Automated Monitoring of Data Quality in Linked Data Systems

Kevin Feeney 1 Rajan Verma 1 Max Brunner 1 Andre Stern 1 Odhran Gavin 1, * Declan O'Sullivan 1 Rob Brennan 1
* Auteur correspondant
1 KDEG - Knowledge and Data Engineering Group
School of Computer Science and Statistics [Dublin]
Abstract : This paper describes the Dacura system’s ability to monitor data quality. This is evaluated in an experiment where a dataset of historical political violence is collected, enriched, interlinked, and published. The results of the experiment demonstrate that automated quality measures enable the construction of publication pipelines which allow datasets to evolve rapidly without loss of quality.
Type de document :
Communication dans un congrès
2nd International Workshop on Computational History and Data-Driven Humanities (CHDDH), May 2016, Dublin, Ireland. IFIP Advances in Information and Communication Technology, AICT-482, pp.121-123, 2016, Computational History and Data-Driven Humanities
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01616350
Contributeur : Hal Ifip <>
Soumis le : vendredi 13 octobre 2017 - 15:21:20
Dernière modification le : vendredi 13 octobre 2017 - 15:42:47

Fichier

431566_1_En_12_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01616350, version 1

Citation

Kevin Feeney, Rajan Verma, Max Brunner, Andre Stern, Odhran Gavin, et al.. Automated Monitoring of Data Quality in Linked Data Systems. 2nd International Workshop on Computational History and Data-Driven Humanities (CHDDH), May 2016, Dublin, Ireland. IFIP Advances in Information and Communication Technology, AICT-482, pp.121-123, 2016, Computational History and Data-Driven Humanities. 〈hal-01616350〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

16