Object Classification in Images of Neoclassical Furniture Using Deep Learning

Abstract : This short paper outlines research results on object classification in images of Neoclassical furniture. The motivation was to provide an object recognition framework which is able to support the alignment of furniture images with a symbolic level model. A data-driven bottom-up research routine in the Neoclassica research framework is the main use-case. This research framework is described more extensively by Donig et al. [2]. It strives to deliver tools for analyzing the spread of aesthetic forms which are considered as a cultural transfer process.
Type de document :
Communication dans un congrès
2nd International Workshop on Computational History and Data-Driven Humanities (CHDDH), May 2016, Dublin, Ireland. IFIP Advances in Information and Communication Technology, AICT-482, pp.109-112, 2016, Computational History and Data-Driven Humanities. 〈10.1007/978-3-319-46224-0_10〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01616309
Contributeur : Hal Ifip <>
Soumis le : vendredi 13 octobre 2017 - 14:53:05
Dernière modification le : vendredi 13 octobre 2017 - 14:54:51
Document(s) archivé(s) le : dimanche 14 janvier 2018 - 14:20:44

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Bernhard Bermeitinger, André Freitas, Simon Donig, Siegfried Handschuh. Object Classification in Images of Neoclassical Furniture Using Deep Learning. 2nd International Workshop on Computational History and Data-Driven Humanities (CHDDH), May 2016, Dublin, Ireland. IFIP Advances in Information and Communication Technology, AICT-482, pp.109-112, 2016, Computational History and Data-Driven Humanities. 〈10.1007/978-3-319-46224-0_10〉. 〈hal-01616309〉

Partager

Métriques

Consultations de la notice

56