]. N. Alon and J. H. Spencer, 31 is a particular case of a result proven in [43] and it has found various applications in shape classification [37] and in statistical analysis of data -see, e.g., [79, 78, 10, 44]. 284 CHAPTER 11, Theorem 11, 2008.

N. Amenta and M. Bern, Surface Reconstruction by Voronoi Filtering, Discrete & Computational Geometry, vol.22, issue.4, pp.481-504, 1999.
DOI : 10.1007/PL00009475

URL : http://www.cs.ucdavis.edu/~amenta/pubs/3dcrust.ps.gz

D. Attali, J. Boissonnat, and H. Edelsbrunner, Stability and Computation of Medial Axes - a State-of-the-Art Report, Math. Foundations of Scientific Visualization, Comp. Graphics, and Massive Data Exploration, pp.109-125, 2009.
DOI : 10.1007/b106657_6

URL : https://hal.archives-ouvertes.fr/hal-00468690

D. Attali, H. Edelsbrunner, and Y. Mileyko, Weak witnesses for Delaunay triangulations of submanifolds, Proceedings of the 2007 ACM symposium on Solid and physical modeling , SPM '07, pp.143-150, 2007.
DOI : 10.1145/1236246.1236267

D. Attali, A. Lieutier, and D. Salinas, EFFICIENT DATA STRUCTURE FOR REPRESENTING AND SIMPLIFYING SIMPLICIAL COMPLEXES IN HIGH DIMENSIONS, International Journal of Computational Geometry & Applications, vol.24, issue.04, pp.279-304, 2012.
DOI : 10.1177/0278364909352700

URL : https://hal.archives-ouvertes.fr/hal-00579902

F. Aurenhammer, Power Diagrams: Properties, Algorithms and Applications, SIAM Journal on Computing, vol.16, issue.1, pp.78-96, 1987.
DOI : 10.1137/0216006

F. Aurenhammer, R. Klein, and D. Lee, Voronoi Diagrams and Delaunay Triangulations, World Scientific, 2013.
DOI : 10.1142/8685

M. Berger, Géométrie (vols. 1-5). Fernand Nathan, 1977.

G. Biau, F. Chazal, D. Cohen-steiner, L. Devroye, and C. Rodriguez, A weighted k-nearest neighbor density estimate for geometric inference, Electronic Journal of Statistics, vol.5, issue.0, pp.204-237, 2011.
DOI : 10.1214/11-EJS606

URL : https://hal.archives-ouvertes.fr/inria-00560623

A. J. Blumberg, I. Gal, M. A. Mandell, and M. Pancia, Robust statistics , hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found, Comp. Math, vol.14, issue.4, pp.745-789, 2014.
DOI : 10.1007/s10208-014-9201-4

URL : http://arxiv.org/pdf/1206.4581

J. Boissonnat, C. S. Karthik, and S. Tavenas, Building Efficient and Compact Data Structures for Simplicial Complexes, Proc. 31st Symp, 2015.
DOI : 10.1145/253168.253192

URL : https://hal.archives-ouvertes.fr/hal-01145407

J. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec, Triangulations in CGAL, Computational Geometry, vol.22, issue.1-3, pp.5-19, 2002.
DOI : 10.1016/S0925-7721(01)00054-2

URL : https://hal.archives-ouvertes.fr/hal-01179408

J. Boissonnat, R. Dyer, and A. Ghosh, DELAUNAY STABILITY VIA PERTURBATIONS, International Journal of Computational Geometry & Applications, vol.24, issue.02, pp.125-152, 2014.
DOI : 10.1145/1667053.1667060

URL : https://hal.archives-ouvertes.fr/hal-00806107

J. Boissonnat, R. Dyer, and A. Ghosh, THE STABILITY OF DELAUNAY TRIANGULATIONS, International Journal of Computational Geometry & Applications, vol.27, issue.5, pp.303-333, 2014.
DOI : 10.1007/s10711-008-9261-1

URL : https://hal.archives-ouvertes.fr/hal-00807050

J. Boissonnat, R. Dyer, and A. Ghosh, A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations, Proc. 23rd European Symp. on Algorithms, pp.595-606, 2015.
DOI : 10.1007/s10711-008-9261-1

URL : https://hal.archives-ouvertes.fr/hal-01213070

J. Boissonnat, R. Dyer, A. Ghosh, and M. Wintraecken, Local criteria for triangulation of manifolds, Proc. 34st Symp, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01661230

J. Boissonnat and J. Flötotto, A coordinate system associated with points scattered on a surface, Computer-Aided Design, vol.36, issue.2, pp.161-174, 2004.
DOI : 10.1016/S0010-4485(03)00059-9

J. Boissonnat and A. Ghosh, Manifold Reconstruction Using Tangential Delaunay Complexes, Discrete & Computational Geometry, vol.26, issue.1, pp.221-267, 2014.
DOI : 10.1137/S1064827502419154

URL : https://hal.archives-ouvertes.fr/hal-00487862

J. Boissonnat, A. Lieutier, and M. Wintraecken, The reach, metric distortion, geodesic convexity and the variation of tangent spaces, Proc. 34st Symp, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01661227

J. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Algorithmica, vol.132, issue.23, pp.406-427, 2014.
DOI : 10.1063/1.3445267

URL : https://hal.archives-ouvertes.fr/hal-00707901

J. Boissonnat, F. Nielsen, and R. Nock, Bregman Voronoi Diagrams, Discrete & Computational Geometry, vol.12, issue.2, p.2010
DOI : 10.1515/9781400873173

URL : https://hal.archives-ouvertes.fr/hal-00488441

J. Boissonnat and S. Oudot, Provably good sampling and meshing of surfaces, Graphical Models, vol.67, issue.5, pp.405-451, 2005.
DOI : 10.1016/j.gmod.2005.01.004

URL : https://hal.archives-ouvertes.fr/hal-00488829

J. Boissonnat, C. Wormser, and M. Yvinec, Curved Voronoi Diagrams, Effective Computational Geometry for Curves and Surfaces, pp.67-116, 2006.
DOI : 10.1007/978-3-540-33259-6_2

URL : https://hal.archives-ouvertes.fr/hal-00488446

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay Mesh Generation, SIAM Journal on Computing, vol.44, issue.2, pp.467-512, 2015.
DOI : 10.1137/140955446

URL : https://hal.archives-ouvertes.fr/inria-00615486

J. Boissonnat and M. Yvinec, Algorithmic Geometry, 1998.
DOI : 10.1017/CBO9781139172998

J. Boissonnat, O. Devillers, K. Dutta, and M. Glisse, Delaunay triangulation of a random sample of a good sample has linear size, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01673170

J. Boissonnat, R. Dyer, and A. Ghosh, Delaunay triangulation of manifolds. Found, Comp. Math, vol.18, issue.2, pp.399-431, 2018.
DOI : 10.1007/s10208-017-9344-1

URL : https://hal.archives-ouvertes.fr/hal-00879133

F. Bolley, A. Guillin, and C. Villani, Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces, Probability Theory and Related Fields, vol.206, issue.1, pp.541-593, 2007.
DOI : 10.2140/pjm.1958.8.171

URL : https://hal.archives-ouvertes.fr/hal-00453883

M. Buchet, F. Chazal, S. Y. Oudot, and D. R. Sheehy, Efficient and robust persistent homology for measures, Proc. 36th ACM-SIAM Symp. on Discrete Algorithms, pp.168-180, 2015.
DOI : 10.1137/1.9781611973730.13

URL : https://hal.archives-ouvertes.fr/hal-01074566

D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Grad. Studies in Math, vol.33, 2001.
DOI : 10.1090/gsm/033

C. Caillerie, F. Chazal, J. Dedecker, and B. Michel, Deconvolution for the Wasserstein metric and geometric inference, Electronic Journal of Statistics, vol.5, issue.0, pp.1394-1423, 2011.
DOI : 10.1214/11-EJS646

URL : https://hal.archives-ouvertes.fr/inria-00607806

S. S. Cairns, P. B. Callahan, and S. R. Kosaraju, A simple triangulation method for smooth maniolds A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields, Bull. Amer. Math. Soc. J. ACM, vol.67, issue.421, pp.380-39067, 1961.

P. Cannarsa and C. Cinestrari, Semiconcave Functions, Hamilton- Jacobi Equations, and Optimal Control, Brikhauser, vol.58, 2004.

R. Chaine, A geometric convection approach of 3d-reconstruction, 1st Symp. Geom. Processing, pp.218-229, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00071898

F. Chazal, D. Cohen-steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, Proximity of persistence modules and their diagrams, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, pp.237-246, 2009.
DOI : 10.1145/1542362.1542407

URL : https://hal.archives-ouvertes.fr/inria-00292566

F. Chazal, D. Cohen-steiner, L. J. Guibas, F. Memoli, and S. Y. Oudot, Gromov-Hausdorff Stable Signatures for Shapes using Persistence, Computer Graphics Forum, vol.33, issue.5, pp.1393-1403, 2009.
DOI : 10.1109/TPAMI.2006.208

URL : https://hal.archives-ouvertes.fr/hal-00772413

F. Chazal, D. Cohen-steiner, and A. Lieutier, Normal cone approximation and offset shape isotopy, Computational Geometry, vol.42, issue.6-7, pp.6-7566, 2009.
DOI : 10.1016/j.comgeo.2008.12.002

URL : https://hal.archives-ouvertes.fr/inria-00124825

F. Chazal, D. Cohen-steiner, and A. Lieutier, A Sampling Theory for Compact Sets in Euclidean Space, Discrete & Computational Geometry, vol.18, issue.3, pp.461-479, 2009.
DOI : 10.1007/s00454-009-9144-8

URL : https://hal.archives-ouvertes.fr/hal-00864493

F. Chazal, D. Cohen-steiner, A. Lieutier, and B. Thibert, Shape smoothing using double offsets, Proceedings of the 2007 ACM symposium on Solid and physical modeling , SPM '07, pp.183-192, 2007.
DOI : 10.1145/1236246.1236273

URL : https://hal.archives-ouvertes.fr/inria-00104582

F. Chazal, D. Cohen-steiner, A. Lieutier, and B. Thibert, Stability of Curvature Measures, Computer Graphics Forum, vol.26, issue.2, pp.1485-1496, 2009.
DOI : 10.1090/pspum/054.3/1216630

URL : https://hal.archives-ouvertes.fr/inria-00344903

F. Chazal, D. Cohen-steiner, and Q. Mérigot, Geometric inference for probability measures. Found, Comp. Math, vol.11, issue.6, pp.733-751, 2011.
DOI : 10.1007/s10208-011-9098-0

URL : https://hal.archives-ouvertes.fr/hal-00772444

F. Chazal, V. De-silva, and S. Oudot, Persistence stability for geometric complexes, Geometriae Dedicata, vol.33, issue.2, pp.193-214, 2014.
DOI : 10.1007/s00454-004-1146-y

URL : https://hal.archives-ouvertes.fr/hal-00923560

F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo et al., Subsampling methods for persistent homology, Proc. 32nd Int. Conf. on Machine Learning Conference Proceedings, pp.2143-2151, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01073073

F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo et al., Robust topological inference: Distance to a measure and kernel distance. arXiv preprint arXiv, pp.1412-7197
URL : https://hal.archives-ouvertes.fr/hal-01232217

F. Chazal and A. Lieutier, The ?????-medial axis???, Graphical Models, vol.67, issue.4, pp.304-331, 2005.
DOI : 10.1016/j.gmod.2005.01.002

F. Chazal and A. Lieutier, Weak feature size and persistent homology, Proceedings of the twenty-first annual symposium on Computational geometry , SCG '05, pp.255-262, 2005.
DOI : 10.1145/1064092.1064132

F. Chazal and A. Lieutier, Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$, Discrete & Computational Geometry, vol.37, issue.4, pp.601-617, 2007.
DOI : 10.1007/s00454-007-1309-8

F. Chazal, P. Massart, and B. Michel, Rates of convergence for robust geometric inference, Electronic Journal of Statistics, vol.10, issue.2, pp.2243-2286, 2016.
DOI : 10.1214/16-EJS1161

URL : https://hal.archives-ouvertes.fr/hal-01157551

F. Chazal and S. Y. Oudot, Towards persistence-based reconstruction in euclidean spaces, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.232-241, 2008.
DOI : 10.1145/1377676.1377719

URL : https://hal.archives-ouvertes.fr/inria-00197543

F. Chazal, M. Vin-de-silva, S. Glisse, and . Oudot, The structure and stability of persistence modules, SpringerBriefs in Mathematics, 2016.
DOI : 10.1007/978-3-319-42545-0

URL : https://hal.archives-ouvertes.fr/hal-01330678

B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete & Computational Geometry, vol.16, issue.4, pp.377-409, 1993.
DOI : 10.1137/1116025

J. Cheeger, Critical points of distance functions and applications to geometry In Geometric Topology: recent developments, Montecani Terme, Lecture Notes in Math, vol.1504, pp.1-38, 1990.

J. Cheeger, W. Müller, and R. Schrader, On the curvature of piecewise flat spaces, Communications in Mathematical Physics, vol.12, issue.3, pp.405-454, 1984.
DOI : 10.1007/978-3-0348-5949-3

S. Cheng, T. K. Dey, and E. A. Ramos, Manifold Reconstruction from Point Samples, Proc. 16th ACM-SIAM Symp. Discrete Algorithms, pp.1018-1027, 2005.

F. H. Clarke, K. L. Clarkson, and P. W. Shor, Optimization and Nonsmooth Analysis Applications of random sampling in computational geometry, II. Discrete Comp. Geom, vol.4, pp.387-421, 1983.

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Diagrams, Discrete & Computational Geometry, vol.37, issue.1, pp.103-120, 2007.
DOI : 10.1007/s00454-006-1276-5

M. De-berg, M. Van-kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom.: Algorithms and Applications, 2000.

V. Silva, A weak characterisation of the Delaunay triangulation, Geometriae Dedicata, vol.33, issue.2, pp.39-64, 2008.
DOI : 10.1007/978-1-4612-1098-6

V. De-silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebraic & Geometric Topology, vol.10, issue.1, pp.339-358, 2007.
DOI : 10.1007/s00454-004-1146-y

B. Delaunay, Sur la sphère vide, Otdelenie Matematicheskii i Estestvennyka Nauk, pp.793-800, 1934.

T. K. Dey, Curve and Surface Reconstruction : Algorithms with Mathematical Analysis, 2007.
DOI : 10.1017/CBO9780511546860

URL : http://www.cis.ohio-state.edu/~tamaldey/paper/book/recon.ps.gz

R. Dyer, G. Vegter, and M. Wintraecken, Riemannian simplices and triangulations, Geometriae Dedicata, vol.41, issue.4, pp.91-138, 2015.
DOI : 10.1515/9781400877577

URL : http://doi.org/10.1007/s10711-015-0069-5

H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Comp. Science, vol.10, 1987.
DOI : 10.1007/978-3-642-61568-9

H. Edelsbrunner, The union of balls and its dual shape, Discrete & Computational Geometry, vol.133, issue.3-4, pp.415-440, 1995.
DOI : 10.1007/978-1-4612-4576-6

H. Edelsbrunner, Geometry and Topology for Mesh Generation, 2001.
DOI : 10.1115/1.1445302

H. Edelsbrunner, Surface reconstruction by wrapping finite point sets in space, pp.379-404, 2003.
DOI : 10.1007/978-3-642-55566-4_17

URL : http://www.cs.duke.edu/~edels/TriTop/Wrap.pdf

H. Edelsbrunner, M. Facello, and J. Liang, On the definition and the construction of pockets in macromolecules, Discrete Applied Mathematics, vol.88, issue.1-3, pp.83-102, 1998.
DOI : 10.1016/S0166-218X(98)00067-5

H. Edelsbrunner and J. L. Harer, Computational topology: an introduction, 2010.
DOI : 10.1090/mbk/069

H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, On the shape of a set of points in the plane, IEEE Transactions on Information Theory, vol.29, issue.4, pp.551-559, 1983.
DOI : 10.1109/TIT.1983.1056714

H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification, Discrete & Computational Geometry, vol.28, issue.4, pp.511-533, 2002.
DOI : 10.1007/s00454-002-2885-2

URL : http://graphics.stanford.edu/~afra/papers/focs00/dcg.ps.gz

H. Edelsbrunner, X. Li, G. L. Miller, A. Stathopoulos, D. Talmor et al., Smoothing and cleaning up slivers, Proceedings of the thirty-second annual ACM symposium on Theory of computing , STOC '00, pp.273-277, 2000.
DOI : 10.1145/335305.335338

URL : http://www.cs.iit.edu/~xli/paper/Conf/sliver-STOC00.pdf

H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes, ACM Transactions on Graphics, vol.13, issue.1, pp.43-72, 1994.
DOI : 10.1145/174462.156635

URL : http://arxiv.org/pdf/math/9410208v1.pdf

H. Edelsbrunner and H. Wagner, Topological data analysis with Bregman divergences, 33rd Symp. Comp. Geom, pp.1-39, 2017.

D. Eppstein, M. Löffler, and D. Strash, Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time, Proc. 21st Int. Symp. on Algorithms and Computation, pp.403-414, 2010.
DOI : 10.1007/s00373-007-0738-8

B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan et al., Confidence sets for persistence diagrams, The Annals of Statistics, vol.42, issue.6, pp.2301-2339, 2014.
DOI : 10.1214/14-AOS1252SUPP

URL : http://arxiv.org/pdf/1303.7117

F. Chazal, M. Glisse, C. Labrù, and B. Michel, Convergence rates for persistence diagram estimation in topological data analysis, J. Machine Learning Research, vol.16, pp.3603-3635, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01073072

T. Feder and D. Greene, Optimal algorithms for approximate clustering, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.434-444, 1988.
DOI : 10.1145/62212.62255

H. Federer, Curvature measures, Transactions of the American Mathematical Society, vol.93, issue.3, pp.418-491, 1959.
DOI : 10.1090/S0002-9947-1959-0110078-1

D. Freedman, Efficient simplicial reconstructions of manifolds from their samples, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.10, 2002.
DOI : 10.1109/TPAMI.2002.1039206

URL : http://www.cs.rpi.edu/~freedd/publications/freedman_pami02.pdf

P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, vol.9, pp.596-603, 1999.

J. H. Fu, Convergence of curvatures in secant approximations, Journal of Differential Geometry, vol.37, issue.1, pp.177-190, 1993.
DOI : 10.4310/jdg/1214453427

J. H. Fu, Tubular neighborhoods in Euclidean spaces. Duke Math, Journal, vol.52, issue.4, pp.1025-1046, 1985.
DOI : 10.1215/s0012-7094-85-05254-8

W. Fulton, Algebraic Topology: a First Course, 1995.
DOI : 10.1007/978-1-4612-4180-5

J. Gallier, Notes on Convex Sets, Polytopes, Polyhedra Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations, 2007.
DOI : 10.1007/978-1-4613-0137-0_9

URL : https://hal.archives-ouvertes.fr/inria-00193831

S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00002870

J. Giesen and M. John, The flow complex: A data structure for geometric modeling, Proc. 14th ACM-SIAM Symp. Discrete Algorithms (SODA), pp.285-294, 2003.
DOI : 10.1016/j.comgeo.2007.01.002

URL : https://doi.org/10.1016/j.comgeo.2007.01.002

J. Giesen and U. Wagner, Shape Dimension and Intrinsic Metric from Samples of Manifolds, Discrete & Computational Geometry, vol.32, issue.2, pp.245-267, 2004.
DOI : 10.1007/s00454-004-1120-8

T. F. Gonzales, Clustering to minimize the maximum intercluster distance, Theoretical Computer Science, vol.38, issue.2-3, pp.293-306, 1985.
DOI : 10.1016/0304-3975(85)90224-5

K. Grove, Critical point theory for distance functions, Proceedings of Symposia in Pure Mathematics, 1993.
DOI : 10.1090/pspum/054.3/1216630

L. Guibas, D. Morozov, and Q. Mérigot, Witnessed k-Distance, Discrete & Computational Geometry, vol.40, issue.2, pp.22-45, 2013.
DOI : 10.1090/gsm/058

URL : https://hal.archives-ouvertes.fr/hal-00872490

S. Har-peled, Geometric approximation algorithms, 2011.
DOI : 10.1090/surv/173

URL : http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/book.pdf

S. Har-peled and M. Mendel, Fast Construction of Nets in Low-Dimensional Metrics and Their Applications, SIAM Journal on Computing, vol.35, issue.5, pp.1148-1184, 2006.
DOI : 10.1137/S0097539704446281

A. Hatcher, Algebraic Topology, 2002.

M. W. Hirsch, Differential Topology, 1976.
DOI : 10.1007/978-1-4684-9449-5

I. T. Jolliffe, Principal component analysis, 2002.

X. Li, Generating well-shaped d-dimensional Delaunay Meshes, Theoretical Computer Science, vol.296, issue.1, pp.145-165, 2003.
DOI : 10.1016/S0304-3975(02)00437-1

J. Liang, H. Edelsbrunner, and C. Woodward, Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design, Protein Science, vol.245, issue.9, pp.1884-1897, 1998.
DOI : 10.1042/bj3300533

A. Lieutier, Any open bounded subset of has the same homotopy type as its medial axis, Computer-Aided Design, vol.36, issue.11, pp.1029-1046, 2004.
DOI : 10.1016/j.cad.2004.01.011

Y. Ma, P. Niyogi, G. Sapiro, and R. Vidal-ed, Dimensionality reduction via subspace and submanifold learning, IEEE Signal Processing Magazine, vol.28, issue.2, 2011.
DOI : 10.1109/msp.2010.940005

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=5714387

C. Maria, J. Boissonnat, M. Glisse, and M. Yvinec, The Gudhi Library: Simplicial Complexes and Persistent Homology, The 4th Int. Congress on Math. Software, 2014.
DOI : 10.1007/978-3-662-44199-2_28

URL : https://hal.archives-ouvertes.fr/hal-01108461

T. Martinetz and K. Schulten, Topology representing networks, Neural Networks, vol.7, issue.3, pp.507-522, 1994.
DOI : 10.1016/0893-6080(94)90109-0

J. Milnor, Morse Theory, 2006.

R. A. Moser and G. Tardos, A constructive proof of the generalized Lovász lemma, J. ACM, vol.57, issue.2, p.2010

R. Motwani and P. Raghavan, Randomized Algorithms, 1995.

K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, 1994.

J. R. Munkres, Elementary differential topology, 1966.

J. R. Munkres, Elements of algebraic topology, 1984.

P. Niyogi, S. Smale, and S. Weinberger, Finding the Homology of Submanifolds with High Confidence from??Random??Samples, Discrete & Computational Geometry, vol.33, issue.11, pp.419-441, 2008.
DOI : 10.1007/b97315

A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 1992.

S. Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis, AMS Mathematical Surveys and Monographs, vol.209, 2015.
DOI : 10.1090/surv/209

URL : https://hal.archives-ouvertes.fr/hal-01247501

D. Pedoe, Geometry, a comprehensive course, 1970.

S. Peleg, M. Werman, and H. Rom, A unified approach to the change of resolution: space and gray-level, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.739-742, 1989.
DOI : 10.1109/34.192468

A. Petrunin, Semiconcave Functions in Alexandrov???s Geometry, Surveys in Differential Geometry: Metric and Comparison Geometry, 2007.
DOI : 10.4310/SDG.2006.v11.n1.a6

URL : http://www.intlpress.com/site/pub/files/_fulltext/journals/sdg/2006/0011/0001/SDG-2006-0011-0001-a006.pdf

V. Robins, Towards computing homology from finite approximations, Topology Proceedings, pp.503-532, 1999.

R. T. Rockafellar, Convex Analysis, 1970.
DOI : 10.1515/9781400873173

Y. Rubner, C. Tomasi, and L. J. Guibas, The Earth Mover's Distance as a Metric for Image Retrieval, International Journal of Computer Vision, vol.40, issue.2, pp.99-121, 2000.
DOI : 10.1023/A:1026543900054

R. Seidel, The upper bound theorem for polytopes: an easy proof of its asymptotic version, Computational Geometry, vol.5, issue.2, pp.115-116, 1995.
DOI : 10.1016/0925-7721(95)00013-Y

J. Shewchuk, Star splaying, Proceedings of the twenty-first annual symposium on Computational geometry , SCG '05, pp.237-246, 2005.
DOI : 10.1145/1064092.1064129

R. Sibson, A vector identity for the Dirichlet tessellation, Mathematical Proceedings of the Cambridge Philosophical Society, vol.21, issue.01, pp.151-155, 1980.
DOI : 10.2307/1425985

R. Sibson, A brief description of natural neighbour interpolation, Interpreting Multivariate Data, pp.21-36, 1981.

J. Spencer, Robin Moser makes Lovász Local Lemma Algorithmic! https, 2009.

L. N. Trefethen and D. Bau, Numerical linear algebra, Society for Industrial and Applied Mathematics, 1997.
DOI : 10.1137/1.9780898719574

C. Villani, Topics in Optimal Transportation, 2003.
DOI : 10.1090/gsm/058

J. H. Whitehead, On C 1 -Complexes, The Annals of Mathematics, vol.41, issue.4, pp.809-824, 1940.
DOI : 10.2307/1968861

H. Whitney, Geometric integration theory, 1957.
DOI : 10.1515/9781400877577

G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol.152, 1994.
DOI : 10.1007/978-1-4613-8431-1