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Summary

Programming paradigms in High-Performance Computing have been shifting

towards task-based models which are capable of adapting readily to heterogeneous

and scalable supercomputers. The performance of task-based application heavily

depends on the runtime scheduling heuristics and on its ability to exploit computing

and communication resources. Unfortunately, the traditional performance analysis

strategies are un�t to fully understand task-based runtime systems and applications:

they expect a regular behavior with communication and computation phases, while

task-based applications demonstrate no clear phases. Moreover, the �ner granu-

larity of task-based applications typically induces a stochastic behavior that leads

to irregular structures that are di�cult to analyze. Furthermore, the combination

of application structure, scheduler, and hardware information is generally essential

to understand performance issues. This paper presents a �exible framework that

enables one to combine several sources of information and to create custom visual-

ization panels allowing to understand and pinpoint performance problems incurred

by bad scheduling decisions in task-based applications. Three case-studies using

StarPU-MPI, a task-based multi-node runtime system, are detailed to show how our

framework can be used to study the performance of the well-known Cholesky fac-

torization. Performance improvements include a better task partitioning among the

multi-(GPU,core) to get closer to theoretical lower bounds, improved MPI pipelin-

ing in multi-(node,core,GPU) to reduce the slow start, and changes in the runtime

system to increase MPI bandwidth, with gains of up to 13% in the total makespan.

KEYWORDS:
High-Performance Computing, Heterogeneous platforms, Task-based applications, Trace Visualization,

Cholesky

1 INTRODUCTION

High-Performance Computing (HPC) landscape have experienced a paradigm shift in the last years. The stagnation in the pro-
cessor frequency has led the adoption of other ways to ful�ll the ever-growing need for computation power of HPC applications.
A common HPC platform formerly composed of homogeneous nodes now is composed of multicore computing nodes enhanced

£See the acknowledgement section at the end for funding information.
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with multiple accelerator devices, e.g., 90 of the fastest supercomputers listed in the June 2017 Top500 list are using GPUs
and/or Xeon Phi coprocessors to increase their computing power (1).

This paradigm shift in the hardware has exposed the limitations of traditional tools for programming and analyzing appli-
cations running on HPC platforms. E�ciently programming such machines achieving portable and scalable performance has
become extremely challenging. The use of explicit programming models demands a huge e�ort to develop and maintain the
application and results in a code that is tightly coupled to the target hardware. Such programming model is unfeasible in the
hybrid scenario where the accelerator's technology is changing fast, e.g., Cell Broadband Engine Architecture (2006), Graphics
processing unit (2007), XeonPhi (2013).

The pressure on parallel programming tools has contributed to the popularization of the task-based programming model.
While the traditional parallel programming paradigm relies on low-level abstractions like threads and explicit synchronizations,
the task-based model describes the application in terms of dependent sequential (or parallel) tasks. Explicit synchronizations
are replaced by tasks dependencies that can be, in several cases, inferred automatically from data access. The task-based model
is implemented by several programming models: OpenMP 4 (2), OmpSs (3), PaRSEC (4), StarPU (5), etc. Despite the growing
availability of tools to program and execute task-based applications on hybrid platforms, there are few analysis tools with a focus
on such scenario. One of the main reasons is that the burden of getting the maximum performance from the machine shifts from
the application to the runtime developer, who implements a given scheduling heuristic. Usually, tools that are capable of giving
insights to developers, such as Paraver (6), Vite (7), and others (8, 9), are unsuited to scheduling specialists because assumptions
and performance bottlenecks are di�erent from classical parallel programs and because the traces of task-based applications
can be much richer (e.g., with task-dependencies or information about the state of the scheduler) than the ones of standard MPI
applications.

In this article, we explain how we designed a �exible and versatile framework that enables a better understanding and easy
identi�cation of subtle performance problems due to bad scheduling choices in task-based parallel applications. Most of the
problems we report would have gone unnoticed and misunderstood with classical trace visualization approaches. We built the
framework1 on top of modern data analytics tools, combining the R programming language (and in particular the ggplot2
library) and org-mode (10). The framework comes at a very low development cost when compared to a traditional and monolithic
performance visualization tool. The designed views depict many di�erent facets of the program behavior, enabling the correlation
of already available performance metrics with those derived from the traces. The main strengths of our visual performance
analysis framework compared to other tools are the following: (a) combining the intuitiveness of visual trace exploration with the
expressiveness of statistical queries (Section 5); (b) easy creation and synchronization of application-speci�c views that allow
to better understand how the scheduling unfolds (Section 5.1.1); (c) automatic �ltering of dependencies or of abnormally long
tasks to quickly identify which scheduling opportunities may have been missed (Section 5.1.1); (d) a two-phase implementation
as a work�ow where the �rst part can be run on the data server, for pre-processing and combination of several sources of data,
and the second part on the analyst laptop, for visualization (Section 5.3).

We demonstrate the e�ectiveness of our visualization approach by analyzing traces from the dense linear algebra Cholesky
factorization of the Chameleon/MORSE package (11), implemented using the StarPU task-based runtime (5) and its MPI
extension (12, 13). Our experiments rely on two hybrid multi-core/multi-GPU/multi-node clusters and reveal many interesting
behaviors that lead us to pinpoint resource usage mistakes, to compare StarPU schedulers (DMDA, DMDAS and Work Steal-
ing), and to conduct an extensive analysis of StarPU-MPI performance. The use of our framework has enabled us to propose
many optimizations to StarPU-MPI, ultimately leading to the following performance gains:(a) constraining certain task types
to particular resource types may help reducing idleness in multi-GPU scenarios;(b) �xing the lack of message pipelining with
MPI by increasing the eager mode limit of the OpenMPI implementation, hence reducing the slow start of the application; and
(c) detecting that too many MPI concurrent operations are harmful when reaching the maximum of parallelism. Regarding the
last item, we have proposed a two-fold solution including communication priorities and a limit on the number of concurrent
MPI requests from StarPU. Combined, all these contributions bring several improvements that are already implemented in the
main trunk of StarPU-MPI code, for the bene�t of other parallel applications.

Section 2 provides a background on task-based runtimes for hybrid platforms, the tiled Cholesky algorithm used as a case
study, the StarPU runtime and its MPI extension. Section 3 presents related work on traditional BSP-based and task-oriented
trace visualization, motivating our own study. Section 4 presents our analysis of the problem and gives an overview of how we
evaluated our proposal. Section 5 presents our visualization framework and work�ow, detailing all the panels, a discussion about

1Code available at https://gitlab.in2p3.fr/schnorr/ccpe2017/
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scalability, the implementation, and performance, as well as some limitations of our strategy. In Section 6, we detail three case
studies demonstrating the e�ectiveness of our visualization strategy to debug the tiled task-based Cholesky application and the
MPI extension of the StarPU runtime. Section 7 gives a summary of results and future work.

2 BACKGROUND AND EXPERIMENTAL CONTEXT

2.1 Background

Traditional HPC applications have been designed following the bulk-synchronous parallel (BSP) paradigm. In this model, the
application execution has well-de�ned phases: computation, communication and barrier. The BSP design has been used for
a long time in homogeneous platforms with identical nodes connected by a fast and stable interconnection. However, current
HPC platforms rely on hybrid nodes where accelerator devices are attached to multicore processors to increase the computa-
tional power of the system. In this scenario, the use of explicit programming models where one should indicate where and when
each computation should be done, as done in the BSP paradigm, becomes impractical as it requires to tightly couple the imple-
mentation to the hardware con�guration to achieve good performances. Although this strategy might lead towards the maximal
achievable performance, it su�ers from bad performance portability, it is sensitive to variability and it is really hard to develop
and maintain.

Task-based programming tools have emerged to address the heterogeneity of state of art HPC platforms. In this model, the
application is designed in terms of hardware-independent tasks and their dependencies. Task-based applications rely on dynamic
runtime systems to hide the complexity of the platform and e�ciently exploit the multilevel parallelism of the platform (see
Figure 1). Once the programmer describes the application in terms of abstract tasks and their dependencies, the runtime system
is responsible for platform-related activities such as task scheduling, data transfers, and dependencies management. To perform
these activities, the runtime system infers platform and code characteristics such as provided task implementations, available
processing units (CPU cores, GPUs devices), estimated task duration, data locality and interconnection bandwidth. From these
details, the runtime can use appropriate scheduling heuristics and perform optimizations (e.g., anticipating an overlap of data
transfers) in order to achieve a better performance.

Application
Cholesky , QR, LU, FMM, ...

Task-based Runtime
StarPU , DPlasma, OmpSs

Communication

MPI , CUDA

Computation

CPU/PAPI, CUDA

FIGURE 1 Task-based appli-
cation organization (empha-
sized tools are ones used in this
article).

Several successful tools have been developed in the recent years. Initially, they focused on
speci�c applications. MAGMA (14), for instance, supports the execution of linear algebra
applications in a combination of multi-core with GPUs. OmpSs (3) provides an extension
to OpenMP tasks through new directives that allow supporting multi-core systems enhanced
with GPUs. PaRSEC (15) is a generic framework for architecture-aware scheduling of tasks
on many-core heterogeneous clusters. StarPU (5) is designed to exploit hybrid architectures
and o�ers an MPI-based extension (12, 13) to exploit multiple nodes. Despite the initial focus
on dense linear algebra applications, currently, these runtime systems are being used in many
other domains, such as FEM applications (16), seismic wave modeling (17), sparse linear
algebra (18, 19), aerodynamic simulations (20) and climate modeling (21).

2.2 The Tiled Task-based Cholesky decomposition

In the context of task-based applications, the overall performance is intrinsically related to the e�ciency of the runtime system.
For that reason, focusing our analysis on the runtime system can help us to identify important issues and mistakes that impact the
overall performance of the application. However, to study the runtime system performance we should rely on a representative and
already well-optimized application. Using a non-optimized application can hide runtime system performance issues while a non-
representative one could lead us to problems and mistakes that have no signi�cant in�uence on the performance of commonly-
executed applications. In this work, we use a Cholesky decomposition as our case study application. This factorization is one of
the most common linear algebra operations and is used by many scienti�c applications. In order to improve the reproducibility
and the stability of our tests, we adopt the tiled Cholesky implementation provided by the Chameleon/MORSE package (11).
This implementation is built on top of the StarPU runtime system (5) and compiled with standard BLAS (CPU) and CUBLAS
(GPU) libraries.

Figure 2 shows a simpli�ed version of this application. The lines with calls todpotrf , dtrsm , dsyrk anddgemm(Figure 2a)
represent the creation of StarPU tasks with double-precision implementations for CPUs and GPUs (except thedpotrf that has



4

only the CPU version). The underlined labels RWand Rindicate the access mode of the subsequent matrix block. From these
access mode hints, the runtime can infer the dependencies and then build the Directed Acyclic Graph (DAG) of tasks. Figure 2b
shows the corresponding DAG for a5 • 5 matrix. In each iterationk of the outer loop, onedpotrf task enables the execution of
N * k * 1 dtrsm , thenN * k * 1 dsyrk tasks, followed byù . N * k/2_2 dgemmtasks. From the dependencies, one can observe
that several iterations can be executed simultaneously and that the number of repetitions in the internal loops decreases at the
same time ask increases. Finally, the execution time of a task highly depends on its type (dpotrf , dtrsm , dsyrk , anddgemm)
and on the target resource (CPU or GPU). Note that the color scheme used in this Figure to represent the task types is respected
in all the following graphics of this paper.

for (k = 0; k < N; k++) {
DPOTRF(RW, A[k][k]);
for (i = k+1; i < N; i++)

DTRSM(RW, A[i][k], R , A[k][k]);
for (i = k+1; i < N; i++) {

DSYRK(RW, A[i][i], R , A[i][k]);
for (j = k+1; j < i; j++)

DGEMM(RW, A[i][j], R , A[i][k],
R, A[j][k]);

}
}

The Cholesky Algorithm.

0

0 0 0 0

0 0 0 0 0 0 0 0 0 0

1

1 1 1

1 1 1 1 1 1

2

2 2

2 2 2

3

3

3

4

Corresponding DAG forN = 5.

FIGURE 2 The Cholesky code and its DAG (forN = 5).

2.3 The StarPU Runtime and the MPI extension for multi-node platforms

StarPU (5) is a runtime system for task-based programming on hybrid architectures. The runtime was initially designed to handle
single-node hybrid platforms composed of multicore processors (CPUs) and accelerators (GPUs, Intel Xeon Phi). To e�ciently
exploit the parallelism of the platform, StarPU relies on multiple implementations of the same tasks e.g., with CPU and/or GPU
versions. The runtime scheduler decides on-the-�y where to execute the tasks considering the available processing resources,
their type, the current locations of data, and the provided task implementations. StarPU o�ers several task scheduling policies.
The DMDA/DMDAS policies are based on precalibrated performance models, while the WS/LWS uses a work stealing design,
stealing tasks from the most loaded worker (original) or the most loaded neighbor worker (locality version). The PRIO policy
only relies on priority hints speci�ed by the application programmer.

TheDMDA (Deque Model Data Aware) andDMDAS (Deque Model Data Aware Sorted) algorithms are members of a family
of StarPU schedulers that take the predicted task duration and data transfer duration into account when performing the task
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scheduling. These strategies are based onlist scheduling, i.e., every time a resource is idle, if a task is ready, it will be scheduled
on this particular resource. Such a scheduler therefore never leaves a resource idle on purpose, which ensures the well-known
.2*1_ p/ competitive ratio for homogeneous machines (22). Deciding which ready task to select has a major in�uence in practice
and the classical heuristic consists in prioritizing tasks based on the critical path. However, the critical path notion is dynamic and
obtaining a proper estimation can be quite challenging. With heterogeneous computing resources, such prioritization is generally
done with variants of the HEFT (Heterogeneous Earliest Finish Time) strategy (23). The DMDA and DMDAS algorithms are
greedy heuristics that schedule tasks in the order they become available, taking into account the predicted task duration, the
estimated data transfer duration between CPUs and GPUs and the relative performance of resources on each computation kernel
when making its decision. The DMDAS algorithm improves DMDA decisions by sorting tasks on per-worker lists by number
of data-slices already transferred and by priority, which can be expensive when the number of tasks is large. It is therefore rather
close to the original HEFT algorithm by respecting priorities and taking past scheduling decisions into account.

TheWS (Work Stealing) andLWS (Locality Work Stealing) algorithms use one list per worker; new tasks are kept local by
default. When a worker is idle, in the WS policy, it steals tasks from the most loaded worker. The LWS policy, on the other hand,
imposes that the worker must steal �rst from the most loaded neighbor worker. This victim's choice di�ers from the classical
work stealing algorithm (24) where the victim is chosen using a random strategy.

ThePRIO algorithm uses a mere centralized list that is shared by all the workers. This list keeps the tasks sorted respecting
thepriorities speci�ed by the application programmer.

The StarPU-MPI (12, 13) extension provides additional support to handle multi-node architectures, adopting the MPI spec-
i�cation as a mean of access to the network. The main characteristic of the extension is that it has one independent StarPU
scheduler per node. For example, if an experiment is con�gured with DMDA, this scheduler will be used in each of the nodes
to process a part of the whole application DAG. Existing dependencies among nodes are satis�ed through MPI send/receive
point-to-point operations, and managed like any other task scheduled by the runtime. Since the domain decomposition is static,
these send/receive operations are automatically queued along tasks within the DAG. StarPU-MPI has one speci�c thread to han-
dle MPI communications per node. On completion of a task whose output is needed by a task on another MPI node, the MPI
thread posts the corresponding send operation. On the other node, on reception of the data from MPI, the MPI thread releases
the execution of the corresponding task.

The classical Two-dimensional Block-Cyclic Distribution (25) has been previously modi�ed to support multi-node runs with
static decomposition under the auspices of StarPU-MPI. The decomposition depends on the P Ö Q parameter and the number
of MPI nodes, governing how the input matrix is partitioned among nodes in a per-tile basis. The value of P can range from
one to the number of nodes. Figure 3 depicts the four possible situations cases for a Cholesky factorization with eight nodes
and a matrix with 16Ö16 tiles: the data decomposition shown in the left facet is obtained when P=1 Ö Q=8 and leads to a row
based distribution of tiles (one color per node); for P=2 Ö Q=4 and P=4 Ö Q=2, shown in the center left and right facets, the
data distribution is interleaved; �nally, when P=8 Ö Q=1, data distribution is by column as shown by the right facet. In an ideal
scenario, for a given number of nodes, the value of P should be de�ned so as to minimize the communication perimeter of each
node as it is related to the total volume of communications.

1x8 (by row) 2x4 4x2 8x1 (by column)

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

1
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FIGURE 3 Di�erent static partitioning schemes fordtrsm tasks as dictated by the P parameter when eight nodes are used to
run Cholesky: P=1 (left, by row), P=2 (center left), P=4 (center right), and P=8 (right, by column).
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3 RELATED WORK

There are very few established tools to conduct a proper task-aware analysis. This contradicts the latest trend towards runtime
systems for task-based applications that are becoming more and more common (see Section 2). As a consequence, developers
rely on BSP-based tools, seeking unexpected heterogeneity where homogeneous behavior is common. These classic visualization
techniques are unsuited to the performance analysis of task-based applications because heterogeneity and unstructured execution
is the expected common behavior. We detail trace visualization strategies for both BSP and DAG-based applications highlighting
their di�erences (Sections 3.1 and 3.2), and motivate our work with the design challenges (Section 4) of novel visualization
techniques for DAG applications, as well as the typical questions raised during the analysis process.

3.1 Traditional BSP-based Visualization

Many tools exist to visualize traces from BSP-based applications, where regularity among resources is common and clear
application phases can be visually and automatically detected. Most of these tools focus on message-passing applications relying
on the widely-known MPI interface (26). The most common technique is based on space/time plots, which get inspiration from
the traditional Gantt charts (27), where computational resources or application entities (process, threads) are arranged vertically,
sometimes hierarchically organized, while the application states (functions, actions) are laid out horizontally along time. Colors
are extensively used to depict di�erent thread states e.g., MPI operation. Interaction between application components are depicted
as arrows whose width may correlate with the the amount of transferred data. Such technique has been implemented multiples
times with di�erent technologies to improve human perception and scalability.

Yet, the race towards Exascale computing brings thousands to millions of cores into play, turning slow the rendering of space/-
time views when there are millions of states to be shown in a single screen. To mitigate this problem, Vite (7) uses an OpenGL
canvas with GPU acceleration to improve rendering performance. Since Vite relies on the semantic-free Paje language (28) as
trace input, it can depict virtually any kind of traces. Paraver (6) also tackles the scalability issue by implementing trace aggrega-
tion before the visualization. So, instead of sending all trace data to the rendering driver, it decides (based on user con�guration)
which element to draw in a speci�c location of the screen. Vampir (9) is a closed-source visualization tool with multiple views
for OTF2 trace �les It is considered to be more scalable than similar tools since it can leverage the nodes of a cluster to increase
the data bandwidth towards the client node that renders the space/time view. In general, all these tools focus on interactivity,
enabling one to �lter, zoom, interact, query data with a GUI. More recently, some of these tools have been adapted to handle
application traces collected with OpenMP (29) or with hybrid con�gurations (30) but the analysis is more geared toward coarse-
grain pro�ling than �ne dependency analysis. An interesting approach for MPI program analysis related to dependency analysis
was recently proposed by Böhmeet al. in Scalasca (31). A critical path is inferred from the wait-states of the execution trace
and the load imbalance can then be better evaluated and inspected (somehow similarly to what we do in Section 6.3 although
no space/view is derived from this information in Scalasca). The e�ciency of this approach is demonstrated on both a classi-
cal SMPD program and a multi-physics MPMD program but it is however not clear how such approach allows one to process
heterogeneous information from threads, GPUs, and MPI.

Space/time views are very useful to depict per-thread application states along time. However, the interaction among threads,
represented by arrows from source to destination, usually makes the representation hard to understand. The problem is that
asynchronous communication and priority communication queues turn the visualization into a clutter of graphical lines, without
any kind of regularity. This problem has for example been addressed in Ravel (8). The tool fully replaces the notion of time
(along the X axis of space/time views) by the order and simplicity of logical clocks. In exchange, a lateness metric is proposed
to encode how much each state is delayed with respect to other states in the same logical step of the application. Since phases are
clearly identi�ed, the tool is capable of clustering thread behavior by similarity. The approach enables one to focus on the causal
relationship among process and, at the same time, have a perception of bad performance with colors. An alternative approach to
handle numerous communication arrows is given through graphical edge bundling (32), keeping the temporal scale untouched.
Individual communication actions are bundled together to highlight the high-level communication patterns of the application.

3.2 Task-oriented Visualization

Parallel applications that are described as a Directed Acyclic Graph (DAG) of tasks have di�erent requirements during the
performance analysis, mainly because task scheduling is naturally stochastic. Besides, task dependencies in the DAG impose a
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certain order on task execution. These are especially important in the beginning and end of the execution, when the number of
tasks is not su�cient to occupy all resources. Such kind of perception is nonexistent in BSP-based performance analysis tools. As
a consequence, there are very few tools that are truly oriented towards DAG-based application and runtime performance analysis.
Very frequently, these tools inspire from the already established �eld of BSP-based trace visualization, using the intuitive view
of Gantt charts supplemented with interactions i.e., mouse pointer. Haugenet al. (33), for instance, proposes an interactive
Gantt chart enhanced with dependencies, drawn as edges between tasks, that are highlighted when the mouse pointer hovers.
We believe this approach su�ers from three issues. First, in terms of scalability, since (e.g., in Cholesky) tasks typically have
many dependencies (up toNoutgoing dependencies fordtrsm anddpotrf tasks, i.e., a total of�. N 3/), drawing everything and
�nding interestingtasks and dependencies only through mouse interaction can be very tedious. In practice, only tasks close to
the critical path are important. Second, only one-level dependencies are depicted, while several levels are required to understand
the history leading to the scheduling problem. Third, this tool does not really account for the heterogeneity of resources.

An alternative approach to Gantt-like views is implemented in DAGViz (34). The tool o�ers a visual representation of the
DAG, which is retrieved using macros (translated to Cilk, Intel TBB or OpenMP) and presented in a hierarchical way. The
resulting representation can be folded/unfolded on-demand to show details and the node color indicates where they are executed.
There is no way to retrieve the time dimension and task duration, which can make performance analysis di�cult. The clear
problem with such approach is the scalability: very often DAG with large inputs may be composed of millions of tasks. Even
with an arti�cial hierarchical organization, exploring the application structure (blocks, tiles), the representation may be very
hard to understand. A somehow related approach was recently proposed to analyze OpenMP applications with grain graphs (35).
Application graphs are obtained from OMP-T traces along with information for each task on their duration or the memory
e�ciency. Tasks of a similar type can then be aggregated while respecting the fork-join structure of the graph. Although this
approach is sound, it is particularly suited to dynamic graphs originating from recursive patterns and provides a view of the
execution which is more runtime-centric than application-centric. To the best of our knowledge, none of the previous two tools
allow handling traces from hybrid platforms (CPU+GPU) nor from distributed platforms (MPI).

Temanejo (36) provides similar timeless DAG interactive views for many task-based runtimes. These DAG views can be
dynamically improved with information about the resource that executes the task, its scheduling status or its duration. The main
features of this tool are the online debug capabilities, e.g., the user can put a breakpoint in a task and �x its dependencies.
Temanejo relies on Ayaduame library to interact with the target runtime system and control the application execution at the task
level. These capabilities are very useful during algorithm design on small scale, but unsuited for performance analysis.

4 PROBLEM STATEMENT AND PROPOSAL

While task-based applications and runtimes are in their infancy in terms of analysis, application/runtime developers are in deep
need of e�ective solutions to understand performance issues related to application scheduling. Although only a few experts
are actually able to engage into the tedious analysis of such complex applications, improving their performance has a tremen-
dous impact in terms of energy-consumption and time-to-solution. Current analysis tools are unfortunately ine�ective to deeply
explain performance behavior of dynamic task-based applications and we believe that one of the main reasons is related to both
the di�culty of integrating several heterogeneous sources of data into a single trace model and to the di�culty of easily adapting
graphical representations to such a complex object.

On the one hand, given the complexity of such system, these analyses indeed require traces and information from both the
application, the runtime, and the hardware (see Figure 1). Although all these three levels may be traced independently with
custom API/tools, merging all these information in a uni�ed model can be quite cumbersome. It is rarely done in practice since
none of the current analysis tools would allow to fully exploit such kind of information.

On the other end of the spectrum, the motivation to improve existing analysis tools is quite low since obtaining uni�ed traces
typically requires a tremendous work and collaboration from both the application and the runtime developer. Yet, since per-
formance problems may have many di�erent origins, it is essential to allow the analyst to easily navigate in the data, to build
informed spatial/temporal views, to compare distributions, to detect outliers, to explore causality relations, to correlate infor-
mation from several traces, and to easily propose and test custom statistical hypothesis. The evaluation of scheduling decisions
must enable the analyst to understand, for instance, the reason why one task that belongs to the critical path has been delayed.
This kind of micro evaluation must be carried out together with a macro analysis of how the application unfolds and of how
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Domain situation
(Threat: wrong problem, misunderstanding of needs)

(Threat: the interaction paradigm does not work)

Visual interaction

(Threat: you are showing the wrong thing)

Data/task abstraction

Algorithm (Threat: the code is slow)

Analyze computation complexity
Measure system performance

Evaluation of our contributionHCI evaluation guidelines with validation steps

- Who: Few experts in the world (applic., runtime, tracing, visu alization) 
- What: Identify performance and scheduling issues
- Need: Correlate data from abstraction layers (applic., runtime, HW )
- How: Navigate, � lter, causality, trends, outliers, ...
 
 

- Classical views: Gantt-chart, lineplot, scatterplot, histogra ms, facetting
- Novel views: Application-speci � c view (see Section 4.1.1)
 
 

Need for:
- Several sources of data (abstraction layers)
- Coordinated views in time/space
Proposal: � exible work � ow with scripting capabilities (see Section 3.3) 
 

See implementation details in Section 5.2, 5.3 & 5.4

See detailed explanation in Section 5.1

No evaluation, see discussion in Section 4

Test with users, collect anecdotal evidence of utility

Field study, document human usage of framework

Tested with one expert, see Section 6 for success stories

No evaluation, see ongoing work (other StarPU applications)

Observe adoption rates Too preliminary, see future work (other runtimes, e.g., OpenMP)

Lab Study, measure human/time errors for task

Qualitative/quantitative result image analysis
 

Justify interaction idiom

Justify and coding/interaction design

Observe and interview users

FIGURE 4 Evaluation of our contribution from a Human Computer Interaction perspective inspired by the guidelines of
Munzner (37)

e�cient the computation kernels are. It is thus essential to consider the DAG structure, to compare overall execution to lower
bounds, to compare against other executions with slightly di�erent con�gurations, and so on.

We therefore propose to empower such application/runtime experts with an analysis framework allowing them to (1) easily
integrate traces from several sources and (2) easily build and extend views adapted to their needs. In this context, these experts
routinely write scripts and know how to instrument their application to collect relevant information but need an e�cient way
of analyzing them. Our experience and discussion with such experts lead us to believe that it is more important to propose a
declarative, �exible analysis (38) than a fully integrated but limited GUI. Proposing such a work�ow therefore involves both
data analytics and software engineering/usability consideration. Finally, it is also important to keep in mind that performance
on large-scale scenarios generally involves voluminous traces. Our analysis framework should thus scale and be responsive,
enabling one to rapidly iterate through the performance investigation loop.

The next sections present our analysis/visualization work�ow and detail how we address the previous issues and challenges
(usability, e�ectiveness, scalability, . . . ). Properly evaluating such proposal is complicated as it targets HPC experts. Our eval-
uation in terms of usability is thus limited and has been restricted to only one such expert (the main developer of the StarPU
runtime who could easily enrich the traces with the information he desired). Not only an extensive lab study of the performance
and of the usability of our proposal would be di�cult as there are too few experts available but it would also be extremely time-
consuming. Indeed, a proper evaluation would require measuring the time required to extend the tracing (application, runtime,
infrastructure), to run the application in a supercomputer, to run our framework, to develop custom scripts allowing to integrate
all data, and the time needed to interpret each generated �gure. Such evaluation is thus out of the scope of this article. Yet, we pro-
vide convincing success stories where the work�ow allowed us to identify and address non-trivial performance issues. Figure 4
summarizes the previous thoughts in terms of problem analysis and points to the Sections where we evaluate each aspect.
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5 VISUALIZATION FRAMEWORK AND WORKFLOW

Data visualization enables one to check many assumptions at once. Automatically checking some of these assumptions through
computations would require to build on more hypothesis that would also have to be veri�ed. This justi�es an analysis with a list
of various expectations made on the system or application under investigation. For the task-based Cholesky case used in this
work, the usual expectations on uniformity, task dependencies, progress, potential improvements, aggregation and �ltering, and
multi-node data distribution, are as follows.

ˆ Uniformity. Task duration is expected to depend solely on their type (dgemm, dsyrk , dtrsm or dpotrf ) and on the type
of resource (CPU or GPU) on which it is executed. Such assumption should be visually veri�ed, highlighting all tasks
whose duration is abnormally large compared to the others of the same type/resource. We expect outliers to be space/time
location independent, unrelated to other tasks behavior. If not so, it may mean that the whole platform has been perturbed
at particular moments or that some resource di�ers from the others. For this particular analysis, we tag a task as anomalous
if its duration exceeds the sampled third quartile plus 1.5 times the sampled interquartile range. This outlier notion has
shown to be an e�ective anomaly classi�er for this analysis.

ˆ Dependency problems. Large input matrices generate a parallelism explosion after the beginning of the application.
We therefore want to monitor the number of ready and submitted tasks. For this Cholesky implementation, all tasks are
expected to be submitted when the application starts on each node participating in the execution. On scale, the number
of task dependencies is extremely large. Automatically selecting which ones to display is haphazard. If a detailed view
becomes necessary for some task dependencies, we rely on the scripting capability of our framework to select and visualize
the o�ending task dependencies from the performance point of view. A common way to understand problematic task
dependencies is to select tasks in front of idle time, because there should not be idle time whenever there is enough
parallelism.

ˆ Progress. The task graph resulting from dense linear algebra always share a common structure (for instance, see Figure 2 in
Section 2.2). In a classical semi-sequential execution, the DAG would be executed much similarly to abreadth-�rst search.
However, it is also possible to carry out adepth-�rst traversal, favoring task execution on the critical path. Following
the pipelining of the sets of tasks submitted by each outer loop iteration can be su�cient to get an overview of how the
scheduler is handling the DAG and if it corresponds to the analyst's intuition or not.

ˆ Potential improvements. Dependencies are expected to be easily handled with large workloads. To check whether
improvements are still possible for a given run, one might rely on the classical scheduling bounds such as thearea bound
and thecritical path bound. Such bounds, especially the area bound, are expected to be tight when the workload is large
and allow to estimate how much further improvement can be expected. More accurate lower bounds (39) could be used as
well, in particular for intermediate size workloads. Furthermore, an ideal task allocation can sometimes be inferred from
such bounds, which may allow to help understanding how scheduling could be improved.

ˆ Aggregation and Filtering. Displaying information on hundreds of thousands of tasks on a small area in a blunt way
generally leads to harmful visualization artifacts (40). For example, in a classical Gantt chart, visually estimating how
much time was spent idle can be quite di�cult. This is why it is generally important to �lter useless information (e.g.,
with thresholds con�gured by the analyst) or to aggregate it in a meaningful and non ambiguous way.

ˆ Multi-node data distribution . In an ideal scenario, the workload is evenly distributed among the participating MPI nodes
(di�erent machines of the computation pool of resources). If that is not the case, performance losses might be explained
by the communication-boundness in the end of the execution, where the critical path going through very loaded nodes
delays remaining MPI processes.

From such list of expectations, we propose a series of visualization panels designed to verify assumptions. They can be used by
application and scheduler developers, assisting them to rapidly identify performance problems as well as potential solutions for
task-based applications. The set of hypothesis to check is fairly rich in heterogeneous multi-node platforms targeted by task-based
runtime systems. It is thus important to build a visualization framework that enables one to easily and rapidlycombine various
viewsandpropose new alternative views in an agile way. Moreover, since dynamic scheduling and machine heterogeneity
bring a lot of variability, the ideal visualization shouldexploit anypotential regularity coming from theapplication algorithm.
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For example, as we have seen in Figure 2, each task can be identi�ed by the loop indexesi; j; k . Such kind of information is
much more useful than internal runtime identi�er and should thus be provided by the application to the runtime so that it can be
traced and further exploited during the visualization.

To meet these di�erent goals, we decided to build our framework on top of modern data analytics tools, combining
pj_dump (28), theR programming language (41), itsggplot2 library (42) and the data manipulation functions provided by
the tidyverse meta-package (43), org-mode (10), and plotly (44) for interactive exports. Section 5.1, along with Figure 5,
presents an overview of the visualization panels proposed in our framework. Section 5.2 describes fundamental data aggrega-
tion techniques necessary for a proper data visualization on scale. The �nal work�ow is presented in Section 5.3, and depicted
in Figures 12 and 13. This approach allows to build static views in a fully automatic and very e�cient way. Although such visu-
alizations could probably be sped up even further by programming everything in C/C++, the used libraries are already well
optimized and bene�t from the know-how of data analysts. Furthermore, a combination of small scripts is easier to maintain
and adapt to a new necessity or to a particular situation than a rigid monolithic visualization environment. We �nally present
limitations, in Section 5.4, discussing workarounds.

5.1 Visualization Panels

Our framework enables an easy composition of multiple visualization panels to evaluate di�erent performance scenarios. As an
introductory illustration, we consider the Chameleon/Cholesky decomposition of an input matrix of dimension 72,000, divided
in 75Ö75 tiles of size 960 (i.e., with 75dpotrf tasks), executed on two nodes comprising �ve CPU and two GPU workers
each, and interconnected through a 10Gb_sEthernet network. The StarPU runtime has been con�gured with theprio scheduler
(with a central queue on each node, sorting tasks by priorities given by the developer), and dedicates, on each node, one core
for task submission (using the Sequential Task Flow paradigm (45)) and another core to handle MPI operations. Figure 5
shows, from top to bottom, the composite image generated by our framework. The plots are temporally-aligned (the X axis
represents time) and depict the behavior of three layers of the computation system: application, runtime, and platform metrics.
The application behavior (Section 5.1.1) consists in the Cholesky Iteration (A), Application Workers (B), and Submitted Tasks
(C). The runtime performance footprint (Section 5.1.2) is depicted with the StarPU workers behavior (D) and the ready tasks plot
(E). Finally, performance metrics gathered from the platform (Section 5.1.3) have the observed GFlops rate (F), for both CPU
and GPU resources, the GPU memory bandwidth (G), the MPI communication bandwidth (H) and the number of concurrent
MPI operations (I). Albeit being representative, other plots may be added very easily according to the needs of a particular
performance analysis. In what follows, we detail each of this plots individually, grouped by layer.

5.1.1 Application Behavior
The application behavior is detailed with three visualization panels, as shown in Figure 5: the application-speci�c Cholesky
Iteration plot (A), the enriched space/time view with the application workers behavior (B), and the number of submitted tasks
(C). All panels show information along the execution time (the horizontal axis).

As previously discussed, the tiled version of the Cholesky decomposition has an outer main loop which provides a hint of
the general progression on the critical path. Tasks are tagged, when being submitted, according to their membership to a given
loop. Using the tags in the visualization, the Cholesky Iteration plot, in further details in Figure 6, depicts the tasks (color) along
time (on X axis) according to their loop number (on Y). The vertical coordinates run from 1 to 75 because there are 75 blocks
in the case. Tasks may be drawn one on top of the others on each row because several workers might be computing tasks of the
same loop. For a given row (one Y axis coordinate), the lack of tasks (white areas, as pointed by A.1) indicate that there are no
workers computing that particular loop for that speci�c time frame. The two rounded borders (on the bottom, A.2; on the top,
A.3) indicate the speci�c timestamp when a given iteration of the outer-most loop starts to be computed until the moment the
last task belonging to this iteration is completed. The borders and the inner task glyphs provide a unique application signature
directly in�uenced by the runtime scheduler. For example, it shows the number of loops that are active at the same time: atù75s,
theprio scheduler is computing a little less than 40 loops at the same time, achieving high parallelism.

Figure 7 illustrates the main elements of the enriched space/time view proposed in our approach (left) and the solution of the
Area Bound Estimation (right). The space/time view shows the task execution, represented by colors (for Chameleon/Cholesky:
dgemmare green,dpotrf are red,dsyrk are violet, anddtrsm are blue), along time (X axis) by the resource which executed
each task (Y axis). The height of the colored rectangles (B.0), in each resource row, correlates with the resulting values of the
task-aware temporal aggregation (more details in Section 5.2.1). Besides this, the maximum height dedicated for GPUs is two
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FIGURE 5 Overview showing the visualization panels available in our framework, for a 2-node multi-core and multi-GPU
Chameleon/Cholesky experiment. Panels are grouped by system layer (application � top, runtime � middle, and platform �
bottom): the application contains the Cholesky Iteration plot (A), the task behavior (B) and the submitted tasks (C); the runtime
has the state of StarPU workers (D) and the amount of ready tasks (E); the platform performance metrics are composed of
GFlops rate (F), GPU memory bandwidth (G), MPI network transfers (H) and the number of concurrent MPI operations (I).

times the height occupied by CPUs, since GPUs provide a higher GFlops rate than CPUs. Theresource hierarchy(B.1) groups
resources by node (Node 0 and top, Node 1 in the bottom). Our makespan de�nition is the time from the beginning of the �rst
application task to the end of the last. Theobserved makespan(B.2) is drawn in the graphical position identi�ed by its value.
In the example of the �gure, the total makespan was of 124,279ms. The graphical representation might mislead the analyst
to think that the resource occupation is good, since many small idle periods might be hidden because of the overwhelming
number of tasks. Besides that, visually comparing two or more resources occupation is hard. For these reasons, we compute
theoverall idleness(B.3) of each resource. We can see that idleness of GPUs in Node 1 is higher (ù22%�25%) than those of
Node 0 (ù12%�18%). For the tiled Cholesky decomposition we have used in this work, tile size is �xed, which enables to create
simple performance models for each kind of task. We exploit this application characteristic to detecttask execution outliers
(B.4: see region marked), which are represented with darker colors. The outlier de�nition is provided by the analyst according
to the knowledge of application. In this particular case, a task is considered anomalous if its duration exceeds the sample third
quartile plus 1.5 times the sample interquartile range. Although this outlier notion is highly debatable and context-speci�c,
other de�nitions could be easily incorporated (e.g., if the analyst has an a priori knowledge on the task duration distribution).
In the example of the �gure, we can see that CPU0 of Node 1 and the top GPU of Node 0 always demonstratedgemmexecution
anomalies. Both GPUs of Node 1 generate outliers in the �rst 25 seconds of execution; after that, tasks are mostly normal.
Besides considering the load balancing within a node, the multi-node tiled Cholesky decomposition must take care of equal load
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A.2

A.3

A.1

FIGURE 6 The Cholesky Iteration plot (A) shows the application-tasks (colors) along time (on X) using as Y coordinates the
loop the tasks belong to. Periods of time where a loop is not being computed are shown as white areas (A.1); while the bottom
(A.2) and top (A.3) borders illustrate the moments when loop iterations start and �nish to be computed. These borders provide
an application signature and can be used to compare runtime schedulers.

distribution among all nodes involved in the computation, considering CPU/GPU heterogeneity. Since one knows the average
time wr;t needed to perform a task of typet on a resource of typer on a given node, as well as the total numbernt of tasks per
type, one can consider that a fraction� r;t of tasks of typet will be done on resourcer and that the� r;t should thus verify:

År :
É

t

� r;t :nt:wr;t f T, whereT is the total execution time.

Since such constraints are linear it is possible to compute the optimal makespanT and the corresponding allocation� i;k . TheT
value is called theArea Bound Estimation (ABE) (B.5) and is a lower bound for the execution time for the load assigned to
each node. We can see in the example that load distribution is not equal: the estimation for Node 0 isù125s, while for Node 1 is
ù95s (24% less). We depict in the right part of the �gure the solution of the linear program (B.6): the bars depict the observed
load distribution (per node, resource, and task types), while the dots represent the ideal solution given by the linear program.
For instance, a fair amount ofdsyrk anddtrsm tasks were executed on GPU (CUDA), but the ideal solution tells us that much
more should be given to the CPUs. Another way to evaluate the tightness of the schedule is theCritical Path Estimation (CPB)
(B.7). It is calculated by summing the observed duration of all tasks in the critical path of the application DAG, assuming they
are executed on the faster processing resource for that task. This can also be viewed as a minimal execution time if application
had unlimited number of resources of every type. In the Cholesky case with large matrices, this is a poor metric because there
are nodgemmtasks in the critical path, while they represent the bulk of the workload and dominates the performance. Finally,
application and schedulers developers might want to con�rm that once all dependencies are satis�ed, the task is executed right
away. Since the DAG might be potentially large (in the example: 73,150 tasks and 427,432 task dependencies) we provide the
developer an API to draw thetask dependency chain(B.8). The backward chain is obtained by recursively searching the last
task that releases a given task, up to a limit provided by the user. In the example of the �gure marked by B.8, we calculate two
backward steps starting with a task that has been executed in the bottom GPU of Node 1. We can see that it was released by an
MPI task (center), which itself has been executed to receive data from a task that executed in one CPU of Node 0. We noticed
that when the MPI task �nishes, the task it releases is not immediately put into execution (see the diagonal red line connecting
both). This can be a potential performance problem if there are no other tasks to be executed at that moment, which is not the
case in this speci�c time-frame. Such kind of task dependency analysis can be carried out with any number of tasks.

In StarPU-MPI, there is one thread responsible for submitting tasks per node. The performance of these submission threads is
very important to the overall behavior of one execution, since task availability is fundamental to make StarPU exploit e�ciently
all resources available. The number of submitted tasks per node in a given moment is traced by the runtime. We use this per-
node data to provide the Submitted panel, as shown in the bottom of the Figure 7. It depicts the number of submitted and still
un�nished tasks (in the Y axis) as a function of time (the X axis) per node (color). We can see the stair-case climb of submitted
tasks until 25 seconds of execution, where the maximum number of submitted tasks is achieved in both nodes. After that, there
are no more task submission with a steady decline, as the tasks are being run on processing units, until the end of execution.
Task submission, in this case, is similar on both nodes.
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FIGURE 7 The enriched space/time view (B) depicting task execution (color) along time (the X axis) per resource (Y), hierar-
chically organized (B.1), with total makespan (B.2), per-resource idleness (B.3), outlier highlighting with darker colors (B.4),
per-node area bound estimation (B.5) with the linear programming solution on the left (B.6), and critical path bound estimation
(B.7). These features are combined with task dependencies chains (such as the example of B.8), selected by the analyst during
the analysis to check if tasks are executed as soon as possible. The bottom panel shows the per-node task submission (C) with
the number of submitted tasks along time.

5.1.2 Runtime Footprint
The runtime behavior of each StarPU worker is depicted in Figure 8, where the states are represented by colors along time and
hierarchically organized per resource (the vertical axis). In an ideal scenario, the footprint of the runtime behavior, represented
by all these states, should be close to zero. Very often, however, such ideal scenario is hardly achievable because of the scheduler
implementation, data copies between devices and nodes, and other fundamental activities of the runtime. The observable idle
periods of the runtime with the Idle (green) and Sleeping (pink) states in both GPUs and CPUs (see the regions marked by D.1)
coincide with the lack of ready tasks in each node (see the dashed arrows pointing to the ready tasks panel). They are caused
by task dependencies delays between the two nodes and may be considered normal during the kicko� of Chameleon/Cholesky
executions in platforms with poor network interconnection. At the end of the execution (regions marked by D.2), the idle periods
shown by StarPU highlight the decrease of task parallelism. We can note that Node 1 (bottom) is a�ected �rst because, as seen
in Figure 7, the load distribution is not the same for both nodes.

The Ready tasks panel shown on the bottom of the Figure 8 complements the visualization of the StarPU workers behavior.
It shows the amount of ready tasks at a given moment, per node (color). The horizontal bar (E.1) becomes reddish whenever
the amount of ready tasks is smaller than a given threshold related to the number of computing resources. This implies that the
runtime system is (or will soon be) unable to generate enough ready tasks, causing resource idleness and potential performance
loss. The threshold can be con�gured by the user but if unspeci�ed (which is the case in the example of this �gure), the threshold
is automatically de�ned as the minimum amount of workers per-node (seven for this example, since there are �ve CPUs and
two GPUs on each node). This bar becomes more useful when the number of nodes increases.

5.1.3 Platform Performance Metrics
Many platform metrics can be combined with the application and runtime behavior. Figure 9 illustrates some examples that
are used in the analysis of StarPU-MPI: the GFlops (F), GPU memory (G), MPI network bandwidth (H), and concurrent MPI
operations (I). These metrics are either obtained directly from the runtime traces, requiring some post-processing to remove
extreme data points that appear due to measurement uncertainty, or they are derived from other data traces using scripting
techniques. Post-processing using smoothing techniques are employed in all rate metrics (GFlops, bandwidth). Regarding the
GFlops panel (F), for each resource type (CPU or GPU), we calculate the average rate along time, using time slices that are
su�ciently small to capture small temporal variations. The rates are depicted with horizontal facets (CPU on the top). We can
see that CPUs achieve peak performance much faster than GPUs, whose plateau performance only appears after 25 seconds of
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E.1

D.1 D.2

FIGURE 8 The space/time view (D, on top) depicting the StarPU workers states (color) along time (the X axis) per resource
(Y), adopting the same hierarchical structure as in the application-level view shown in Figure 7. On the bottom, the ready task
panel (E) depicting the number of ready tasks for each node, along with a horizontal bar (extreme bottom) to highlight when
the ready tasks are smaller to a con�gurable threshold.

execution. GFlops rate drop by the end of execution, because tasks dependencies limit the parallelism and that are not enough
ready tasks. TheGPU memory bandwidth (G) details the per-node device™host and host™device data copies. Values are
averages considering all the GPUs available on each node. The phases are similar to those observed in the GFlops panel, with
data copies peak going fromù25 to 100 seconds of execution. TheMPI network bandwidth panel (H) represents the outbound
bandwidth achieved by MPI operations for each node (colors), while theConcurrent MPI tasks (I) panel depicts the number
of asynchronous MPI task operations. In this example, a 10Gb_sEthernet interconnection has been used for the experiment. By
consequence, we notice that, despite the many asynchronous operations managed by StarPU (up to 60), the e�ective network
bandwidth never achieves the maximum theoretical upper bound. Di�erent phases can also be perceived in such metrics. For
example, atù75 seconds of execution, there is very few concurrent MPI operations, enabling a higher (but much more variable)
e�ective MPI network bandwidth to be achieved.

FIGURE 9 Four performance metrics: aggregated per-node GFlops rate (F), GPU memory bandwidth along time (G), e�ective
MPI network bandwidth (H), and the number of concurrent MPI operations (I). We can notice how the di�erent application
phases (beginning, middle, closure), appear in these platform metrics. These can also be correlated to the phases observed in
Figure 7.
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modules are written in theR language (41) except when marked otherwise. The glue connecting them is written either inSHELL,
R, or a mix of both. The purpose of having two phases is scalability. The �rst phase contains all data manipulation, computed
only once, and its results can then be used many times for various visualizations in the second phase. This �rst phase might
eventually be slow at scale, when traces comprise runs with more than one thousand workers for small inputs; or much fewer
workers but with larger workload. Nevertheless, this phase can be executed in parallel in the same nodes that had been used for
the execution of the program being analyzed. In what follows, we detail the steps in each work�ow phase.

The pre-processing phase (see Figure 12) gets as an input severalFXT �les (46) dumped from memory by StarPU at the very
end of the application execution. With few minor modi�cations to the Chameleon/Cholesky, traces are enriched with application
tasks tagged with loop indices at the task creation.A FXT �les are exported toDOTandPAJE �les using thestarpu_fxt_tool .
ThePAJE trace �le (28) contains timestamped events that describe the application behavior (task execution) for all workers. It
also contains many important metrics from the StarPU runtime, such as the scheduler and MPI states, GPU bandwidth estima-
tion, inter-node communication links, number of ready and submitted tasks, platform architecture, and so on.B Thepj_dump

tool parses thePAJE �le to verify the structural and temporal integrity of the trace. As output, four Comma-Separated Values
(CSV) �les are registered with the states (application tasks with their unique ids and runtime behavior), entities (platform and
worker hierarchy), links (MPI communication events, in multi-node runs), and variables (with runtime and platform perfor-
mance metrics). The complete applicationDAG, written in theDOT�le format, contains task dependencies and task identi�ers
coherent with thePAJE trace. It also gets converted toCSV. C TheseCSV �les are read to memory using e�cient parsingR
functions from thereadr anddata.table packages. On scale, such process might be slow sinceCSVparsing involves many
string manipulation, a process regarded as slow. Because of that, as the output of the �rst phase, we use binary �les instead of
a textual �le format such asCSV. D Thanks to the expressiveness and to the rich set of statistical libraries in theR language,
many cleanups, �ltering and statistic computations are done with only few lines of code. State data is read into memory �rst
because we impose, just after outlier detection, a newZEROtimestamp for the data, which is de�ned as the moment when the
�rst application task starts. All data before this speci�c moment, corresponding to StarPU warm-up and initialization phase, are
�ltered out. The new zero de�nition is re-used as an o�set to correct timestamps for links and variables. TheCSVentities �le
contains the application and platform hierarchical structure. Since we are interested in the behavior of processing units (StarPU
workers), we keep only those and the MPI threads, calculating the Y coordinates for the space/time view. The coordinates for
every resource are merged with the states using a left join operation based on the resource identi�cation as key. As of result, all
application tasks have X (time) and Y (space) graphical properties. Links and variables su�er minor manipulation. TheDAGis
enriched with temporal data from the states (tasks) through a left join operation using the task identi�cation as keys. In multi-
node runs, every MPI operation is a node in the DAG, but the temporal information for such MPI tasks is registered in the links
CSV�le. This requires another left join operation using the MPI unique task identi�cation.E At the end of the pre-processing
phase, the data is registered in binary code respecting theFEATHER(47) �le format (using thefeather package inR). The main
advantage of this format is that the reading is bounded by the hard drive performance, enabling a much faster second phase for
data visualization, described as follows.

The second phase (see Figure 13), for data visualization, gets as an input theFEATHER�les previously created. As before,
all modules are implemented inR except when marked di�erently. AC++ implementation is required for those modules where
data manipulation withR is too slow to be operated on demand.A The reading procedure loads quickly the data registered in
�les into memory, thanks to thefeather binary format. Each �le becomes one data frame. A single structure (represented by
the black circle identi�ed ascase in the �gure) binds all data related to a single trace execution. Multiple structures such as
these might be kept in memory at the same time to enable multi-trace analysis. Such comparisons are possible by replicating the
work�ow, with di�erent inputs, and �nally combining the visualization output in a single �gure.B Creating the graphics for the
analysis involves a data work�ow that includes some data processing. This increases the analysis �exibility since some data is still
calculated on-the-�y. Some examples of features calculated by demand include the ABE, CPE, Idleness, temporal integration
granularity, drawing of speci�c task dependencies, task highlighting, and all aspects for the temporal/spatial navigation (zoom in,
�ltering, selection, etc.). All visualization panels (represented by rectangles with corner marks) are implemented usingggplot2 .
This library provides a grammar of graphics (48) and a very high-level way of building plots, enabling us to easily produce custom
visualizations. Some panels are simpler than others. The Cholesky Iteration panel, for example, gets data directly from the states
data frame and its implementation is straightforward since all coordinates it requires are pre-calculated in the �rst phase. On the
other hand, the space/time view panel is much richer, since it can employ idleness, outlier and task highlighting, ABE, CPE,
and other speci�c features. The possibly extensive task data is also time-integrated to render the panel faster. All variable-based
panels undergo temporal integration according to a user-de�ned granularity. All metrics, except ready and submitted, require a
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FIGURE 12 Simpli�ed view of the work�ow for data pre-processing: traces with timestamped events are dumped fromFXT

�les to DOTandPAJE textual �le formats usingstarpu_fxt_tool ; thedot2csv andpj_dump tools are used to split trace data
in multiple CSV�les (DAG, states, entities, links, and variables), which is pre-processed in R, through a series of �ltering, data
derivation, graphical properties de�nition, and clean-up steps, and registered as tabularFEATHERbinary �les for fast reading
during the second phase of the work�ow.

time integration procedure since the measurements are uncertain, as they are only estimations provided by StarPU. Some spikes
for example are commonly found for too-fast MPI (on low-latency networks) or GPU transfers. In such scenarios, time integration
enables one to smooth the metrics prior to their visualization.C Visualization assembly is customized according to a global
YAMLuser con�guration �le. Themaster component is responsible to assemble the composite view following users' choices,
and synchronize the temporal axis and vertical proportion of all panels. It has enough expressiveness to guarantee di�erent but
coherent views (colors, scales, etc.).D The analysis is the �nal part where the graphical object with the composite view is
registered in a �le (PNGor PDF) or can be exported toHTMLusing theplotly library to provide user interaction with the data.

DAG
FEATHER

states
FEATHER

entities
FEATHER

links
FEATHER

variable
FEATHER

read

read

read

read

read

case

In-memory analysis & visualization

� lter

K-Iteration

Space/time YAML

user
con � g

master

static plots

ggplot2

interactive

plotly

ABE

Idleness
Outlier

sta
te

s

links
vars.

DAG.

CPECPP

GPUtransfers

GFlops

Used Mem.

Ready

Submitted

MPI transfers

TI
CPP TI

CPP

TI
CPP

TI
CPP

TI
CPP

TI
CPP

scarce

ReadingA Data visualizationB AnalysisDAssemblyC

TI
CPP

FIGURE 13 Simpli�ed view of the work�ow for data visualization: theFEATHERbinary �les related to one case study are
rapidly loaded into main memory; interactively, using aYAMLcon�guration �le, the user can create composite views to generate
static and interactive plots; all variables and states are integrated in time before plotting.

The work�ow performance greatly depends on the size of theFXT �les. For a 49-node CPU-only execution with 686 cores
(14 cores per node), theFXT �les takeù18GB of space. In a computer, equipped with one Intel(R) Xeon(R) CPU E3-1225 v3 @
3.20GHz and 32GB of main memory, exporting theFXT �les to PAJE andDOTtakes roughly 10 minutes, while the conversion
usingpj_dump anddot2csv takes about 9 minutes. Finally, the bulk of the data pre-processing inR takes approximately 13
minutes to �nish. The resultingFEATHER�les occupyù13 GBytes of space. The �rst phase takes thus 32 minutes to complete.
In the second phase of our work�ow, reading theFEATHER�les in R takes about 30 to 40 seconds. One overview plot considering
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all the contents (worst case) with the space/time view, ready and submitted variables takes about 42 seconds to complete, while
writing the plot to aPNGoutput takes about 6 seconds. By consequence, since data is kept in main memory, the user has to
wait for roughly one minute when a modi�cation in the visualization is demanded. Since the time to render a new plot directly
depends on the amount of data, generating new plots can be dramatically faster when zooming in parts of the trace.

5.4 Limitations

Sometimes, user interaction is required in order to quickly point out tasks and get more information about them. For example,
mouse hover capabilities are much more e�cient than manual inspection to obtain further information about speci�c tasks in the
representation. As previously described, we provide a way to export the composite views toHTML5usingplotly (44). However,
the solution scales badly because application traces have too much information, with millions of events and task dependencies.
Despite our e�orts on data aggregation to reduce the information before creating such graphical objects, the procedure remains
usable only for small scale scenarios. For example, a small case with a 4-node run (with 24 CPUs and 2 GPUs per node) of the
Chameleon/Cholesky application with a 144K input matrix (tile size of 1,440 elements) generates 171,700 application tasks.
Alternatives to tackle the problem do exist. Thebqplot or thegoogleVis packages are some of them. The former follows the
grammar of graphics philosophy (asggplot2 ) for IPython/Jupyter interactive notebooks. The later (googleVis ) has functions
to generateHTML5but which are much simpler since they are not layered as we need to create customized views. Thebqplot

library seems more promising because they follow a true Model-View-Controller (MVC) approach, which might scale better.
Being satis�ed with static plots, we have not yet evaluated any alternatives for interactive visualization, adhering withplotly

in the time being.
Another limitation for using our software to conduct performance analyses is the requirement to obtain traces with enough

information from the runtime. During our work, the tracing system of StarPU was enriched with several new events and more
detailed information. For example, internal MPI communication tasks now appear in the trace, allowing our software to correctly
understand task dependencies when communications are involved. That said, until now, such information was not used by
classical trace visualizers and analyzers, so runtime developers had few incentives to generate a detailed trace. We hope that our
work demonstrates the interest of collecting such information. The StarPU runtime is now correctly instrumented and can be
used as-is to analyze any application using it, other runtimes should have their trace easily enriched if needed.

6 CASE STUDY: PERFORMANCE ANALYSIS OF TASK-BASED CHOLESKY

We describe three performance analysis scenarios of the task-based tiled Cholesky decomposition application (see Section 2.2).
Together, they show di�erent facets of how our visualization elements can be combined together to attain a successful perfor-
mance analysis. The �rst one2 provides acomparison of runtime schedulersand their impact on performance in a single yet
heterogeneous node (24 cores and 3 GPUs). We also detail in this �rst scenario a slight change in the application to force some
application tasks to execute exclusively on GPUs. We explain with our views the reason behind the resulting performance gains.
The second scenario investigates theMPI slow start , demonstrating idle gaps caused by a badly optimized MPI layer. The anal-
ysis is conducted on hybrid multi-node setting, with a focus on task dependencies, outliers, ready/submitted variables, along
with MPI bandwidth and the concurrent MPI operations plots. The third and �nal scenario investigates the potential negative
impact ofstatic data distribution strategiesat scale. Per-node ABE is used to compare how data distribution and performance
is a�ected by di�erent values of the P parameter (see Section 2.3). These three scenarios have been chosen during many sessions
of performance analysis and multiple tests at di�erent scales.

Section 6.1 details the experimental platforms and the software that have been used in our experiments. The usual expectations
for the performance analysis of the tiled Cholesky decomposition implemented as a DAG are detailed in Section 5. Section 6.2
discusses the �rst scenario about scheduler comparison. Section 6.3 presents the MPI slow start with major idle gaps during the
kicko� of the application run, and the �xes that have been suggested to the runtime developers to �x the problem. Section 6.4
details the study about data distribution strategies on scale.

2A preliminary summary of this scenario has been described in a previous work published in the 2016 Visual Performance Analysis Workshop, held during the Super
Computing conference, under the title of �Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach� (49). We present a more
detailed analysis using a full rewrite of the R code to generate the views.
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6.1 Experimental Platform

Since hybrid heterogeneous nodes motivate the development of task-based runtimes, we execute this Cholesky implementation
over clusters of computers that are composed of at least two GPUs. Table 1 provides hardware details about the two main
platforms we have concentrated our experimentation on:idcin2 andchi�et . In the former, only 25 CPU cores (out of 28)
participate in the computation because StarPU requires one core to manage each GPU. In the latter, we have used six cores
per-node to make the �gures of the paper clearer, easier to understand. The chi�et experiments using all the cores demonstrate
performance issues that are the same or worse than the results shown in the paper. In multi-node experiments, StarPU requires one
core exclusively to run the MPI thread responsible for the message exchanges (see Section 2.3). Regarding software, the machines
use recent versions of the Linux Kernel distributed in Debian testing (buster); and all the software related to experiments is
installed via Spack (50): Chameleon (0.9.1, master), StarPU (developer, using speci�c revisions with the performance �xes
proposed in this work), OpenMPI 2.0.2, OpenBLAS 0.2.19, and CUDA 7.0 (chi�et) / 7.5 (idcin2) with driver 375.66 (chi�et) /
352.39 (idcin2). All experiments are conducted using a reproducible methodology where all known variables acting as possible
parameters for the experimentation remain as �xed as possible (disabling HT, TurboBoost, etc.), and the hardware/software
con�guration is recorded. This enables a faithful experimentation with more reliable results.

TABLE 1 Experimental platforms used for trace collection.

Name Nodes Node Processors GPUs Network Section

idcin2 1 2 Ö 14-core Intel E5-2697v3 3 Ö Nvidia Titan X � 6.2

chi�et 8 2 Ö 14-core Intel E5-2680v4 2 Ö Nvidia GTX 1080Ti Ethernet 10GB 6.3, 6.4

6.2 Changing Schedulers and Constraining Tasks to get better Performance

Initial Motivation
The �rst scenario is based on a composite view with �ve panels (see Section 5.1 for details on these panels), shown in Figure 14:
the Cholesky Iteration (top), the space/time view (middle), submitted and ready (plus scarce) variables (bottom), and the solution
of the ABE (right). This choice of panels enables us to e�ectively compare runtime schedulers for two reasons: the Cholesky
Iteration provides a signature of how the Cholesky DAG is traversed; and the remaining panels gives a sense on the performance
and anomalies.

Figure 14 shows the behavior of the Cholesky factorization of a large (60 • 60 tiles of 960 • 960) matrix with the DMDAS
scheduler using 25 CPU cores (Intel Xeon E5-2697v3) and three identical Nvidia Titan X GPUs of the IdCin2 node. One can
hope for a 5% improvement because the makespan is 62,700ms while the ABE is 59,464ms. The scheduling seems indeed
ine�cient since there are periods (white areas in CPUs, regions B.0) without any useful computation. These periods correspond
to �ltered states (not shown for clarity) where threads try to actively fetch data. The total idleness for CPUs varies from 3 to
6%, while for GPUs it ranges from 2 to 6%. This GPU inactivity is likely the main source of potential improvement, even if the
idleness rate is similar to that shown on CPUs since GPU delivers a higher GFlops rate. By looking at the Ready panel, one can
observe that this idle time does not come from a sudden lack of tasks ready to be executed. The submitted panel clearly indicates
that all tasks have been submitted in the beginning and that task execution started immediately after, without waiting for fully
unrolling the DAG. As suggested in the Cholesky Iteration (top), DAG traversal is rather depth-�rst. Many outer loop iterations
are parallel (the maximum is 30 around 40s of execution), explaining why there is always a su�cient number of ready tasks.

Such GPUs starvation is more likely explained either by data prefetching problem (some tasks are ready but their input data
is not yet transferred to GPUs) or possibly by some priority problem (the priorities, used by the scheduler to choose which
task to schedule �rst when several of them are ready, might be inadequate). The �rst explanation is likely to be the right one
here. Indeed, most large idle periods on GPUs and large periods of times where CPUs are not doing useful computations (in
white) also coincide with abnormally longdgemmtasks (in dark green, B.1) on GPUs. An investigation has revealed that, for
an unknown reason, the GPUs seem to freeze during a task execution inside the proprietary CUBLASdgemmkernel, ultimately
blocking tasks eagerly waiting for GPU data. Understanding why GPUs sometimes get stuck would certainly solve the issue but
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FIGURE 14 Cholesky factorization of a large (60•60 tiles of960•960) matrix with the DMDAS scheduler with the Cholesky,
Space/time, Submitted and Ready (plus scarce) variables, and the solution of the ABE (right).

this clearly suggests a weakness of the chosen scheduler which assumes that tasks duration have small variability. Usingother
schedulers may therefore alleviate this.

The plot in the right of Figure 14 show the ideal allocation when calculating the ABE. They show how the GPUs have been
overused withdgemmtasks and under-exploited fordsyrk anddtrsm tasks. It therefore suggests toconstrain the dsyrk and
dtrsm tasks to run exclusively on GPUs.

Performance gains when constraining some tasks to GPUs were already reported by Limaet al. (51). However, their results
were achieved using scheduler hints provided by programmer annotations. In our case, the suggestion of when and which tasks to
constrain to GPUs is inferred from the solution of the ABE without relying on programmer's knowledge about task's architecture
a�nity.

Comparing Scheduling Strategies and Task Constraints
The initial motivation lead us to vary the scheduler (DMDA, DMDAS, WS) and to force or not thedsyrk /dtrsm allocation on
GPUs. Figure 15 provides the six-scenario comparison: the columns represent the di�erent schedulers: DMDA (left), DMDAS
(center), and WS (right); while the rows represent the original version (top) and the modi�ed version wheredsyrk /dtrsm tasks
can only be executed on GPUs (bottom). The ABE for each case is depicted on each cell of the comparison matrix.

First of all, it is interesting to see, as shown by the Cholesky Iteration plot, how the three schedulers di�er in their traversal of
the DAG. While the DMDA algorithm has a breadth-�rst traversal (very few iterations of the outer loop are active at the same
time), the DMDAS has a much more depth-�rst traversal as it takes the priority of the critical path into account. The traversal
of the Work Stealing (WS) is even more depth-�rst as almost all outer loop iterations are still in progress at the end of the
execution. Such way of progressing through the DAG is typical of WS and somehow favors local data accesses even though the
algorithm is more dependency myopic than the two other ones. Second, when constraining thedsyrk anddtrsm to run solely
on the GPUs (the plots on the bottom row of Figure 15), task allocation then corresponds to the ideal one. However, if such
constraint allows both DMDAS and Work Stealing to obtain near optimal executions (within less than 2% of the lower bound
as given by the ABE), this helped only moderately the DMDA algorithm. Many synchronized idle phases can be observed and
imputed to both dependency issues (not enough parallelism is obtained from such a strict breadth-�rst traversal) and particularly
slow tasks (probably slowed down by simultaneous data transfers). Interestingly, very few outlier tasks appear in the DMDAS
and WS executions although the latter still seems a bit sensitive to this, as inactivity periods on CPUs (white areas) still correlate
with the occurrence ofdgemmoutliers (darker green) on GPUs.

Finally, we stress that such observations are no coincidence. We randomly ran similar scenarios ten times and although
the numbers always slightly di�er, the general behavior and conclusions are the same. We also highlight that the area bound
estimations (ABE) can vary signi�cantly between two scenarios (e.g., 60s for constrained DMDA vs. 57s for constrained WS),
which can be initially surprising since these estimates only depend on the number of tasks and their per-type average execution
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FIGURE 15 Six case comparison showing three di�erent runtime schedulers � DMDA, DMDAS, and WS (columns) � when
used with the original version (top) and by forcingdsyrk /dtrsm tasks allocation on GPUs (bottom). The solution of the Area
Bound Estimation (ABE) is shown for each of the six cases.

time on the di�erent resources. The observations can be explained by the use of sample execution time mean, which may vary
a bit. From our investigation this variation is not explained by outliers occurrence but rather biased toward one or another
scheduler. We think this is the consequence of a better locality (cache usage) but more complex measurements would be needed
to fully evaluate this hypothesis.

6.3 Lack of MPI Message Pipelining with TCP

Initial Motivation
The second scenario investigates idle periods a�ecting all the workers (CPU/GPU) in the same node when the application
starts running with the multi-node StarPU-MPI. These periods are very frequent; we have observed in multiple executions
with di�erent worker combinations and number of nodes. It occurs more frequently in the beginning of the application, when
the bulk of parallelism is not yet in place, or during the whole execution in runs where the problem size is too small for the
number of resources. The problem is illustrated by regions marked by A and B in Figure 16, showing the behavior of Cholesky
when a squared matrix of dimension 72,000 is used as input, with 75Ö75 tiles of size 960Ö960, and the PRIO scheduler. Two
nodes with two GPUs and �ve cores each have been used in the experiment. The nodes are interconnected by a 10GB Ethernet
network properly con�gured using OpenMPI 2.0.2 with the default TCP eager limit set to 65,536 bytes (indicating that the eager
communication protocol is used until that size; afterwards the RDV protocol is adopted). The case represented in the Figure 16 is
enriched with one representative backward task dependencies starting at task0_5051 (in Node 0, red), which was automatically
identi�ed as the �rst task starting after a signi�cantly long idle period. The backward path (highlighted by the dashed arrow
in the plot) indicates that the task0_5051 has been released by a very long MPI operation (red-border rectangle in the top),
which has been unblocked by tasks running in GPUs of Node 1 (bottom). These tasks were released by another MPI operation
from Node 0, which has been released to execution by data provided by tasks on Node 0. We have interactively selected many
tasks after these idle periods, for di�erent schedulers and number of resources. No matter which con�guration is used, tasks are
always delayed by long MPI operations.
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FIGURE 16 Backward task dependencies for the 0_5051 task, illustrating how the idle periods are caused by very long and
abnormal MPI operations between the two nodes (2 GPUs, and 5 cores each) reserved to run Cholesky (72,000 square matrix,
tiles of 960• 960 elements, PRIO scheduler), both interconnected by 10GB Ethernet: idle time is caused by the use of the
rendezvous mode instead of eager communication mode, as it was expected by application developers.

Our investigation has indicated that these idle periods are caused by a combination of two factors: �rst, the way the MPI thread
of StarPU handles asynchronous communications during the beginning of the application (idle marked by region A in Figure 16);
second, the MPI threshold con�guration between the eager and the rendezvous communication modes (regions identi�ed with
B). The analysis is conducted on heterogeneous multi-node cases, with a focus on task dependencies, ready/submitted variables,
along with MPI bandwidth and the concurrent MPI operations plot. We detail how each of these factors are �xed to improve the
message pipelining implemented in the MPI thread of StarPU.

Fixing the message pipelining to expose parallelism faster in remote nodes
The �rst problem we have identi�ed is related on how StarPU handles the MPI asynchronous communications (see Section 2.2
for details on how StarPU-MPI works). Since the data partitioning is static, StarPU identi�es all inter-node point-to-point com-
munications to satisfy the data dependencies that cross a node border. Since they are known, the per-node MPI thread of StarPU
issues multipleMPI_Isend and the correspondingMPI_Irecv operations from the start. Depending on the input size and the
number of tiles involved in a speci�c run, the amount of these operations might be very large. The problem is that some of these
operations might complete (i.e., the communication �nishes) before posting all remaining asynchronous operations. When such
scenario occurs, the application is delayed because the MPI thread handling the communication operations has not issued an
MPI_Test to detect the reception and unlock the corresponding tasks. This negative behavior becomes worse when multiple
nodes are used and the borders among tiles have more complex con�gurations.

The �x for the �rst problem was to interleaveMPI_Test calls between each issue of MPI asynchronous communications. If
the test call indicates that a message has been received, the MPI thread of StarPU can satisfy an inter-node data dependency.
Since test calls provide a negligible overhead with potential great bene�ts in the beginning of the application, this solution is
now mainstream in StarPU. After the �x, idle periods such as the one marked by A in Figure 16 disappear. However, the other
idle periods (B) remain after the �x, indicating that the origin is elsewhere.

The root cause of the second problem (regions B in Figure 16) has been identi�ed as the threshold to switch from the eager to
the rendezvous communication modes. The eager mode allows a send to complete without an acknowledgment from the other
side; while the rendezvous mode requires a reception acknowledgment. The change of communication mode is driven by the
message size. The default value of the OpenMPI 2.0.2 installation used in all experiments is 64 KBytes. Messages smaller than
such size will be sent using the eager mode, favoring asynchronism, while larger messages are sent using the rendezvous, for
throughput. In our Cholesky case, the volume of data dependencies depends on the tile size. For example, a commonly used
squared tile of 960 8-byte elements occupiesù7.37 MBytes. This implies that only the rendezvous protocol is used throughout
the experiments with the default eager limit. Unfortunately, the rendezvous protocol also introduces communication aggregation:
MPI requests submitted closely enough will be sent and received together.
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FIGURE 17 Identifying the nocive MPI communication aggregation of rendezvous mode and the correlation with the long MPI
operations (using backward dependencies of two delayed tasks) for a run with two nodes (2 GPUs, and 5 cores each) reserved
to run Cholesky (72000 square matrix, tiles of 960• 960 elements, with the DMDAS scheduler).

Figure 17 shows a case with the DMDAS scheduler where the long MPI operations during the idle periods for two represen-
tative backwards task dependencies get correlated with the end of multiple MPI operations at the same time. We have typically
observed this kind of behavior, with as many as 40 7.37-MByte transfers aggregated together that �nish at the same time. This
massive network operation may takeù2.5s to complete altogether, instead of completing progressively. Such undesired behav-
ior has been reported to the OpenMPI team, which agreed something needs to be �xed. This behavior is harmless during most
of the execution, except in the beginning where little parallelism exists: the execution starts with a singlePOTRFtask in the �rst
node, followed byTRSMtasks, whose results need to be transferred to other nodes as quickly as possible, because all tasks from
other nodes depend on these �rst tasks to start unrolling their DAG. Good schedulers tend to execute theTRSMtasks as quickly
as possible, but that leads to submitting MPI requests very closely, and thus seeing them all aggregated, and thus received very
late. The work-around proposed by the OpenMPI team is to force the eager mode, to avoid aggregation and instead get progres-
sive reception and thus better reactivity, even if it leads to lower network e�ciency, since clearly the beginning is very sensitive
to pipelined delivery.

The �x for the second problem is to increase the eager limit to a value that encompass the tile size in bytes, enabling an
asynchronous exchange for all data dependencies. We have increased the tile size to 8MBytes to con�rm that a higher eager
limit (using thebtl_tcp_eager_limit option of OpenMPI) brings performance gains. The case used to illustrate is depicted in
Figure 18, showing two executions of Cholesky with an input size of 67,200, tiles of 960, and static partitioning by row (P = 1).
The LWS (work-stealing) scheduler has been used by StarPU. The �gure shows the behavior di�erence (left/right) by changing
the eager limit parameter: the original behavior is shown in the left; increasing the eager limit gives the behavior depicted in the
right. We can see that the idle time in StarPU workers is reduced (from a 30-50% to 10-40%) and the large idle periods shared
by all workers of the same node have disappeared. The left image has been generated with four backward dependencies crossing
node boundaries with MPI, illustrating that the idle times are caused by abnormal long communication times. The parallelism
explosion can be also veri�ed in the ready tasks panel, where a high number of ready tasks is reached very quickly and sustained
for a long time. The Cholesky Iteration shows that the number of tiles being processed at the same time is much higher. The
MPI bandwidth performance (not depicted) is higher after the eager limit modi�cation. Such changes enable a 20% execution
time reduction, without any application change.

6.4 Tuning StarPU's MPI requests and e�ect on data distribution strategies

Initial Motivation
Using 8 hybrid nodes (chi�et cluster), with 6 cores and 2 GPUs on each node (for a total of 48 cores and 16 GPUs), we study the
in�uence of data distribution (PË ^1;2;4;8`, see Figure 3) on the load balance and resulting performance. We have tested with
two schedulers (LWS and DMDAS), a �xed input of 108,000Ö108,000 with tiles of 1,440Ö1,440 elements, and using the best
known network con�guration (Ethernet 10GB with appropriate kernel con�guration, and an MPI eager limit which is higher
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Default eager limit (64 KBytes) Modi � ed eager limit (8 MBytes)

Wider
paralelism

Keeping ready tasks levels high

Abnormally Long MPI tasks in
backward inter-node dependencies

FIGURE 18 Cholesky execution using a squared matrix of 67,200, with squared tiles of 960 with four identical nodes, each
one with 2 GPUs and 5 cores, LWS scheduler. The left image shows the behavior when the application executes with the default
eager limit, obtaining a total makespan ofù80s. It is annotated with four inter-node backward MPI dependencies showing
abnormal long times. The right image (same scale) shows an unchanged case but with a larger eager limit, for a makespan of
ù64s (performance gain of 20%).

than the tile size - in this case 32MBytes). We report here only the results obtained with the LWS scheduler, but the bene�ts
brought by changes motivated by our analysis are scheduler independent. Per-node ABE is used as theoretical lower bound, and
we use our framework to understand why makespans are disconnected from such bounds. With eight nodes (as presented in
Section 2.3), it is expected to have the best performance with a P value between two and three, since this value minimizes the
communication perimeter of the nodes.

StarPU's limit for simultaneous MPI requests and data distribution strategies
Figure 19 shows the visualization of the four cases (PË ^1;2;4;8`) depicting with the Cholesky, application worker, ready
tasks, MPI bandwidth and the number of concurrent MPI operations panels. The per-node area bound estimations (marked by
ABE squared rectangles) shows that load balancing improves as we increase the value of P, up to the best case with P=8. The
overall performance, represented by the makespan, shows that the performance is not totally related to a better load balancing.
Better results are achieved with P=2 (top right) with a total makespan ofù110s, and P=4,ù113s, despite the fact that the
load is unbalanced as shown by the per-node ABE. The reason behind the better performance ofP = 2;4 is that they show the
largest number of tiles being computed in parallel, as shown by the Cholesky Iteration, have the lowest CPU/GPU idleness, and
the MPI bandwidth is smoother and �at along the execution time. These facts demonstrate that unlocking parallelism on other
nodes as early as possible is more important than a very good load distribution.

There are many negative observed factors for cases with PË ^1;8`. The P=1 case is particularly interesting since it demon-
strates the largest load imbalance among the four cases. The unequal load distribution force nodes to wait from each other, i.e.,
the slowest node with the largest load limits the performance of other nodes. This is con�rmed through the ups and downs in
both MPI bandwidth and number of concurrent MPI operations, like a ping-pong e�ect. This might indicate a rather sequential
execution as shown by the low number of ready tasks along execution. The case with P=8 shows the highest idleness, almost
30% in CPUs and 60% in GPUs, and it is the case where the slow start is more representative, even after using the eager protocol
in the MPI layer (see previous section). This is explained by the misplacement of initialdtrsm tasks, responsible for unlock-
ing more parallelism. They are not evenly distributed among nodes, despite the better total load balance. This case is still very
intriguing because of the small 20s window between 25s and 45s where a lot of parallelism is released while the remaining of
the execution (before and after) su�ers from lack of it. Before that time interval, the runtime is incapable of unlocking enough
parallelism to feed all cores because of the column-based distribution, which makes e.g., node 0 responsible for computing all
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tasks of the column before letting other nodes to have some work to do. Moreover, it forces node 0 to send a lot of data through
the network, as shown in the MPI curve. During and after that 20s-window, the column-based distribution keeps making one
after the other responsible for unlocking all parallelism. As long as there are enough iterations computed at the same time, the
runtime manage to keep up, but at some point the runtime is incapable of unlocking parallelism fast enough because of the data
distribution, and performance is degraded with a very low number of ready tasks.

Wider
paralelism

Wider
paralelism

Smoother MPI bandwidth

Smoother MPI bandwidth

P=1 P=2

P=4 P=8

ABEABE

ABEABE

Low parallelism

Ping-pong e � ect

Too much MPI concurrency

(lack of ready tasks)

FIGURE 19 Cholesky execution using a squared matrix of 108,000, with squared tiles of 1,440 with eight identical nodes, each
one with 2 GPUs and 6 cores, LWS scheduler. The grid shows four cases for P values of 1 (top left), 2 (top right), 4 (bottom
left), and 8 (bottom right). All plots share the same scale (time, vertical).

No matter which P value is used to equal load distribution, observed makespans are still very far from what the area bound
estimations predict. We believe that matching ABE is very hard, since it disregards communication costs, but the scheduling
and inter-node (MPI) communication could be optimized. The origin of this performance problem is related to the number of
concurrent MPI tasks, seen in the bottom of each case of Figure 19. This in itself is not a problem since these operations are
sometimes carried out by independent pairs of nodes employing independent network links. However, when the communication
concurrency is too high, this might delay MPI operations that would unlock parallelism faster. What happens is that since MPI
processes requests in the order they were submitted by the runtime, the MPI communications needed by the critical path get
delayed by all the previously-submitted requests. This can be observed for the P=8 case, where the �rst node demonstrates
an enormous amount of concurrent MPI operations, delaying all communications by as much corresponding time. Before our
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investigation, the StarPU runtime provided no API or con�guration to de�ne communication priorities per-task, nor to control
the maximum number of concurrent MPI operations.

We believe that a better control of MPI operations can be implemented in two ways in StarPU: (a) to give a higher priority to
those communications that release parallelism in Cholesky (e.g., the �rstdtrsm tasks), and (b) to impose a limit on the number
of MPI requests issued by StarPU, so that high-priority requests are delayed at worse by the few requests already issued. These
two strategies have been implemented in the development branch of StarPU after we have identi�ed the problem. Figure 20
depicts the scheduling behavior for two representative scenarios (LWS scheduler, P=2, 100Ö100 tiles of 960Ö960 elements)
for two runs: (left) before such modi�cations and (right) after, using a limit of 10 concurrent MPI requests and givingdtrsm

higher communication priority (simply inherited from the task priority, so without application modi�cation). After the changes
were introduced, we can see that MPI delivers a higher bandwidth for the application, especially in the crucial starting moments
where parallelism is being unfolded. The more controlled MPI requests can be veri�ed in the bottom plot, where the number
of concurrent MPI operations is much more contained. The Cholesky Iteration plot shows that the parallelism unfolds much
faster, in less than 10s, after the implemented changes. This behavior is con�rmed by the ready tasks plot, where the number
of ready tasks per node (colors) responsible for unfolding parallelism reaches a peak in the beginning of the application, while
before (left) such behavior caused a minor yet damaging slow start of the application. This has the direct bene�t of exposing in
a much faster way the critical path towards application completion, and gives much more scheduling opportunities to improve
performance. In conclusion, as can be observed in this comparison, these modi�cations reduce the total makespan byù8.5%
(from 80s to 73s). Using the DMDAS scheduler, the gains are ofù12.7% (from 76s to 67s).

Unlimited MPI requests, no MPI task priorities Limited MPI requests, with  priorities

Higher MPI bandwidth

Comm. concurrency controlled

Parallelism unfolds fasterSlow start

Parallelism
unfolds faster

FIGURE 20 Cholesky execution using a squared matrix of 96,000, with100 • 100 squared tiles of 960 with eight identical
nodes, each one with 2 GPUs and 6 cores. The con�guration of P=2, the vertical/horizontal scales, and the LWS scheduler
are shared by both cases: (left) original runtime with unlimited MPI requests, without communication priorities; (right) MPI
requests limited to 10, using priority for the dependencies leading todtrsm tasks.

7 CONCLUSION AND FUTURE WORK

This article presents a �exible and versatile framework to create faithful composite trace views for the performance analysis of
task-based HPC applications running on multi-(node, core, GPU) platforms. Such combination can be technically quite challeng-
ing and to the best of our knowledge, our framework is the �rst one allowing to present a coherent view of task-based applications
running on distributed hybrid platforms. One of its key strength is the ability to easily enrich every view with additional sources
of information that can be processed and �ltered on the �y through declarative commands.



28

The framework is built using modern data science tools such as R,ggplot2 and the data manipulation functions of the
tidyverse meta-package. Many other blocks are built using compiled languages for performance, to complete a scalable 2-
phase work�ow. We have shown the usefulness of this framework in the performance analysis of an already very optimized
tiled Cholesky Factorization from the Chameleon/MORSE suite that uses the StarPU-MPI runtime. The optimizations that were
motivated by our analysis are three-fold. First, it enabled changes in the application to force a better task equilibrium between
cores and GPUs (using the solution suggested by an Area Bound Estimation). Second, to �x the application slow start, i.e., the
lack of parallelism in the �rst seconds of execution when the DAG unfolds � by using the MPI eager mode and the preference
for a communication algorithm that reduces latency. Third, to improve parallelism unfolding in all phases of the execution by
limiting the number of MPI requests issued by the StarPU runtime when registering the inter-node static dependencies among
task, when the domain is partitioned among nodes. These three strategies together bring several bene�ts for the applications
based on StarPU-MPI. For the speci�c case of Cholesky factorization, the third solution alone brings a 13% makespan reduction
when using the DMDAS scheduler.

Although our framework was demonstrated with the dense Cholesky factorization application, it can readily be used with
other similar StarPU applications. We have successfully visualized the behavior on hybrid con�gurations of the sparse Cholesky
factorization available in the Pastix scienti�c library (52), and to theqr_mumps application (53), a sparse QR factorization solver.
These applications are particularly challenging to analyze since their structure and their computation kernels are particularly
heterogeneous. No particular development in our framework is required regarding trace combination. Yet, both applications
require speci�c adjustments in terms of analysis. For example, a speci�c view illustrating how the application unfolds should
be developed since the structure of dependencies in a sparse solver is much more complicated than the one of a dense solver.
Likewise, the outlier detection mechanism needs to be adapted with speci�c and more elaborated performance models. Indeed,
computation kernels handle tiles with a geometry that evolves along the application execution. We also intend to investigate the
behavior of more complex applications, such as ScalFMM (54).

As future work, we intend to exploit task dependency �ltering further to pin-point scheduling mistakes that reduce perfor-
mance. We also want to adapt our software to deal with other variants of task-based programming models, such as OpenMP, that
allows a running task to suspend itself until some other tasks complete. Although a full-�edged analysis of arbitrary OpenMP
applications would require speci�c development with OpenMP specialists, we believe our work�ow could be extended to handle
OMP-T traces of applications using a restricted subset of OpenMP.
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