for di erentiable functions.

De nition 9.3 (Critical point) A point x is a critical point of dyx if
rdq<(x)=0. Areal c O0is a critical value of d¢ if there exists a critical
point x 2 RY such thatdk (x) = c. A regular value of dx is a value which is
not critical.
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When there is no risk of confusion, we make the small abuse of language
consisting in calling a critical (resp. regular) point of dx a critical (resp.
regular) point of K.

9.3 Topology of the o sets

Using the notion of critical point de ned in the previous section, it appears
that some properties of distance functions are similar to the ones of dif-
ferentiable functions. In particular, the sublevel sets ofdk are topological
submanifolds of RY and their topology can change only at critical points.
These properties are formalized in the following two theorems.

Theorem 9.4 Let K RY be a compact set and let be a regular value of
dk . The level setdKl(r) isa(d 1)-dimensional topological submanifold of
RY.

Theorem 9.5 (Isotopy Lemma) Let K RY be a compact set and let
ri <ro be two real numbers such thafr;r,] does not contain any critical

value of dx . Then all the level setdel(r);r 2 [r1;r2] are homeomorphic
(and even isotopic) and the setA(ry;rz) = fx 2 R4 :ry  dk(x) rogis

homeomorphic todKl(rl) [r1;r2].

An immediate consequence of these two results is that the topology of the
o sets of K can only change at critical values and for any regular valug of
dk , the o set K" is ad-dimensional topological manifold with boundary. In
particular, the topology of the small o sets K", r > 0, cannot change while
r is smaller than the smallest positive critical value ofdk (if it exists). This
leads to the notion of weak feature size

De nition 9.6 (Weak feature size) Let K RY be a compact set. The
weak feature sizewfs(K) of K is the in mum of the positive critical values
of dx . If dk does not have critical valueswfs(K) =+ 1 .

It follows from the Isotopy Lemma [9.5 that if 0 < < wfs(K), then
K and K are isotopic. In a more intuitive way, the knowledge ofK at
precision, or scale, gives the same information for any choice of & <
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wfs(K). Moreover, the following result allows to compare the topology of
the o sets of two close compact sets with positive weak feature sizes.

Theorem 9.7 Let K;K 9 RY and " > 0 be such thatdy (K;K 9§ < ",
wfs(K) > 2" and wis(K 9 > 2". Then for any 0 < 2", K andK? are
homotopy equivalent.

Proof Let > 0 be such that wisK) > 2"+ and wis(K9 > 2"+ . It
is enough to prove thatK *2" and K%*" are homotopy equivalent. Since
du (K;K 9 <, the following diagram, where each map is an inclusion, is
commutative.

K ap (K +" al 'Ié 42
do dl

U
KO bo K0+" by K0+2"

The Isotopy Lemma [9.3 implies that the inclusions ap;a;; by and by are
homotopy equivalences. Letsp;s1;ro and ry be the homotopic inverses of
aog; a1; by and by respectively.

The following computation, where = denotes the homotopy equivalence re-
lation, shows that c¢; is an homotopy equivalence betweek °*" and K *2°
with homotopic inversery di ss:

¢ rp di s ct (r1 k) do so s1

= (g do) so s1
= a a Sp S1=Iidg «2-

Similarly, we getry; di s3 €1 = idgo+-

The previous theorem shows that the compact sets with positive weak fea-
ture size provide a class of compact sets with interesting topological stability
properties. Moreover, it is possible to show that this class is large enough to
include most of the shapes encountered in practical applications. In particu-
lar, smooth manifolds, polyhedra, polyhyedral sets, semi-algebraic sets and
more generally the so-called subanalytic compact sets (i.e. obtained from
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analytic equations and inequalities) all have positive weak feature size.
Nevertheless, the previous theorem su ers from a weakness that prevents
it to be really useful in practice. Indeed, the assumption involving both
wfs(K ) and wfs(K 9 is hardly satis ed in practical situations. For example
if K is a continuous shape approximated by a nite point cloud K ©, wfs(K 9
is equal to half of the distance between the two closest points oK © which
is usually smaller than 2dy (K; K 9 as illustrated on gure As a conse-
quence, even if the weak feature size i is large, whatever the quality of
the approximation of K by K %the assumptions of the theoren{ 9.7 may not
be satis ed. This phenomenon can also be interpreted as a lack of continuity
of the map K ! wfs(K) or as an instability property of the critical points
of distance functions.

Figure 9.4: A segmentK approximated by a point cloud K% The weak
feature size ofk %is obviously smaller than two times the Hausdor distance
betweenK and K ©

9.4 Stability of critical points

Since the topology of the o sets of a compact set can only change for critical
values ofd , it is natural to study the stability of these critical points when

K is replaced by a close compact set °. Unfortunately, it appears that the
critical points are unstable, as illustrated on gure

To overcome this stability problem we introduce a parametrized notion of
critical point.

De nition 9.8 ( -critical points) Let K RY be a compact set and let
0 1. A point x 2 RYis -critical for dx if kr dy (X)k

Note that the notion of O-critical point coincides with the notion of critical
point of De nition 4.37] The family of  -critical points satis es the following
fundamental stability property.
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Figure 9.5: When K is a rectangle, the set of critical points ofdk is the
whole segment AB ]. This segment collapses to a single critical pointA® as
one stretches the bottom side ofK to obtain K% Nevertheless, along the
previously critical segment, the norm of the gradient of dk o remains small.

Theorem 9.9 (Critical point stability theorem) Let K and K °be two
compact suBsets oRY and dy (K;K 9 ". For any -critical point, x of K,
thereisa(2 "=dk (x)+ )-critical point of K Cat distance at most2 "dg (x)
from x.

The proof of this theorem follows from two technical lemmas. The rst one
shows that the function dgx cannot grow too fast in a neighborhood of a
-critical point.

Lemma 9.10 Let K RY be a compact set andx one of its -critical
points. For any y 2 RY, we have:

di (v) dg ) +2 dk (iix yij +jix yii*

Proof Let = ((x) be the set of points closest tox on K, and let S be
the sphere with centerx and radius dg (x). Let also ¢ = ck (x) be the center
of the minimal enclosing ball of , and = arccos *( ) (see Figure[9.6).
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Figure 9.6: Proof of lemma[9.1p

For any x°2 we have

dg () ky x% (y x+(x x%y x)+(x x9
ky xk?®+kx x%2+2((y x)i(x x9)

d2 (x) +2dg (x)kx  ykcosfy x;x x¥+ kx yk?

To prove the lemma it is thus su cient to prove the following claim.

Claim: there exists a pointx®2 such that the angle between (y x) and
(x x) is not smaller than

We distinguish between two cases.

Case 1l: 60

Assume that the claim is not satised. Then for any x° 2 the angle

between &° x) and (y x) is smaller than . Since is compact, there

exists °< such that is contained in the \circular" cone with apex x and

axis the half-line directed by y x and apex angle ° This cone intersects

Salonga(d 2)-sphere with centerc® and radius R%= dx (x)sin © Since
is also contained in S, is contained in the ball of center c®and radius

RO= dk (x)sin %<dk(x)sin = Fk(x): a contradiction.

Case 22 =0
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= 5 and cannot be enclosed in any hemisphere oB. So there is at least
one point x°2  such that the angle between (y x) and (x° x) is not
smaller than .

The next lemma allows to study the behavior of the -critical points when
K is replaced by a close approximatiork °

Lemma 9.11 Let K and K %be two compact subsets &% and dy (K; K 9
". For any -critical point x of K and any > O, there is a Zcritical point
of K %at distance at most from x, with:

0 + 2
2dk (x)

Proof Let us consider the trajectory s! C(s) of the vector eld r dgxo
parameterized by arc length and starting atx. If C reaches a critical point
of K9befores = , the lemma holds. Assume this is not the case. Letting

y = C( ), we have: .

deoly)  deo(¥) = ke dko(C(s)kds

Therefore, there must exist a point p on the curve C betweens = 0 and
s = such that:

dg ofy)  dko(X)

kr dg o(p)k (9.3)

The curve C being parametrized by arc length, note thatjjp xjj . Now
Lemma[9.10 applied tox, y, and K reads:
q

dk (y) dg () +2 dwx (iix yii + iix yii?

Also, since" = dy (K;K 9, we have that for all z 2 RY, jdk (z) dko(z)j .
Hence:

q
deoly) deo®) R0 +2 dw X i + X Vii2

dK(X.)S+2 #
2 5% yi QX yii2

dk (x 1+ + 1

< () h) T R

+2"

ik i

X i+ = +2%

2dk (x)
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the last inequality coming from the fact that P 1+u 1+ % foru O
Noticing that jjx vyjj , dividing by , and applying equation (9.3) shows
that p satis es the desired requirements.

Proof [of Theoreﬁn] The bound of the previous lemma can be optimized
by choosing =2 "dg (x). It then becomes equal to 2 "=dx (x)+ . The
theorem follows immediately.

Remark 9.12 Note that since dgo is increasing along the trajectories of
r dgo (see Equation), the Ccritical point p for dg o of Lemma[9.11 can
be chosen such thatl o(p)  dk o(x).

9.5 The critical function of a compact set

The critical point stability Theorem 9.9 ]plays a fundamental role to get
topological stability results. It allows to introduce a general framework
for inferring the topology and the geometry of a large class of (non-smooth)
compact sets. For that purpose, we rst introduce a one variable real-valued
function that encodes the criticality of the level sets ofdk .

De nition 9.13  The critical function of a compact set K RY, «
(0;+1)! R4 is dened by

k(r)= inf  kr dgx (X)k
x2d, 1(r)

An example of a critical function is given in Figure [9.7. Note that from
the isotopy Lemma[9.5 the zeros of the critical functions correspond to
the changes in the topology of the o sets ofK. As we will see later, the
main interest of the critical function ( is to provide information about
the topological stability of some o sets of the compact sets contained in a
neighborhood ofK . In particular, whether a compact set K is a Hausdor
approximation of a simple compact set or not can be directly read from its
critical function.

Using the critical points stability Theorem 9.9] we easily get the following
stability result for the critical function.



224 CHAPTER 9. STABILITY OF DISTANCE FUNCTIONS

Figure 9.7: The critical function of a square embedded inR3 with edge
length equal to 50 (top) and the critical function of a point cloud sampling
this square (bottom).

Theorem 9.14 (Critical function stability theorem) Let K and K °be

two compact subsets oRY such thatdy (K;K 9 ". Forall r 0, we have:
r_

inff xo(u)ju21(r;")g K(r)+2 -
wherel (r;")=[r ";r +2 K(r)p7+3"]

This result shows that if the critical function of K %is not smaller than some
value on the interval | (d;") then the critical function of K at the point r
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cannot be smaller than 2p - In particular, if > 2p ~ then r cannot be
a critical value of dx . Since the topology of the o sets ofK can only change
at critical values, it is thus possible to locate intervals on which the topology
of the o sets of K does not change. The Figure$ 9|7 and 9.8 illustrate this

property.

From an algorithmic point of view, it is not di cult to see that when K is
a nite point cloud, the critical function of K can be easily computed from
the Voronoi diagram of K - see Exercis¢ 9.71.

Proof Letr Oandletx 2 dKl(r) be such that kr dx (x)k= K (r). The
existence of such a pointx comes from the fact that the in mum involved
in the de nition of  is indeed a minimum. This follows from the lower
semi-continuity of kr dx k and the compactness oﬁKl(r). The critical lQoint
stability Theorem implies that there exists a point p which is (2 ? +

k (r))-critical for dko at distance at most 2 "r from x. Applying Lemma
[0.10 tox, pand K we get

q pi
dg (p) r2+4 (r)r "r +4"r
q

P
r1+4 g(r) "=r+4"=r
r+2 K(r)p7+2"

Now, according to Remark{9.12,p can be chosen such thatlk o(p) ~ dx o(x).
Using that jdko(p) dk(p)j ", the theorem follows from the above in-

equality.

The example of Figure[9.8 illustrates the critical function Theorem[9.14.

The critical function of a point cloud sampling a torus shape reveals three
intervals with stable topology for K: the rst one corresponds to o sets

having the topology of a torus (bottom left), the second one corresponds
to solid torus with a hole homeomorphic to a ball inside (bottom middle -

not visible from outside) and the third one is unbounded and correspond to
o0 sets that have the topology of a ball (bottom right).

9.6 Sampling conditions and -reach

In this section we introduce the -reach, a stronger regularity condition than
the weak feature size, that allows to give stronger reconstruction results than
Theorem[9.7.
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Figure 9.8: A points set (left) sampled around a torus shape inR® and its

critical function (the upper curve). The lowest curve represents the lower
bound for the critical function of any shape K at distance less than some
xed threshold (here 0:001, the diameter of the torus being 10) from the
point cloud.

De nition 9.15 For 0< 1, the -reachr (K) of a compact setK
RY is de ned as
r (K)=inffr>0: x(r)< g

By analogy with the wfs, the -reach is the in mum of the -critical values

ofd¢. When =1, r (K) is known as thereach. When K is a compact
smooth submanifold ofRY, it coincides with the reach de ned in Chapter [7]
The function ! r (K) is non increasing and we have

I|in8+r (K) wfs(K)

Note that the above inequality can be strict (Exercise[9.10).

It follows from the critical point stability Theorem 9.9 that the positiveness
of the -reach of a compact setk ®implies some constraints on the location
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of the critical points of any close enough approximationK of K% More
precisely we have the following result (Exercis¢ 9.32).

Theorem 9.16 (Critical values separation theorem) Let K andK °be
two compact subsets oRY, " the Hausdor distance betweenK and K ¢ and

a non-negative number. The distance functiondx has no critical values
in the interval (4"= 2;r (K9 3"). Besides, for any °< |, g is larger
than ©on the interval

4 1 (K9 3q" K9):
(W,r( r((b)

Note that taking  too small does not give any information on the critical
values, since the lower bound then exceeds the upper bound. It is also
possible to build examples showing that the bounds of the interval in the
above theorem are tight.

The notion of -reach allows to introduce the following sampling condition.

De nition 9.17  Given two positive real numbers and , one says that a
compact setK RYis a(; )-approximation of a compact setk © RY if

dq(K;K 9 r (K9:

The notion of (; )-approximation generalizes the notion of (; )-net in-
troduced for smooth submanifolds in Chapter| 7.

9.7 O set reconstruction

Equipped with the notion of ( ; )-approximation and the stability proper-
ties of critical points of distance functions proved in the previous section, we
are now able to get easily o sets reconstruction results from approximations.

Theorem 9.18 (Isotopic reconstruction theorem) Let KO RY be a
compact set such thar =r (K9 > 0 for some > 0. Let K be a(; )-

approximation of K ® where
!
p g 2 )

< mn > 1
mh = +16+2 2



228 CHAPTER 9. STABILITY OF DISTANCE FUNCTIONS

Assume thatr; r 9 are such that

4
0<ro%< wisK9 and . r<r (K9 3r

2
Then the oset K’ and level setd, *(r) are isotopic to K?° and d, }(r9
respectively.

The proof of the isotopy between the o sets is beyond the scope of this book.
We prove here the following weaker version.

Theorem 9.19 (Homotopic reconstruction theorem) Let K RY be
a(; )-approximation of a compact setk © RY. If

2
52+12

then the complement oK  is homotopy equivalent to the complement of °

and K is homotopy equivalent toK © as soon as

4dy (K;K 9
2

0< < wfs(K9 and <r (K9 3dy(K;K9

Proof The critical values separation Theoren{ 9.1p applied t&k and K %en-
sures thatdyx does not have any critical value in the interval (4'= %;r (K9
3") where " = dy (K;K 9. It follows from the isotopy Lemma ES] that all
the o sets of K corresponding to the values contained in this interval are
isotopic. It is thus su cient to prove the theorem for =4"= 2, Since the
critical functions of K and K are related by the relation

k (= x(@+ )

(see Exercisé 9]9), we have wf( ) r (K9 3" 4'= 2. We also have

du(K ;K9 "+ 47

According to Theorem|[9.7, the theorem holds as soon as
du (K ;K9 %min(vvfs(K ); wis(K 9)

An easy computation shows that this inequality holds when < %
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9.8 Exercises
Exercise 9.1 Prove that dx is 1-Lipschitz.
Exercise 9.2 Prove Proposition[9.].

Exercise 9.3 Provethat g (x)the smallest enclosing ball containing k (x)
exists and is unigque.

Exercise 9.4 Show that the map from RY to the space of compact subsets
of RY is semi-continuous, i.e.

8x;8r> 0;9 > 0O;ky xKk ) k(y) fz:d(z; k(X)) rg

Exercise 9.5 Show that for any x 2 RY, ck (x) is the point on the convex
hull of g (x) closest tox.

Exercise 9.6 Prove that for any x 2 RY one has the following equivalence:
(x is a critical point of dx), (X lies in the convex hull of g (x)).

Exercise 9.7 Let P be a nite set of points in R? in general position. Prove
that a point x 2 R? is a critical point of dp if and only if it satis es one of
the following conditions:

-x2 P,

- X is the intersection point between a Voronoi edge and its dual Delaunay
edge,

- X is a Voronoi vertex contained in its dual Delaunay triangle.

How does this result generalize for nite point clouds in higher dimensions?

Exercise 9.8 Let K = fp;; png RY be a nite point set. Prove that
wis(K) = Zminig; kpi  pjk.
Exercise 9.9 Show that for any compact setKk  RY and any 0,

k ()= k(+ ) forallr O

Hint: rst prove the same kind of relation between dx and dk .
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Exercise 9.10 Give an example of a compact set (e.g. a compact subset
of R?) K such that lim | ¢ r (K) 6 wfs(K).

Exercise 9.11 Let P RYbe a nite set of points. We denote Vor(P) and
Del(P) the Voronoi diagram and Delaunay triangulation of P. We use the
notations of Section[9.2.

1. What can be said about the restriction of Fp to a Voronoi cell of
Vor(P)?

2. For each Delaunay simplex , let V its dual Voronoi cell and let f
R+ ! R4 the function de ned by
' 2
_ Fo()
f(r)y= 1 2

if r2dp(V)

andf (r) =1 otherwise. Show that the critical function of P is equal
to the minimum, taken over all the Delaunay simplices of Delf), of
the functions f .

3. Deduce from the previous question an algorithm that takes DelP) as
input and output the critical function of P.

Exercise 9.12 Prove the critical values separation Theorem[9.16. Hint:
this is a consequence of Theorern 9.14 - see al501[39].

9.9 Bibliographical notes

The distance functions framework for geometric inference has been intro-
duced in [39] and the proof of the isotopic reconstruction Theorenj 9.18 is
given in [38]. It is not restricted to topological inference and shape recon-
struction but has been extended to other geometric inference problems. For
example, it has been used to prove stability results for normals[]38] and
curvatures [41] estimation of compact sets with positive -reach. It has
also been used to prove that some smoothing operations involving o sets of
shapes in Computer Aided Geometric Design are theoretically well-founded
[4q].
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Distance functions have been widely studied and used in Riemannian ge-
ometry [53,/92] and non-smooth analysis' [57]. The notion of critical point
introduced in this chapter coincides with the notion of critical point for dis-
tance function used in riemannian geometry and non-smooth analysis where
the notion of Clarke gradient [57] is closely related to the above de ned gra-
dient. The general properties of the gradient ofdx and of its trajectories
given in Section[9.2, are established if [101] or, in a more general setting, in
[117].

Distance functions are also particular cases of the so-called semiconcave
functions. Many of the results presented in this section can be deduced
from general properties of semiconcave functions [117]. This allows in par-
ticular to extend most of the results given in this section to compact subsets
of Riemannian manifolds.

When K is a nite set of points, several variants of the gradient ow C de-
ned in this chapter have been previously and independently considered in
the literature [69] 89, [35].

The notion of weak feature size has been introduced in_[46, 47, 48]. The
positiveness of the weak feature size of large classes of compact sets is dis-
cussed in[[85, p. 1045] and_[47], proposition 3.6. The notion of reach for
compact subsets oRY has been introduced by H. Federer[81] in the setting

of geometric measure theory.
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The problem of outliers As we have seen in Chaptef |9, the use of dis-
tance functions provides an interesting approach for the robust estimation
of the topological and geometric properties of shapes ifR® from approxi-
mating data. Here, approximation is meant with respect to the Hausdor
distance that requires all the data points to be located in a close neighbor-
hood of the shape. However, in many practical applications the data come
with outliers, i.e. observations (points) that are not located close to the
approximated shape. For such data the Hausdor distance is no longer rel-
evant to formalize the notion of approximation: just adding one point p at
distance R from a given data setK makes the Hausdor distance between
K andK [f pgequal toR (see Figurg 10.]L). As a consequence, the distance-
based approach of Chaptef P fails for data corrupted by noise and outliers
as illustrated on Figure [10.2. To overcome this issue, in this chapter, we
adapt the distance-based framework for geometric inference to the general
framework of data carrying noise and outliers.

Figure 10.1: Adding just one point at distance R to a point cloud sampling
a circle changes the Hausdor distance between the shape and the sample
by R.

10.1 Extending the sampling theory for compact
sets

All the inference results of Chapter[9 follow from only three fundamental
properties of distance functions:
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Figure 10.2: In addition to a set of points densely sampled on the surfacg of
atangle cube we consider a single \outlier" located away frons (left). When
considering the o sets, the new added point creates a connected component
that makes the estimation of the topology of S from the o sets of the data
impossible (right): e.g. the estimated number of connected components
(two) is clearly wrong.

Stability of the map K ! dk: for any compact subsetsk; K © of RY
we have
kdk dxoks = dy(K;K 9

wherekdx  dkoky =Supy,rdjdk (X)  dko(X)j.

For any compact setKk  RY, the distance function d¢ is 1-Lipschitz:
for any x;x%2 RY, jdk (x) dk (x9] k x x%.

For any compact setK  RY, the distance function dﬁ is 1-semiconcave
x 1k xk? d2 (x) is convex (see Exercis¢ 10]1).

The rst property is an obvious condition to ensure that the o sets of two
close compact sets are close to each other. The second and third properties
are the fundamental ingredients to prove the existence and integrability of
the gradient of dk (Section[9.2) and the isotopy lemma of Sectiof 9]3. These
results still hold for general proper semiconcave functions, motivating the
following de nition of functions that are of particular interest for geometric
inference.
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De nition 10.1 A non-negative function :RY! R* is a distance-like if
i) is 1-Lipschitz,

i) 2is 1-semiconcave, i.e.x 'k xk?  ?(x) is convex

iy is properi.e., for any compact setKk R, 1(K) is compact.

Let :RY! R be adistance-like function. The 1-semiconcavity of 2 allows
to de ne a notion of gradient vector eld r (x) for , de ned everywhere
and satisfying kr  (x)k 1. Although not continuous, the vector eld
r is su ciently regular to be integrated in a continuous locally Lipschitz

ow ':RI1 RY t 0. The ow ! integrates the gradientr in the
sense that for everyx 2 RY, the curve :t 7! Y(x) is right-di erentiable,
and for everyt > 0, ‘é—tt =r ( (t)). Moreover, for any integral curve

:[a;b! RY parametrized by arc-length, one has:
Zy
()= (@)+ ke ( ())kdt

a

De nition 10.2 Let be a distance-like function. We denote by " =
1([0;r]) the r sublevel set of .

1. A point x 2 RY will be called -critical (with 2 [0; 1]) if the inequality
2(x + h) 2(x) +2 khk (x)+ khk? is true for all h 2 R%. A
O-critical point is simply called a critical point. It follows from the
1-semiconcavity of 2 that kr (x)k is the in mum of the 0 such
that x is -critical.

2. The weak feature sizeof at r is the maximumr%> 0 such that
doesn't have any critical value betweem and r + r% We denote it by
wfs (r). Forany 0< < 1, the -reachof isthe maximumr such
that  1((0;r]) does not contain any -critical point.

Notice that the -reach is always a lower bound for the weak-feature size,
with r = 0.

The Isotopy Lemma[9.5 extends to distance-like functions.

Theorem 10.3 (Extended isotopy lemma) Let be a distance-like func-
tion and r1 <r , be two positive numbers such that has no critical points
in the subset 1([r1;r»]). Then all the sublevel sets 1([0;r]) are isotopic
for r 2 [rq;r2].
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The proof of the following theorem, showing that the o sets of two uniformly
close distance-like functions with large weak feature size have the same ho-
motopy type, relies on Theorem[10.B and is almost verbatim the same as
the one of Theorem 9.7.

Proposition 10.4 Let and be two distance-like functions, such that
k Ky ". Suppose moreover thatwfs (r) > 2" and wfs (r) > 2".
Then, for every 0 < 2", ™ and " have the same homotopy type.

The Critical Point Stability Theorem 9.9 jalso holds for distance-like func-
tions.

Theorem 10.5 Let and be two distance-like functions withk Ky
". For any -critical point x of , there,exists a Ueritical point x© of
withkx x% 2 " (x)and ¢ +2° "= (x).

Proof The proof is almost verbatim the same as the proof of Theorerh 9]9

Corollary 10.6 Let and be two "-close distance-like functions, and
suppose thatreach ( ) R for some > 0. Then, has no critical value
in the interval 4'= 2R 3" .

Proof The proof is almost verbatim the same as the proof of Theorem
[.16.

Theorem 10.7 (Extended reconstruction theorem) Let ; betwo"-
close distance-like functions, withreach ( ) R for some positive . Then,
foranyr 2 [4"= 2R 3'],and for 0< <R , the sublevel sets " and
are homotopy equivalent, as soon as

R
5+4= 72

"

Proof By the extended isotopy Lemma[10.3, all the sublevel sets " have
the same homotopy type, forr in the given range. Let us choose =4"= 2.
We have:

wis () R 4= 2andwfs (r) R 3 4'= 2
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By Proposition [L0.4, the sublevel sets " and " have the same homotopy
type as soon as the uniform distance' between and is smaller than

swfs (r) and iwfs (r). This is true, provided that 2" R "(3+4= 2).

The theorem follows.

Remark that in the De nition 10.2 lthe notion of -reach could be made
dependent on a parameterr, i.e. the (r; )-reach of could be de ned as
the maximum r%such that the set  ((r;r + r9) does not contain any -

critical value. A reconstruction theorem similar to Theorem [10.7 would still

hold under the weaker condition that the (r; )-reach of is positive.

10.2 Measures and the Wasserstein distance W,

To overcome the problem of outliers, a rst idea is to consider geometric
objects as mass distributions, i.e. measures, instead of purely geometric
compact sets. Considering probability measures as the new class of studied
objects leads to a much better adapted framework to cope with noise and
outliers.

10.2.1 Replacing compact sets by measures

The de nition of measure relies on the notion of -algebra. All the measures
considered in this book will be de ned on the so-called Borel -algebra whose
de nition is given below.

De nition 10.8 A -algebra on a setX is a collection of subsets ofX
such that:

)2

iyif A2 ,thenAc2 |

i) if (An)n2n is a countable family of elements of , then [ nonAR 2

The set of Borel sets ofRY is the smallest -algebra containing all the open
sets of RY (and thus all the closed sets).

De nition 10.9 A Borel measureor, for short in this book, a measure,
on RY is a map from the set of Borel subset8 of RY to the set of non-
negative real numbers such that whenevdB;) is a countable family of dis-
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joint Borel subsets ofRY, ([ i2nBi) = i (Bj). A probability measure is
a measure whose total mass(RY) is equal to 1.

De nition 10.10  The support of a measure is the smallest, with respect
to inclusion, closed setK on which the mass of is concentrated, i.e. such
that (RInK)=0.

For some compact sets such as point clouds, submanifolds Bf or some more
general shapes there exist natural ways to associate probability measures
whose support are these compact sets as shown in the following examples.

Given a point x 2 RY the Dirac measure 4 at x is de ned as x(B) = 1 if
x 2 B and (B) =0 otherwise. Given a set ofn points C, the empirical or
uniform measure ¢, associated toC, is dened as ¢(B) = %jB \ Cj. It
is the sum of n Dirac masses of weight £n, centered at each point ofC.

Given a compact k-dimensional manifold M RY, let voly be the k-
dimensional volume measure orM. As M is compact, voly (M) is nite
and we de ne a probability measure \ supported on M by u(B) =
voly (B \ M)=voly (M), for any Borel set B RY. For example, if M is
a curve, u (B) is the fraction of the total length of M that is contained
in B; similarly, if M is a surface, u (B) is the fraction of the total area
of M that is contained in B. Notice that if M is a nite union of subman-
ifolds M1;  ; My, then we can de ne probability measures onM just by
considering weighted sums of the measuresy,; .

10.2.2 The Wasserstein distance W,

There exist a whole family of Wasserstein distances W (p 1) between
probability measures inRY. Their de nition relies on the notion of transport
plan between measures. Although some of the results of this chapter can be
stated for any distance W, for technical reasons that become clear in the
following we only consider the W, distance.

A transport plan between two probability measures and on RY is a
probability measure onRY RY such that for every Borel setsA;B  RY,

(A RY= (A)and (RY B)= (B). Intuitively (A B) corresponds
to the amount of mass of contained in A that will be transported to B by
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the transport plan. The cost of such a transport plan is given by
YA 1=2

)= kx  ykd (x;y)
Rd Rd

As an example, consider two probability measures with nite supports
and

xXn x
= C x, and = dj v,
b p = j=1
with = ;g =1and ., d =1 A transport plan between and is
thenan mmatrix =( ;) with non negative entries such that
X xn
ij = ¢ and ij = dj:
j:l i=1
The coecient j; can be seen as the amount of the mass of located at
X;j that is transported to y;. The cost of such a transport plan is then given
by 0 1o
X )
Q= @ i kxj o yikeA
i=1 j=1

De nition 10.11  The Wasserstein distanceof order 2 between two proba-
bility measures and on RY is the minimum cost C( ) of a transport plan
between and . It is denoted by W»(; ).

Notice that Ws( ; ),f\nay be in nite. However,ﬂ{ and have nite mo-
ment of order 2, i.e. oo kxk?d (X) < +1 and g kxk?d (x) < +1, then
W5(; ) is nite and the space of probability measures with nite moment
of order 2 endowed withW, is a metric spacel|128].

Even for measures with nite support, the computation of the Wasser-
stein distance is very expensive. However, it provides an interesting no-
tion to quantify the resilience to outliers. To illustrate this, consider a set

C = fxi:X2; ;Xng of N points in RY and a noisy versionCP° obtained
by replacing the rst n points in C by pc,x_gnts yi such that dc(y.) =R>0
fori =1; ;n. If we denote by = & p2c pand = - qco q the

empirical measures associated t€ and C°respectively then one has
r

Wo(: )= %(R+diam(C))
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while the Hausdor distance betweenC and CPis at least R. To prove this
inequality, consider the transport plan from to that moves the outliers
back to their original position and leave the other points xed. The matrix
of this transport plan (see the above example) is de ned by j; = 1=N
if i = j and 0 otherwise. Sincekx; yik R+diam(C)fori=0 n and
xj = y;i fori>n , we immediately deduce that the cost of this transport plan
is upper bounded by’ n=N(R + diam( C)). As a consequence, replacing a
small amount of points (h << N ) of C by outliers results in a new measure
that remains close to the original one.

From a geometric inference point of view, since, in practice, we are working
with point sets sampled according to some unknown probability distribution

, the question of the convergence of the empirical measurey to  with
respect to the Wasserstein distance is of fundamental importance. This
question is beyond the scope of this book but has been a subject of study
in probability and statistics for a long time. For example, if is supported
on a compact set, then y converges almost surely to in the W, distance.
However all the stability and inference results stated in this chapter only
rely on the Wasserstein distance between the considered measures and are
independent of any convergence property of empirical measures.

10.3 Distance function to a probability measure

In this section, we associate to any probability measure inRY a family of
real valued functions that are both distance-like and robust with respect to
perturbations of the probability measure.

10.3.1 De nition

The distance function to a compact setK evaluated at x 2 RY is de ned
as the smallest radiusr such that the closed ball centered atx of radius r
contains at least a point of K. A natural idea to adapt this de nition when

K is replaced by a measure is to consider the smallest radiusr such that
the ball with center x and radius r contains a given fraction m of the total
mass of .

De nition 10.12  Let be a probability measure orRY and0 m< 1 a
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given parameter. We denote by ., the function de ned by
m X2 RI7inffr> 0; (B(x;r)) >mg

where B (x;r) denotes the closed ball with centex and radiusr.

Notice that for m = 0, the de nition coincides with the (usual) distance
function to the support of the measure . Moreover for anym 2 [0;1), m
is 1-Lipschitz.

Unfortunately ., is not robust with respect to perturbations of the mea-
sure . Indeed, the map ! .m IS not continuous as shown by the
following example. Let - =(3 ") o+(3+ ") 1 be the weighted sum of
two Dirac measures at 0 and 1 inR and let m =1=2. Then, for" 0 one
has ..;(t) = j1 tjfort< O whileif " < 0, one obtains .;-5(t) = jtj
which means that" 7! ..;-, is not continuous at " = 0.

To overcome this issue we de ne the distance function associated to as a
L2 average of the pseudo-distances.,, for a range [Q mo] of parametersm:

De nition 10.13 (Distance-to-measure) Let be a probability measure
on RY, and mg be a positive mass paramete® < mo 1. The distance
function to  with parameter mg is the function d., , : R4! R, de ned
by :
y 1 Z mo
&2, ,R"! RY; x 71— 2 (x)dm
; Mo o ;

10.3.2 Distance function to empirical measures

An interesting property of the above de ned functions is that they have a
simple expression in terms of nearest neighbors. More precisely, 1€ be
a pomt goud with n points in RY, and ¢ be the uniform measure on it:

c= = p2c p- FOr0<m 1, the function ., evaluated at a given

point x 2 RY is by de nition equal to the distance between x and its k-th
nearest neighbor inC, wherek is the smallest integer larger thanmn. Hence
the function m 7! . (x) is constant and equal to the distance fromx to
its k-th nearest neighbor in C on each interval [£-1; X). Integrating the
square of this piecewise constant functions gives the following expression for

d2y, .. wheremg = ko=n:



10.3. DISTANCE FUNCTION TO A PROBABILITY MEASURE 243

y
15 mo 1%
2 (x)= — 2 (x)dm= — = ?2_ (x
n o) = o . i G9dm = e (0
:ki kp xk?

0 k
P2NN {0 (x)

where NN'(‘:O (x) denote the set of the rst kg nearest neighbors ofk in C. As
a consequence the pointwise evaluation c112C ;kozn(x) reduces to ak-nearest
neighbor query in C.

Figure 10.3: Computation of the distance to the empirical measure associ-
ated to a point set C (Xc (k) denotes thek-th nearest neighbor ofx.

10.3.3 Equivalent formulation

In this paragraph, we provide another characterization of the distance func-
tion to a measure d.,, , showing that it is in fact the distance function to a
closed set, but in the non Euclidean space of probability measures endowed
with the W , metric (see gure [10.4). This equivalent formulation will be
used to deduce that ! d.n , is Lipschitzand x ! d2;m , (X) is semiconcave.

De nition 10.14 A measure is a submeasureof another measure if
for every Borel subsetB of RY, (B) (B). The set of all submeasures
of a given measure is denoted bgub( ), while the set of submeasures of
with a prescribed total massmg > 0 is denoted bySubm,( ).
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Figure 10.4: The distance function to a measure as a usual distance function
in an in nite dimensional space.

Proposition 10.15  For any probability measure on RY, the distance func-
tion to evaluated atx is de ned as:

dim o(x) =min fmg ™ Wa(mo x; ); 2 Subm,( )g (10.1)

Moreover, for any measure x.m, that realizes the above minimum one has:

Z .
1 1=2

dm(x) = mio y kx hk*d x;m o (N)

Said otherwise, the distance dn, , evaluated at a pointx 2 RY is the minimal
Wasserstein distance between the Dirac masBlg x and the set of submea-
sures of with total mass mg.

The set R .y ,(x) of submeasures minimizing the above expression corre-
sponds to the nearest neighbors of the Dirac measureng x on the set of
submeasures Sul,( ). It is not empty but it might not be reduced to a
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single element. Indeed, it coincides with the set of submeasuresy.,, of
total mass mg whose support is contained in the closed balB (x; .m ,(X)),
and whose restriction to the open ball B(X; -m ,(X)) coincides with

10.3.4 Stability of the distance function to a measure

The characterization of d.m , given in Proposition [10.15 provides a rather
easy way to prove the stability of 7! d ., ,.

Theorem 10.16 (Distance function stability) If and Care two prob-
ability measures onR? andmo > 0, then d.m, dom, ; Pa=Wa(; 9.

The proof of theorem[10.1§ follows from the following proposition.

Proposition 10.17 Let and °be two probability measures oRY. Then,

At (Subm,( ); Subme( 9 Wa(; 9

wheredy (:;:) is the Hausdor distance in the space of probability measures
endowed with theW, metric.

Proof (sketch of) Let " be the Wasserstein distance of order 2 between
and % and bea correspondingF\pptimal transport plan, i.e. a transport
plan between and ©such that Rd Rd KX yk2d (x;y) = "2. Given a
submeasure of , one can nd a submeasure %of that transports  to
a submeasure %of 9 (notice that this later claim is not completely obvious
and its formal proof is beyond the scope of this book. It can be proven using
the Radon-Nykodim theorem). Then,
Z
Wo(; 9?2 kx yk’d Yxiy) "2
RI Rd
This shows that dist( ; Subm,( 9) " for every submeasure 2 Subm,( ).
The same holds by exchanging the roles of and © thus proving the bound
on the Hausdor distance.

Proof [of Theorem 10.16] | The following sequence of equalities and in-
equalities, that follows from Propositions[10.1% and 10.1]7, proves the theo-
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rem:.
dim o() = prdistus (Mo i Sulin( )
P (G (SUbimg( ); St () + list wa(mo i Suny( %)

1
pﬁWZ( ; (3"' d omy(X)

10.3.5 The distance to a measure is a distance-like function.

The subdi erential of a function f : RI1 Rata point X, is the set
of vectorsv of RY, denoted by @f , such that for all small enough vectorh,

f(x+h) f(x)+ h:v. This gives a characterization of convexity: a function
f :R41 R is convex if and only if its subdi erential @f is non-empty for

every point x. If this is the case, thenf admits a derivative at a point x if

and only if the subdi erential @f is a singleton, in which case the gradient
r xf coincides with its unique element[[57].

Proposition 10.18  The function v 1, , : x 2 RY 71 kxk? d?, , is convex,
and its subdi erential at a point x 2 RY is given by

z
2

@V'm 0 = 2X
Mo h2Rd

(X h)d xme(h); xmo 2R :m (%)

Proof For any two points x andy of RY, let y.m, and yimo PEINR :m (X)
and R .m ,(y) respectively. Thanks to Proposition |10.1%, we have the fol-
lowing sequence of equalities and inequalities:

Z
1
d?, ()= — ky hk®d yme(h)
Mo ZhZRd
1
— ky hk®d m,(h)
Mo thRd
1 kx hk?+2(x h)(y x)+ ky xk*d xm,(h)
Mo hoRd

d%n )+ ky  xK*+ vi(y  X)



10.3. DISTANCE FUNCTION TO A PROBABILITY MEASURE 247

wherevV is the vector de ned by

5 Z
V= — (X h)d xmo(h):
Mo h2Rd

The inequality can be rewritten as:

(kyk®  d%, ,(v)  (kxk®*  dZ, (x)  (2x vy X)

which shows that the vector (2x  v) belongs to the subdi erential of v at
X. By the characterization of convex functions by that we recalled above,
one deduces thatv ., , iS convex.

The proof of the reverse inclusion is slightly more technical and beyond the
scope of the book.

Corollary 10.19 The function dz;m o is 1-semiconcave. Moreover,

0] d2;m , Is di erentiable almost everywhere in RY, with gradient de ned
by , 7
2 = — .
rxdsy, , = mo hZRd[x hld xm,(h)

where y.,, is the only measure inR . ,(X).

i) the function x 2 RY 7! d., ,(x) is 1-Lipschitz.
) o]

Proof (). It follows from the fact that a convex function is di erentiable
at almost every point, at which its gradient is the only element of the sub-
di erential at that point.

(if). The gradient of d ., , can be written as:

R
r yd? 1 X hld xm,(h)
rxd;mo: 2);_;“0:%4 R h2 R XMo
M o

Mo ( pre KX hk® d xm o (h)) 22

Using the Cauchy-Schwartz inequality we nd kr yd.m .k 1 which proves
the statement.
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10.4 Applications to geometric inference

Reconstruction from point clouds in presence of outliers was the main mo-
tivation for introducing the distance function to a measure. In this section,
we show how the extended reconstruction Theoremi 107 can be applied to
distance to measure functions. It is also possible to adapt most of the topo-
logical and geometric inference results of Chaptefr|9 in a similar way.

10.4.1 Distance to a measure vs. distance to its support

In this section, we compare the distance functionsl ., , to a measure and

the distance function ds to its support S, and study the convergence prop-
erties ofd.m , to ds as the mass parametemmg converges to zero. Remark
that the function .y, , (and hence the distance d, ,) is always larger than

the distance function ds, i.e. for any x 2 RY, ds(x) d.m ,(x). As a con-

sequence, to obtain a convergence result of.gl , to ds asmg goes to zero,
we just need to upper bound d, , ds by a function converging to 0 asmg

goes to 0. It turns out that the convergence speed of ¢, , to ds depends
on the way the mass of contained within any ball B(p;r) centered at a

point p of the support increases withr. Let us de ne:

(i) We say that a non-decreasing positive functionf : R* | R* is a
uniform lower bound on the growth of if for every point p in the
support of andevery"> 0, (B(p;")) f(");

(i) The measure has dimension at mostk if there is a constant C( )
such that f (") = C( )"¥ is a uniform lower bound on the growth of ,
for " small enough.

Lemma 10.20 Let be a probability measure andf be a uniform lower
bound on the growth of . Then kd.n , dsk; <" as soon asmg<f (").

Proof Let " and mg be such that mg < f (") and let x be a point
in RY, p a projection of x on S, i.e. a point p such that kx pk =
ds(x). By assumption, (B(x;ds(x) + ")) (B(p:™) mo. Hence,

m o(X) ds(X)g ". The function m 7! . (x) being non-decreasing, we
get: mod3(x) 4 ° 2n (X)dm  mg(ds(x) + ")2. Taking the square root
of this expression proves the lemma.
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Corollary 10.21 (i) If the support S of is compact, then ds is the
uniform limit of d., , as mg converges to0:

kdim o dski = sUp jdim 4(x) ds(x)j 1" 0
X

(i) If the measure has dimension at mostk > 0, then

kdm, dsk, C() mg™

Proof (i) If S is compact, there exists a sequencegs; Xo; of points in
S such that for any " > 0, S [ [L;B(x;;"=2) for somen = n("). By
de nition of the support of a measure, (") = minj=1 n (B(Xxj;"=2)) is
positive. Now, for any point x 2 S, there is ax; such that kx xjk "=2.
Hence, B (x;; "=2) B(x;"), which means that (B(x;")) ™). (i)
Follows straightforwardly from the lemma.

For example, the uniform probability measure on ak-dimensional compact
submanifold S has dimension at mostk. The following proposition gives a
more precise convergence speed estimate based on curvature.

Proposition 10.22 Let S be a smoothk-dimensional submanifold of RY
whose curvature radii are lower bounded bfr, and the uniform probability
measure onS, then

kds dumok, C(S) ¥mg™
for mo small enough andC(S) = (2= )* «=vol¥(S) where | is the volume

of the unit ball in RX.

Notice in particular that the convergence speed of dy, , to ds depends only
on the intrinsic dimension k of the submanifold S, and not on the ambient

dimensiond. The proof of this result is beyond the scope of this book and
relies on the so-called Ganther-Bishop theorem (cf [[88, Section 3.101]).

10.4.2 Shape reconstruction from noisy data

The previous results lead to shape reconstruction theorems that work for
noisy data with outliers. To t in our framework we consider shapes that
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are de ned as supports of probability measures. Let be a probability
measure of dimension at mostk > 0 with compact support K RY and
let d¢ : RY ! R; be the (Euclidean) distance function to K. If Cis
another probability measure (e.g. the empirical measure given by a point
cloud sampled according to ), one has

dk dome ; KOk dimoks +kdm, domeks (10.2)
- - 1
C() FHmg+ pe=Wali 9 (10.3)

This inequality insuring the closeness ofd oy, to the distance function dx
for the sup-norm follows immediately from the stability Theorem and
Corollary f[0.2]. As expected, the choice ofmg is a trade-o: small mg
lead to better approximation of the distance function to the support, while
large values ofmg make the distance functions to measures more stable. Eq.

(10.3) leads to the following corollary of Theorem[10.:

Corollary 10.23 Let be a measure andK its support. Suppose that
has dimension at mostk and that reach (dx) R for someR > 0. Let
O be another measure, and' be an upper bound on the uniform distance
betweendx and d om,. Then, for any r 2 [4'= 2;R  3"], the r-sublevel
sets ofd.m , and the osets K , for 0< <R are homotopy equivalent as
soon as: p__
R™ mg

1=k . 1=k+1 =2
C() my

Figure [10.5 illustrates Theorem[10.Y on a sampled mechanical part with
10% of outliers. In this case %is the normalized sum of the Dirac measures
centered on the data points and the (unknown) measure is the uniform
measure on the mechanical part.

10.5 Exercises

Exercise 10.1 Let K RY be a compact set. Show that the mapx !
kxk? dZ (x) is convex.

Hint: Recall that the supremum of any family of convex functions is convex
and show thatx ! k xk? dﬁ (x) is the supremum of a set of a ne functions.
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Figure 10.5: On the left, a point cloud sampled on a mechanical part to
which 10% of outliers (uniformly sampled in a box enclosing the model)
have been added. On the right, the reconstruction of an isosurface of the
distance function d ..m, to the uniform probability measure on this point
cloud.

Exercise 10.2 Let q; .« be measures orRd ap,d let q; Dk 2 R.
Show that if all the ; are non negative then = X, | is a measure.
Show that the set of probability measures onRY is convex.

Exercise 10.3 Let and be two probability measures with nite sup-
ports:

xn X
= G x, and = di y;
j=1 i=1
. P P
wherex1; ;Xm andyi; ;yn are points in RY and j’“:l G= [, d=
1. Show that any transport plan between and can be represented as a
n  mmatrix =( j) with non negative entries such that
X X
ij = ¢ and ij = di
i=1 j=1

Exercise 10.4 Let be a probability measure onRY and let m 2 [0;1).
Show that . is 1-Lipschitz:

8GY2R%) m (X)) m (Wi kx yk
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Exercise 10.5 Let be a probability measure onR% and let 0 < mg < 1

and x 2 RY. Recall that we denote by R . ,(x) the set of submeasures

minimizing the right hand term of Equation ({0.1). Give an example of a

probability measure such that R ., ,(x) contains only one element and an

example such thatR .y, ,(X) contains an in nite number of elements.

(Hint: for R .n ,(x) to contain more than one submeasure, the measure
(S(X; :m,)) of the sphere of centerx and radius ., , must be positive.

10.6 Bibliographical notes

Most of the chapter comes from [[42] that introduces and studies stability
properties of distance functions to a probability measure. Approximation
and computation of the distance to measure function and its connections
with power distances has been studied in[93]. Extensions of the distance-
to-measure framework to general metric spaces has been considered[in![29].
Statistical aspects of distance-to-measure functions in relation with density
estimation and deconvolution have been considered in[9, 31, 45,749].

Wasserstein distances are closely related to the theory of optimal transporta-
tion (see e.g. [[12B]). The distance W is also known as the earth-mover
distance, and has been used in various domains such as, e.g., visidn [116] or
image retrieval [120].

General results about semiconcave functions can be found in [11[7,134].

The convergence properties of empirical measure with respect to the Wasser-
stein metric have been widely studied and quantitative results can be found
in [28].

The complete proofs of Propositiong 10.15, 10.18 and 10.4 are given [n.[42].

The Ganther-Bishop Theorem is stated in [88, Section 3.101] and the proof
of Proposition can be found in[[42].
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Although the distance-based approach introduced in the two previous chap-
ters provides a powerful mathematical framework for shape reconstruction,

it is not always possible, nor desirable, to fully reconstruct the approximated
shapes from data. This chapter focuses on weaker topological invariants, ho-
mology, Betti numbers and persistent homology, that turn out to be easier
to infer and that are widely used in applied topology and topological data
analysis. The introduction of homology is restricted to the minimum that is
necessary to understand the basic ideas of homology inference and persistent
homology and its usage in topological data analysis.

11.1 Simplicial homology and Betti numbers

In this section we introduce the basic notions of simplicial homology that

are necessary to de ne and study topological persistence. To avoid minor
technical discussions about the orientation of simplices, we restrict to the
homology with coe cients in the nite eld Z=2Z = f0;1g. In the sequel of

this chapter, K denotes a nite d-dimensional simplicial complex.

11.1.1 The space of k-chains

For any non negative integerk, the space ofk-chains is the vector space of
all the formal sums (with coe cient in Z=2Z) of k-dimensional simplices of
K. More precisely, iff 1; ; pgis the set ofk-simplices ofK any k-chain
¢ can be uniquely written

xXP
c= "ij with "2 2Z72=27
b i=1
If =" P "0 isanotherk-chain, the sum of twok-chains and the product
of a chain by a scalar are de ned by
xXP xXP
ctc®=  (+"Diand c= (")
i=1 i=1

where the sums"; + ,0 and the products " ; are modulo 2.

De nition 11.1  The space ofk-chains is the setCy(K) of the simplicial
k-chains of K with the two operations de ned abg,ve. This is aZ=2Z-vector
space whose zero element is the empty chath= " I, 0: ;.
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Notice that the set of k-simplices ofK is a basis ofCy(K). For example,
for the simplicial complex K of Figure[11.3,C4(K ) is the Z=2Z-vector space
generated by the edge®; =[a;b, & =[b;d, es=][c;a], s =[c;d, i.e.

Ci(K)= fOjer;exe3,€1;61+ €2;€61+ €3;€1+ €1;€2+ €3;€2+ €4;63+ €
et+e+es ¢

Summing e; + e with e; + e3 + e4 givese; + e3 + ey,

Figure 11.1: A very simple simplicial complex made of 4 vertices, 4 edges
and 1 triangle.

Chains with coe cient in Z=2Z have an obvious geometric interpretation:
since anyk-chain can be uniquely written asc= ;, + i, + + ., Where
the j, arek-simplices,c can be considered as the union of the simplices; .
The sum of two k-chains is equal to their symetric di erence.

11.1.2 The boundary operator and homology groups

De nition 11.2 (Boundary of a simplex) The boundary @ ) of a k-
simplex is the sum of its(k 1)-faces. This is a(k 1)-chain.

If  =[vo; ; V] is a k-simplex, then

X
@)= [ % w]
i=0
where o ¢ v is the (k 1)-simplex spanned by the sets of all the
vertices of exceptyv;.

Remark 11.3 Notice that in the general case where the coe cient of the
chains are taken in another eld than Z=2Z it is important to take into
account the orderigg of the vertices in and the boundary of has to be
denedas@ )= “,( 1)'[vo & V|- seel[110].
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The boundary operator, de ned on the simplices ofK , extends linearly to
Ck(K).
De nition 11.4  The boundary operator is the linear map de ned by

@ Cy(K) ! Ck 1(K)
C ! @c 2@ )

Notice that one should denote@ the above de ned operator but to avoid
heavy notations one usually omits the index in the notations.

Proposition 11.5 The boundary of the boundary of a chain is always zero:

@@ @ @=0:

Proof Since the boundary operator is linear, it is su cient to check the
property for a simplex. Let =[vo k] be ak-simplex.
!

XK
@@ = @ [Vo @ Vil
i=0
XK
= @vo O Vil
&0 X
= Vo & % wl+ [vo O 9 vl
j<i j>i
= 0

The boundary operator de nes a sequence of linear maps between the spaces
of chains.

De nition 11.6 (Chain complex) The chain complex associated to a com-
plex K of dimension d is the following sequence of linear operators

f0g! Cq(K)1®@Cq 1(K)1®  1PCi(K)1®Crk)1®  1@cok) 1% og
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For k 2f0; ;dg, the setZx(K) of k-cyclesof K is the kernel of @: Cy !
Ck 1-
Zy(K) =ker(@. Cx! Ck 1)=fc2Cx:@c0g

The image Bx(K) of @: Cx+1 ! Ck is the set of k-chains bounding a
(k + 1)-chain:

Br(K):=im( @ Cys1 ! Ci)=fc2Cr:9c%2 Crir:c= @Y

Bk and Zy are subspaces o€y and according to Proposition[11.5, one has
Bk(K)  Zk(K)  Ci(K):

Examples of chains, cycles and boundaries are given in Figufe 11.2.

Figure 11.2: Examples of chains, cycles and boundaries; is a cycle which
is not a boundary, ¢, is a boundary andcz is a chain that is not a cycle.

De nition 11.7 (Homology groups) The k™ homology group ofK is
the quotient vector space
Hk(K) = Zx=Bk

Hk(K) is a vector space and its elements are the homology classes kof
The dimension (K) of Hi(K) is the k™" Betti number of K .
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The homology class of a cycle 2 Z,(K) is the setc+ Bx(K)= fc+ b: b2
Bk(K)g. Two cyclesc; Pthat are in the same homology class are said to be
homologous

Figure 11.3: Examples of Betti numbers for simple simplicial complexes:
from left to right, an edge, the boundary of a triangle, a triangle and the
boundary of a tetrahedron.

11.2 An algorithm to compute Betti numbers

Let K be a nite simplicial complex of dimension d and
;=K% K? KM™=K
a ltration of K such thatforanyi=0; m 1,
K*t = K'[ ™ where ! is a simplex.

By considering the evolution of the Betti numbers of the Itration as we add
the simplices ' we get the following algorithm.

To prove the correctness of the algorithm, one has to understand how the
topology of the ltration evolves each time we add a simplex. Let assume
that the Betti numbers of K 1 have been computed and add the simplex
' of dimensionk +1 to get K'. Remark that according to the de nition of

ltration, ' cannot be part of the boundary of any ( + 2)-simplex of K.
As a consequence if ' is contained in a (k + 1)-cycle in K', this cycle is not
the boundary of a (k + 2)-chain in K'. Let consider the two alternatives of
the algorithm that are illustrated in Figure

Case 1: assume that ' is contained in a (k +1)-cycle cin K. Thenc
cannot be homologous to any k + 1)-cycle in K' 1. Indeed, otherwise there
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Algorithm 9  Betti numbers computation
Input: A Itration of a d-dimensional simplicial complexK containing m

simplices.
o 0 1 0 ;4 O
for i=1to mdo
k=dim ' 1
if ' is contained in a (k + 1)-cycle in K' then
k+1 k+1 +1
else
K k 1
Output: The Betti numbers g; 1; ; g of K.

would exist a cyclec®in K 1 such that c+ Cis the boundary of a (k + 2)-
chain d. But since ' cannot be contained inc® it has to be contained in
c+ = @dcontradicting the above remark. So,c creates a new homology
class which is linearly independent of the classes created by the cycles in
K 1. As aconsequence,s1 (K') 1 (K' 1)+1. To conclude this rst
case, it is su cient to remark that adding the ( k + 1)-simplex ' to K' !
cannot increase the dimension of th&k™ homology group by more than one:
if c and c®are two (k + 1)-cycles containing ', then c+ %is a (k + 1)-cycle
in K' 1 implying that c®is contained in the linear subspace spanned by
Zk+1 (K 1) and c. It follows that dim Zy.1 (K')  dim Zysq (KT 1) +1 and
sinceBys1(K' 1) Brs1 (K'), k2 (K')  ka (K" )+ 1.

Case 2: assume that ' is not contained in any (k + 1)-cycle in K'. Then
the k-cycle @' is not a boundary in K' 1. Indeed, otherwise there would
exist a chaincin K' 1 such that @c= @' or equivalently @c+ ') = 0.
Thus c+ 'is a (k + 1)-cycle in K' containing ': a contradiction. As a
consequence, since thk-cycle @' which is not a boundary in K 1 becomes
a boundary in K', one has ((K')  ((K' 1) 1. One proves as in Case
1 that this inequality is indeed an equality.

The above discussion suggests to distinguish between the two types of sim-
plices in the lItration of K that will play an important role in the de nition
of topological persistence.

De nition 11.8 Let K be ad-dimensional simplicial complex and let

= KO k1 KM= K
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Figure 11.4: Examples of insertion of a 1-simplex ' to a subcomplexK ' 1,
When ' is not contained in a 1-cycle (left), its insertion results in the
connection of two connected components oK' 1. When ! is contained in
a 1-cycle (right), its insertion create a new 1-cycle that is not homologous
to any previously existing in Ki 1.

be a ltration of K. A simplex ' is called positive if it is contained in a
(k + 1) -cycle in K (which is necessarily not a boundary inK ' according to
the remark at the beginning of the proof of the correctness of the algorithm)
and negative otherwise.

With the aforementioned de nition, the k™ Betti number of K is equal to
the di erence between the number of positivek-simplices (which are creating
k-cycles) and the number of negative Kk + 1)-simplices (which are \killing"
k-cycles).

As an example, if one considers the simplicial compleK of gure [[1.T]with
the ltration de ned by the simplices ordering ;, a, b, ¢, ab, bg d, ac, cd,
abg then the positive simplices area, b, ¢, d and ac. The Betti numbers of
Kare g=1, 1=0and ,=0.

It is important to notice that the above algorithm needs to be able to decide
whether a simplex is positive or negative. This is not, a priori, an obvious
question but an answer will be given in Sectior] 11J5. It is also important
to notice that the algorithm not only computes the Betti numbers of K but

also the Betti numbers of all the subcomplexeK' of the Itration.
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11.3 Singular homology and topological invariance

The homology groups and Betti numbers are topological invariants: ifK and

K 9are two simplicial complexes with homeomorphic geometric realizations
then their homology groups are isomorphic and their Betti numbers are
equal. This result is still true if the geometric realizations of K and K ©

are just homotopy equivalent. The proof of this invariance property is a
classical, but not obvious, result in algebraic topology. It is beyond the
scope of this book (se€ [110,96] for details).

Singular homology is another notion of homology that allows to consider gen-
eral spaces that are not necessarily homeomorphic to simplicial complexes.
The de nition of singular homology is similar to the one of simplicial homol-
ogy except that it relies on the notion of singular simplex. Let  be the
standard k-dimensional simplex inRk*1 | i.e. the geometric simplex spanned
by the vertices xj, i =1; k+1, whose all coordinates are 0 except thet"
one which is equal to 1. Given a topological spac& , a singular k-simplex
isacontinuous map : ! X. Asinthe case of simplicial homology, the
space of singulark-chains is the vector space of formal linear combinations
of singular k-simplices. The boundary@ of a singular k-simplex is the sum
of the restriction of to each of the k 1)-faces of . Proposition still
holds for the (singular) boundary operator and the k™" singular homology
group of X is de ned similarly as the quotient of the space of cycles by the
space of boundaries.

A remarkable fact is that simplicial and singular homology are related in
the following way: if X is a topological space homeomorphic to the support
of a simplicial complex K, then the singular homology groups ofX are
isomorphic to the simplicial homology groups ofK. For example, if X is
a surface and ifK and K © are two triangulations of X , then the homology
groups Hx(K) and Hy (K9 are isomorphic. Thus they have the same Betti
numbers that are, indeed, the ones oK . As a consequence, in the sequel of
the Chapter, we will consider indi erently simplicial or singular homology.

Another important property of singular (and thus simplicial) homology is
that continuous maps between topological spaces canonically induce homo-

morphisms between their homology groups. Indeed, if : X | Y is a
continuous map between two topological spaces and if : ! X is a
singular simplex in X, then f . k! Yisasingular simplexinY. So,f

induces a linear map between the spaces of chains dhand Y that preserves
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cycles and boundaries. As a consequenck,also induces an homomorphism
fo Hk(X)! Hg(Y). Moreover if f is an homeomorphism/f - is an isomor-
phism and (f») 1= (f 1)». Similarly, if f is an homotopy equivalence with
homotopic inverseg : Y ! X, then f, is an isomorphism with inversegs.
As a consequence, two spaces that are homotopy equivalent have the same
Betti numbers. Notice that, when X is not homotopy equivalent to a nite
simplicial complex, its Betti numbers might not be nite.

11.4 Betti numbers inference

Singular homology allows to consider Betti numbers of compact sets iR

and of their o sets. Using its connexion to simplicial homology and the
distance functions framework of Chapter[9, we derive explicit methods to
infer the Betti numbers of compact subsets with positive weak feature size.

Let K RY be a compact set with wfsK) > 0 and let P 2 RY be a nite

set of points such thatdy (K;P) <" for some given" > 0. Recall that,

from the isotopy Lemma, all ther-osets K" of K, for0<r < wfs(K),

are homeomorphic and thus have isomorphic homology groups. The goal of

this section is to provide an e ective method to compute the Betti numbers
k(K"), 0<r< wfs(K), from P.

Theorem 11.9 Let K RY be a compact set withwfs(K) > 0 and let

P 2 RY be a nite set of points such thatdy (K;P) < " for some given
"> 0. Assume thatwfs(K) > 4". For > 0 such that4"+ < wfs(K),

leti :P *" ] P *3" pe the canonical inclusion. Then for any non negative
integer k and any 0<r < wfs(K),

Hi (KN = im s He(P ¥ 1 He(P *39)

where im denotes the image of the homomorphism and means that the
two groups are isomorphic.

Proof Sincedy (K;P) <", we have the following sequence of inclusion
maps

K P +" K +2" P +3" K +4"
that induces the following sequence of homomorphisms (the one induced by
the canonical inclusion maps) at the homology level

Hi(K )1 H(P ") 1 He(K "27) 1 H(P ") 1 H(K **):
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Since wfsK ) > +4", it follows from the isotopy Lemma that the homo-
morphisms H (K ) ! Hg(K *2")and H(K *2") 1 Hy(K **") induced
by the inclusion maps are indeed isomorphisms. Notice that the above se-
quence implies that the rank of these isomorphisms is nite (see Exercise
[11.5). It immediately follows that the rank of Hy(P *") ! Hy(P *¥")is
equal to the rank of these isomorphisms which is equal to (K ).

Theorem [11.9 shows that the Betti numbers of the o sets of K can be
deduced from the o sets of P. However, the direct computation of the
homology groups of a union of balls, which is a continuous object and not a
nite simplicial complex, is not obvious. To overcome this issue, recall that
the Nerve Theorem 2.8 implies that foranyr 0, P" is homotopy equivalent
to Cech(P;r). As a consequencél(P") and Hy(Cech(P;r)) are isomorphic.
Moreover, one can show that the isomorphisms can be chosen to commute
with the ones induced by inclusions maps[50], making the following diagram
commutative

H(PT) ! H(P™)
" " (11.1)
H(CechP;r)) ! Hy(CechP;r9)

We immediately obtain the following result.

Proposition 11.10 Assume thatwfs(K) > 4". For > 0 such that4" +
< wfs(K), leti : Cech(P; + ") ! CechP; +3") be the canonical
inclusion. Then for any non negative integerk and any 0 <r < wfs(K),

H(K") = im(i» : He(CechP; + ")) ! Hy(CechP; +3")):

Thanks to the previous proposition, inferring the Betti numbers of K" now

boils down to homology computation on nite Cech complexes. However,
as already noticed in Chapter, computingCech complexes require to
determine if nite sets of balls intersect, which quickly becomes prohibitive

as d and the cardinality of P increase. Using the interleaving property
between Cech and Vietoris-Rips ltrations established in Lemma [2.13, we
obtain the following theorem.

Theorem 11.11 Assume thatwfs(K) > 9". For any 2" %(vvfs(K)
") and any0<r< wfs(K) we have

k(K") =rk( Hk(Rips(P; ) ! Hk(Rips(P;4 ))
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where rk(Hg(Rips(P; ) ! Hg(Rips(P;4 )) denotes the rank of the homo-
morphism induced by the inclusionRips(P; ) Rips(P;4 ).

This last result raises two questions. The rst one is about how to compute
the rank of the homomorphisms induced by the inclusion maps between the
homology groups of the subcomplexes of th¥ ietoris  Rips complex. This
question will be answered in next Section when the persistence algorithm
will be presented. The second, and more tricky, question is about the ef-
fective choice of when K and wfs(K) are not known. This is an ill-posed
problem because wf€{ ) does not depend continuously ofK - see Section
[9.3. However, it is possible for the user to try to guess a good choice of
using the following algorithm.

Algorithm 10  Betti numbers inference

Input: P RY a nite set.
LetL:=;, =+1;
while L ( P do

Let p := argmax,,,p Miny2 kw vk; // pick arbitrary pif L = ;

L LI[f pg;

maXy2p MiNy2 kw vk

Update Rips(L; 4 ) and Rips(L; 16 );

Compute & =rk(i>:H(Rips(L;4 )) ! Hy(Rips(L; 16 )));
Output:  diagram showing the evolution of persistent Betti numbers, i.e.
the ranks of i, versus .

When applied to a point cloud sampled around a compact subset oRY
with positive weak feature size, the algorithm provides the diagrams of rank
numbers 5 that are constant on some intervals of values as illustrated
on Figure[11.5. Identifying these intervals allows the user to determine the
scales at which the topological features oK " can be infered. Notice that
intervals on which the persistent Betti numbers are constant can appear at
di erent scales, re ecting multiscale topological features of the o sets of K

- see Figurg 11.6.

The previous algorithm comes with the following theoretical guarantees jus-
tifying the existence of intervals of constant persistent Betti numbers [50].

Theorem 11.12 Let K RY be a compact set withwfs(K) > 0 and let
P 2 RY be a nite set of points such thatdy (K;P) < " for some given
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Figure 11.5: An example of persistent Betti numbers curves obtained from

a point cloud sampled on a torus. They are plotted as functions of £ .

These numbers are constant on an interval containing [18wfs(K ); 1="] and

correspond to the three rst Betti numbers of the torus: ¢=1, ;=2and
2= 1.

"> 0. Assume thatwfs(K) > 18'. Then at each iteration of the algorithm
such that" < < Zwfs(K),

K(KND= &

for any r 2 (0; wfs(K)) and any non negative integerk.

The example of Figurd 11.6 wheré® is sampled around a smooth 2-dimensional
torus in R1990 jllustrates this property: it would not have been possible to
do the computation if the complexity was exponential in d = 1000.

11.5 Persistent homology

The algorithm of Section to compute the Betti numbers of a ltered
simplicial complex also provides the Betti numbers of all the subcomplexes
of the ltration. Intuitively, the goal of persistent homology is to keep track
of all this information and to pair the creation and destruction time of
homology classes appearing during the process.
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Figure 11.6: The persistent Betti numbers curves obtained from a point
cloud sampled on a closed curve spiraling on a torus which was itself non
linearly embedded into R1%%, They are plotted as functions of &= . We
distinguish two intervals on which the computed ranks are constant. The
right-most one (corresponding to the smaller range of ) exhibits the Betti
numbers of a circle (1 1;0), while left most one (intuitively corresponding
to a larger scale) exhibits the Betti numbers of the torus (1 2; 0).

11.5.1 A simple example

Before formally indroducing persistent homology, we rst consider a very
simple example. Letf :[0;1]! R be the function whose graph is repre-
sented on Figure[11.f. We are interested in studying the evolution of the
topology of the sublevel setsf 1(( 1 ;t]) ast increases. The topology of
the sublevel sets changes wheh crosses the critical valuesa; b;c;dand e.
Passing through the critical value a creates a connected component and for
a t<b,f Y(1 ;t])is a connected set (an interval). Whent passes
through the critical value b a second connected component appears and for
b t<c,f (1 :t])hastwo connected components. Wher reaches the
value c, the two connected components are merged: the most recently cre-
ated component, whent passed throughb, is merged into the older one. One
then pairs the two valuesb and c¢ corresponding to the \birth" and \death"

of the component. In the persistent homology framework, this pairing is
either represented by the interval on the left of the graph off on Figure
[11.7 or by the point with coordinates (b; 9 in the plane on the right of Fig-
ure [11.7. The lengthc b of the interval (b; ¢ represents the lifespan of
the component created ath. Intuitively, the larger the interval is, the more
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relevant the corresponding component is. Now, continuing to increase, a

new connected component is created when one reachdswhich is merged

at t = e giving rise to a new persistence interval ¢I; €). Notice that a is not

paired to any ( nite) value since the rst created component is never merged

into another one. As a consequence it is paired with 4 and represented
by the interval (a;+1 ). At the end, the pairs are either represented as a
set of intervals (called abarcodg or as a diagram in the plane (called the
persistence diagram- see Figure on the right). For technical reasons
that will become clear later in this chapter the diagonal fy = xg is added

to the diagram.

Figure 11.7: The persistence diagram of a real valued function.

When one considers functionsf de ned over higher dimensional spaces,
passing through critical values may not only change the connectedness of
the sublevel sets but also other topological features: creation/destruction
of cycles, voids, etc... All these events corresponds to a change in the cor-
responding homology groups K for connected componentsH 1 for cycles,
H, for voids,...). In the sequel of this section we show that we can de ne
pairs and persistence diagrams for each dimension.

Now, if we replace the functionf by a function g on the Figure[11.8 which
is close tof , we observe that the number of pairs ofg is much larger than
the one off . However most of these pairs correspond to intervals with short
length (points close to the diagonal) while the pairs corresponding to long
interval are close to the ones off . In other words, the topological features
having a large persistence with respect to the size of the perturbation are
preserved while the topological features created by the perturbation have
a small persistence. We will see that this is a general phenomenon: two
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close functions have close persistence diagrams. The stability properties
of persistence diagrams are of fundamental importance to formalize and
quantify the notion of topological noise and to handle noisy data.

Figure 11.8: An approximation g of f and its persistence diagram.

11.5.2 Persistent homology of a Itration

We rst de ne the notion of persistence for a lItration of a simplicial com-
plex. Its goal is to study the evolution of the homology of the subcomplexes
of the ltration.

Let K be ad-dimensional simplicial complex and let
;= KO K!? KM= K

be a Itration of K such that, foranyi=0; ;m 1, K" =KI'[
where *1 is a simplex.

Forany 0 n m, we denote byC} the set of k-chains (with coe cients
in Z=2Z) of K". Notice that the restriction of the boundary operator to
C! has its image contained inC; }. We denote by Z' and B[ the sets of
k-cycles andk-boundaries of K" respectively. The k-th homology group of
K" is thus

HY = Z2=B}

With these notations, we have the following inclusions

4 Z

O Xo
P =
N
>
N

B B
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De nition 11.13 (Persistent Betti numbers) For p 2 f0O;, ;mg et
| 2 f0; ;m  pg, the k-th persistent Betti humber of K'! is the dimen-
sion of the vector spaceH,” = z}=(B,"P\ z}).

The k-th persistent Betti number of K' represents the number of indepen-
dent homology classes ok-cycles inK ! that are not boundaries in K'*P.
Intuitively, a k-cycle in K' generating a non-zero element irHi'(;p is a cycle
that has appeared in the lItration before the step | + 1 and that is still not

a boundary at step| + p. We have seen in Sectioff 11]2 that a homology
class is created when a positive simplex is added in the Itration and that

a homology class is destroyed when a negative simplex is added. Persistent
homology provides a natural way to pair positive and negative simplices
such that whenever a positive simplex is added to the ltration it creates a
homology class and a corresponding cycle that becomes a boundary when
the negative simplex to which it is paired is added.

Cycle associated to a positive simplex

Lemma 11.14 Let = ' be a positivek-simplex in the Itration of K.
There exists a uniquek-cycle c that is not a boundary in K', that contains
and that does not contain any other positivek-simplex.

Proof The lemma is proven by induction on the order of the positive k-
simplices in the ltration. Assume that for any positive k-simplex added
to the lItration before  there exists ak-cycle, that is not a boundary and
that contains  but no other positive k-simplex. Since is positive, there
exists ak-cycle d that is not a boundary in K' and that contains . Let

ij, ] =1; ;p be the positive k-simplices di erent from  contained in d
and let ¢; be the cycles which are not boundaries containing them and not
containing any other positive simplices. Then

c=d+c + + Cp

is a k-cycle in which is the only positive simplex. Since = lis the
last simplex added in K' there does not exist any k + 1)-simplex in K'
containing in its boundary. As a consequenceg cannot be a boundary
cycle.

The uniqueness ofc is proven in a similar way.
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Persistent homology basis and persistent pairs

The k-cycles associated to the positivk-simplices in Lemma[11.T§ allow to
maintain a basis of the k-dimensional homology groups of the subcomplexes
of the ltration. At the beginning, the basis of Hy(K9) is empty. Bases
of the Hy (K ') are built inductively in the following way. Assume that the
basis ofH ! has been built and that the i-th simplex ! is positive and of
dimension k. We add to the basis oinL ! the homology class of the cycle
¢ associated to ' to obtain a basis of H}. Indeed, sincec is the sum of

' and negative simplices, it is not homologous to any linear combination
of cycles de ning the basis ofH, *. Since dimH| =dim H, *+1 we thus
obtain a basis ofH|.

Now assume that the basis ofH] * is built and the j-th simplex | is
negative and of dimensionk + 1. Let ct; cr be the cycles associated
to the positive simplices '1; '» whose homology classes form a basis of
Hl '. The boundary d = @/ of I is a k-cycle in Ki 1 which is not a
boundary in KI 1 but is a boundary in KI (see the proof of the algorithm
to compute Betti numbers in the previous section). So it can be written in

a unique way as
xXP

d= @/ = "ok + b
k=1
where"y 2 f 0; 1g and bis a boundary. We t_hen denotel(j) = max fiy : "x =
1g and we remove the homology class af () from the basis of H} *

Claim: We obtain a basis ofH.
Since dimH) * = dim H] + 1 we just need to prove that ¢() is, up to a
boundary, a linear combination of the cyclesc« in Z!, iy 6 I(j), which is
equivalent to the above decomposition ofd.

De nition 11.15 (Persistent pairs) The pairs of simplices( '0); 1) are
called the persistence pairs of the Itration of K .

Intuitively, the homology class created by '0) in K'0) is destroyed by 1 in
K. The persistence of this pairisj 1(j) 1. From the above discussion
we deduce a rst algorithm to compute the persistent pairs of a Itration of
a simplicial complex K of dimensiond with m simplices.
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Algorithm 11  Persistent pairs computation
Input: A ltration of a d-dimensional simplicial complexK containing

m simplices.

Lo=L;= =Lg 1=

for j =0to m do
k=dm J 1

if J is negativethen _
I(j) = the largest index of the positive k-simplices associated ta@ ' ;

Lk L[f ('O Dg
Output: Return the persistent pairs in each dimensionLg; L 1; iLg 1;

Notice that, as for the algorithm to compute the Betti numbers, the main
issue with this algorithm is to determine I(j ). We overcome it by considering
a matrix version of the above algorithm.

Persistence algorithm: the matrix version
We now present an easy to implement version of the persistence algorithm.
It relies on a simple reduction of the matrix of the boundary operator.
Let K be a simplicial complex of dimensiond and
;= KO Kt KM= K

be a ltration of K such that foranyi =0; ;m 1,

K" =K'[ " where "' isa simplex.
LetM = (m;;)ij=1; m bethe matrix with coe cientsin Z=2Z of the bound-
ary operator de ned by:

mi =1 if ' isafaceof ! and mj =0 otherwise.

Hence, if 1 is a (k + 1)-simplex the j-th column of M represents the set of
the k-dimensional faces of the boundary of /. Since the simplices oK are
ordered according to the ltration, the matrix M is upper triangular. For
any column C; of M, we denote byl(j) the index of the lowest line of M
containing a non-zero term in the columnGC;:

(i=1G), (my =1 and mjo; =0 8i°>i)
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Notice that I(j ) is not de ned when the column C; does not contain any non
zero term. We then have the following very simple algorithm to compute
the persistent pairs.

Algorithm 12  Persistent computation - Matrix version

Input: A ltration of a d-dimensional simplicial complexK containing
m simplices and the matrix M of the boundary operator.
for j =0to m do
while there existsj®<j such that1(j9 == I(j) do
Cj = Cj + Cjo mod(2),
Output:  Return the pairs (I1(j);]);

Proposition 11.16 The previous algorithm computes the persistent pairs
of the Itration ; = K® K1 KM=K.

Proof The result immediately follows from a sequence of elementary facts.
Fact 1 : At each step of the algorithm, the column C; represents a chain
of the following form

0 1
X ,
@i+ A with " 2f01g:
i<j
This is proven by an immediate induction.

Fact 2 : At the end of the algorithm, if j is such that I(j) is de ned, then
() is a positive simplex.

Indeed, the columnC; represents a chain of the form
_ X
1G) 4+ p P with ,2f0;1g;
p<l (j)

but according to Fact 1, C; also represents a boundary inK i, ~So the
previous chain is a cycle (since@ @= 0) in K'0) containing '0). The
simplex '0) is thus positive.

Fact 3 : If at the end of the algorithm the column Cj only contains zero
terms, then ! is positive.
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Indeed, according to Fact 1, we have
0 1

- X .
@@+ v 'A=o0;

i<j
so | is contained in a cycle ofK!.

Fact 4 : If at the end of the algorithm, the column Cj contains non zero
terms, then ( '0); 1) is a persistence pair.

Combining Facts 1 and 2, the boundary of 1 can be written as
0 1

. . X X .
@ = 04 pp...@ "TA

p<l (i) <]

Moreover 'U) is positive and thus was added to the persistent homology
basis at timel(j ) and has not been paired before timg . Remarking that at
the end of the algorithm a line of the matrix cannot contain more than one
lowest non-zero term of a column, we deduce that ('0); 1) is a persistence
pair.

Remark 11.17 Notice that the time complexity of the above algorithm
is O(m?) in the worst case. However in practical applications it usually
happens to be much faster O(m) or O(m logm)).

11.5.3 Persistence diagrams and bottleneck distance

For a xed Kk, the persistent pairs of simplices of respective dimensions and

k + 1 are conveniently represented as a diagram in the plan&’?: each pair
( '@ 1Y is represented by the point of coordinates [(j):j). For each posi-
tive simplex ' which is not paired to any negative simplex in the ltration,
we associate the pair (';+1 ). For technical reasons that will become clear
in the next section, we add to this nite set the diagonal fy = xg of R? to
get the k-dimensional persistence diagramof the lItration. More generally,

if the lItration is indexed by a non decreasing sequence of real numbers, as,
e.g., in the case of a ltration associated to the sublevel sets of a function,

=K 0 K ! K ™=K wth o 1 m
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a persistent pair of simplices (i; j) is represented in the diagram as the
point of coordinates ( j; j). In this later case, we have to take care that,
since the sequence (i) is non decreasing, several pairs can be associated to
the same point in the plane. A persistence diagram is thus a multiset and
the multiplicity of a point is de ned as the number of pairs associated to this
point. By convention, the points on the diagonal have in nite multiplicity.

By convention, if a simplex ; is not paired, we then add the point of coor-
dinates ( i;+1 ) to the persistence diagram. Notice that, as a consequence,

the persistence diagram is a multiset inR” whereR = R[ +1.

Persistence diagrams can be compared using a matching distance called the
bottleneck distance

De nition 11.18 (Bottleneck distance) Let D; and D, be two persis-
tence diagrams The bottleneck distance betwedh; and D, is de ned as

ds(D1;D2) =inf supkp (pki
p2D1

where is the set of bijections between the multi-set® ;1 and D, (a point with
multiplicity m > 1 is considered asm disjoint copies) andkp gki = max(]j
Xp XqlilYp Yql). By convention, if yp = yq=+1,thenkp ok =j
Xp Xq].

The above de nition motivates the inclusion of the diagonal of R? in the
de nition of persistence diagram: it allows to compare diagrams that do not
have the same numbers of o -diagonal points by matching them with points

on the diagonal (see Figurg 11]9).

11.5.4 Persistence modules, interleaving and stability

Persistence can be de ned in a purely algebraic way that turns out to be
particularly useful and powerful in many settings. The proofs of the results
presented in this section are beyond the scope of this book but the algebraic
framework introduced in this section allows to e ciently prove the results
of the next sections.

The notion of persistence can be extended to more general sequences of
vector spaces in the following way.
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Figure 11.9: The bottleneck distance between two diagrams

De nition 11.19 (Persistence modules) A persistence moduleV over a
subsetl of the real numbersR is an indexed family of vector space¢V, j a 2
1) and a doubly-indexed family of linear mapgv2 : V, ! Vpja b) which
satisfy the composition lawvS v2 = vS whenevera b ¢, and wherev2
is the identity map on V,.

De nition 11.20 (g-tameness) The persistence moduleV is said to be
g-tame if rk (v2) < +1 whenevera < b.

The sequence of homology groups of the ltration ofK considered in the
previous section together with the homomorphisms induced by the inclusion

maps is a persistence module indexed over the sét = f0; 1, ;mg. It
can be shown that the persistence diagram of a ltrationf; = K °©
K1 K m = Kg is completely determined by the rank of the

homomorphismsHy (K ) ! Hy(K 1) foranyi<j . This property extends
to g-tame modules.
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Theorem 11.21 If a persistence moduleV is g-tame, then it has a well-
de ned persistence diagramdgm(V) R®. When V is the persistence module
de ned by a lItration of a nite simplicial complex, this diagram coincides
with the one de ned in Section[11.5.3.

To avoid technical di culties in the sequel of this section, we assume that all
the considered persistence modules are indexed R This is not a restrictive
assumption in our setting: if V is a persistence module indexed by a nite
set 1< < < it can be extended to a piecewise constant module
indexed by R by dening V. =V, for 2 [ j; j+) with the convention

0= 1 and p+ =+ 1. The linear maps are then de ned in an obvious
way by letting v = Id whenever | a b< ..

Let U;V be persistence modules oveR, and let " be any real number. A
homomorphism of degre€' is a collection of linear maps

(aUaI Va+"ja2R)
suchthat vl o= |, ubforalla b We write

Hom'(U; V) = fhomomorphismsU ! V of degree"g;
End’ (V) = fhomomorphismsV ! V of degree"g:

Composition is de ned in the obvious way. For" 0, the most important
degree* endomorphism is the shift map
1, 2 End’(V);

which is the collection of maps ¢2*") from the persistence structure onV.
If is a homomorphism U! V of any degree, then by de nition 1 |, =1,
forall " 0.
De nition 11.22 (Interleaving of persistence modules) Two persistence
modulesU;V are said to be"-interleaved if there are maps

2 Hom (U;V); 2 Hom (V;U)
suchthat =1 2 and =1 2.

The notion of interleaving allows to state the fundamental stability theorem
for persistence diagrams.
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Theorem 11.23 (Stability of persistence diagrams) Let U;V be two
g-tame persistent modules that aré'-interleaved for some"” 0. Denot-
ing by dgm(U) and dgm(V) their persistence diagrams, we have

dg (dgm(U); dgm(V)) ™

In the next sections, we apply the stability to di erent settings.

11.5.5 Persistence stability for functions

Letf : X ! R be a real-valued function de ned on a topological spaceX .
Let consider thesublevel set ItrationfF =f (1 ; ])g 2r and consider
the (singular) homology groupsHg(F ) of these sublevel sets. Notice that
the canonical inclusionF F whenever induces an homeomorphism
Hkx(F )! Hk(F ). So, the sublevel sets ltration of f induces a persistence
module Fy.

De nition 11.24 A real-valued function f de ned on a topological space
X is said to be g-tame if its associated persistence modulés are g-tame
for any non negative integerk.

The following result provides su cient conditions for f and g to be g-tame.

Proposition 11.25 If X is homeomorphic to a nite simplicial complex
andf : X ! R is continuous, thenf is g-tame. In particular, dgm(Fy) is
well-de ned.

Proposition 11.26 Let f;g : X ! R be two functions de ned on a topo-
logical spaceX such thatkf gki =sup,,x jf(X) 9(x)j <". Then the
persistence modulesFx and Gg induced by the sublevel sets Itrations off

and g are "-interleaved.

Proof Sincekf gk; <", we have, forany 2 R, F G+ F 4o

G +3" These inclusions induce homomorphismsiy(F ) ! Hg(G ++)
and H (G ) ! Hy(F ++) forall 2 R. The sets of these homomorphisms
de ne an "-interleaving between Fy and G.
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In the sequel, when there is no ambiguity, the notation dgm(f ) denotes
the persistence diagram off, for any k. Applying the Persistence Stabil-
ity Theorem [L1.23, we immediately obtain the following stability result for
functions.

Theorem 11.27 Let X be a topological space and let;g : X | R be two
g-tame functions. Then

dg (dgm(Fy);dgm(Gyk)) k f  gks :

From a practical point of view, the above theorem provides a rigorous way
to approximate the persistence diagrams of continuous functions de ned
on a triangulated space. For example, assume thalX is a triangulated
manifold in RY where the diameter of each simplex is upper bounded by
some > 0 and assumef : X | R to be c-Lipschitz for somec > 0, i.e.
if(x) f(x9 ckx x%. Then, given a non negative integerk, one can
easily check that the bottleneck distance between the persistence diagram of
f and the persistence diagram of the Itered complex induced by the values
of f at the vertices of the triangulation is upper bounded byc (see Exercise

[1.8).

11.5.6 Persistence stability for compact sets and complexes
built on top of point clouds

Proposition 11.28 Let X  RY be a compact set. The distance function
dx :RY! R is g-tame.

Proof Given0 < and anon negative integerk, we just need to prove
that the homomorphism H(X ) ! Hy(X ) induced by the inclusion of the
o sets, X X , has nite rank. Denoting " = ( )=2> 0, sinceX is
compact, there exists a nite subsetP X of X such that dy (X;P) <".
As a consequence we have the following inclusion

X P*Y X
that induces the following sequence of homomorphisms

Hi(X )1 Hk(P 7)1 Hi(X )
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Figure 11.10: Comparing the persistence diagrams of two close functions
de ned on a segment

Now, it follows from the nerve Lemma that P *" is a nite union of balls
homotopy equivalent to Cech(P; + ") which is a nite simplicial complex.
As a consequence diril (P *") < +1 and rk(Hg(X ) ! Hg(X )
dimH (P *") < +1 .

The above proposition implies that distance functions to compact subsets
of RY have well-de ned persistence diagrams. Recalling that ifX;Y  RY
are compact, thendy (X;Y ) = kdx dyki , we immediately obtain the
following corollary.

Corollary 11.29 Let X;Y  RY be compact. Then
ds (dgm(dx ); dgm(dy))  dn (X;Y):

In particular, if P;Q RYare nite point clouds, then for any non negative
integer Kk,

dg (dgm(H(Cech(P))) ; dgm(H(Cech@))))  dn (P; Q)
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where Cech(;) denotes theCech ltration.

The second part of the corollary follows from the nerve Lemmd 2J8 and
the paragraph before Proposition[11.1p showing thatP and Cech(P; )
are homotopy equivalent for any and the homotopy equivalences can be
chosen to commute with the inclusion maps at the homology level. As
a consequence the persistence modules induced by the sublevel setsdpef
and the Cech ltration are O-interleaved. Using that P is also homotopy
equivalent to the alpha-complex A(P; ) the same result also holds when
Cech(P) is replaced by the alpha-complex lItration A(P).

Application: topological signatures for shapes. The same kind of
result can be also established for the Vietoris-Rips complex and, thanks to
these stability properties, the obtained persistence diagrams can be consid-
ered as robust multiscale topological signatures associated to point clouds.
They can thus be used to compare the topological structure of points clouds
sampled from di erent shapes. Notice that if the nite point cloud P is
transformed by an isometry of RY into another point cloud P9 then the
Cech , the Vietoris-Rips and alpha-shape ltrations of P and P are the
same. Howeverdy (P% Q) can become much larger thandy (P; Q) while the
bottleneck distance between persistence diagrams remains unchanged, mak-
ing the second inequality of Corollary[11.29 less interesting. To overcome
this issue one can consider theGromov-Hausdor distance de ned in the
following way.

De nition 11.30 Let X;Y RY be two compact sets and let 0. An
"-correspondence betweetX and Y is a subsetC X Y such that

(i) for any x 2 X, there existsy 2 Y such that(x;y) 2 C;

(i) for any y 2 Y, there existsx 2 X such that(x;y) 2 C;

(i) for any (x;y);(x%y9 2 C, jd(x;x% d(y;y9ji ", where d(x;x9 =
kx x% is the Euclidean distance.

The Gromov-Hausdor distance betweenX and Y is de ned by

den (X;Y ) =inf f" 0 :there exists an"-correspondence betweeX and Y g:

Notice that the above de nition can be extended verbatim to any pair of
compact metric spaces. Indeed the Gromov-Hausdor distance allows to
compare compact metric spaces, up to isometry, independently of any em-
bedding. Coming back to the point cloudsP; P%and Q where P is the image
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of P by an ambient isometry of RY, we have that dgn (P; Q) = dgn (P% Q).
Moreover, Corollary [11.29 has the following generalization.

Theorem 11.31 Let P;Q RY be nite point clouds and let Filt( :) be any
of the Cech , Vietoris Rips or alpha-shape Itered complexes. Then for
any non negative integerk,

dg (dgm(H  (Filt( P))) ; dgm(Hk (Filt( Q))))  dan (P; Q):

This theorem can be extended to point clouds in non Euclidean metric
spaces, except for the alpha-shape Itration which is no longer de ned. In
particular, to de ne the Vietoris-Rips complex, one just needs to know the
pairwise distances between the points. As the computation of the Gromov-
Hausdor distance is usually intractable in practice, we can thus use the
persistence diagrams of the Vietoris-Rips Itrations to compare the topolog-
ical structure of nite data sets coming with pairwise distance information.
Thanks to Theorem[11.3], the bottleneck distance provides a discriminative
comparison tool: if the bottleneck distance between the diagrams is large,
the two corresponding sets are far away from each other with respect to
dgH . The reverse is not true.

11.6 Exercises

Exercise 11.1 Let K be a nite simplicial complex. Prove that o(K) is
equal to the number of connected components of .
Hint: use the result of Exercise[2.1.

Exercise 11.2 Compute the Betti numbers of the simplicial complexes of

Figure [11.3.

Exercise 11.3 (Di cult) Let P be a nite set of points in R?. Prove that
for any 0
S S
. ) ) d : _
Rips(P; ) Cech(P; m) Rips(P; 2 m)

Hint: see [62], Theorem 2.5.
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Exercise 11.4 Chains with coe cient in Z=2Z have an obvious geometric
interpretation: since any k-chain can be uniquely written asc= ;, + j, +

im Where the i are k-simplices, ¢ can be considered as the union of the
simplices ;. Show that the sum of two k-chains is equal to their symetric
di erence [

Exercise 11.5 Let P RY be a nite set of points. Prove that, for any
r 0, the Betti numbers (P") of the r-oset P" are nite.

Hint: use the Nerve theorem.

Exercise 11.6 Let F be a ltration of a simplicial complex K. Prove that
all the vertices of K are positive and that an edge ' is positive if and only if
the two ends (vertices) of ' are in the same connected component df ' 1.

Exercise 11.7 Let F be a ltration of a simplicial complex K.

1. Prove that any cycle in K contains at least one positive simplex.

2. Prove that the cycle associated to a positive simplex in lemma 11.14 is
uniquely de ned.

Exercise 11.8 Let X be a (nitely) triangulated subset of RY and let f :
X ! R be ac-Lipschitz function, ¢ > 0. Let K; be the Itration induced
by f on the triangulation of X. Denoting by > 0 the largest diameter of
the simplices of the triangulation of X, prove that,

ds (dgm(K);dgm(f)) c:

11.7 Bibliographical notes

A detailed introduction to algebraic topology and simplicial and singular
homology can be found[[1100, 96].

The results of Section 11.4 are derived from [50] where complete proofs are
given.

Persistent homology has been independently introduced by di erent authors
[73,[83,[118] and has know important developments during the last decade.

1The symetric di erence of two sets A and B isdenedby A B =(A[ B)n(A\ B).
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The stability of persistence diagrams has been initially proven by [[59] for

tame continuous functions de ned on triangulable spaces. It was then ex-
tended and generalized by[[36] and[51] to a more algebraic framework that
appeared of fundamental importance in topological data analysis. An intro-

ductory course to computational topology is provided in [/1] and a recent

and general presentation of persistent homology theory is given iri[114].

Theorem|11.31] is a particular case of a result proven i [43] and it has found
various applications in shape classi cation [37] and in statistical analysis of
data - see, e.g.,[179, 48,10, 44].
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