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Summary

Programming paradigms in High-Performance Computing have been shifting

towards task-based models which are capable of adapting readily to heterogeneous

and scalable supercomputers. The performance of task-based application heavily

depends on the runtime scheduling heuristics and on its ability to exploit computing

and communication resources. Unfortunately, the traditional performance analysis

strategies are un�t to fully understand task-based runtime systems and applications:

they expect a regular behavior with communication and computation phases, while

task-based applications demonstrate no clear phases. Moreover, the �ner granularity

of task-based applications typically induces a stochastic behavior that leads to irreg-

ular structures that are di�cult to analyze. This paper details a �exible framework

combining visualization panels to understand and pinpoint performance problems

incurred by bad scheduling decisions in task-based applications. Three case-studies

using StarPU-MPI, a task-based multi-node runtime system, are detailed to show how

our framework is used to study the performance of the well-known Cholesky fac-

torization. Performance improvements include a better task partitioning among the

multi-(GPU,core) to get closer to theoretical lower bounds, improved MPI pipelin-

ing in multi-(node,core,GPU) to reduce the slow start, and changes in the runtime

system to increase MPI bandwidth, with gains of up to 13% in the total makespan.

KEYWORDS:
High-Performance Computing, Heterogeneous platforms, Task-based applications, Trace Visualization,

Cholesky

1 INTRODUCTION

High-Performance Computing (HPC) landscape have experienced a paradigm shift in the last years. The stagnation in the pro-
cessor frequency has led the adoption of other ways to ful�ll the ever-growing need for computation power of HPC applications.
A common HPC platform formerly composed of homogeneous nodes now is composed of multicore computing nodes enhanced
with multiple accelerator devices, e.g., 90 of the fastest supercomputers listed in the June 2017 Top500 list are using GPUs
and/or Xeon Phi coprocessors to increase their computing power (1).

£See the acknowledgement section at the end for funding information.
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This paradigm shift in the hardware has exposed the limitations of traditional tools for programming and analyzing appli-
cations running on HPC platforms. E�ciently programming such machines achieving portable and scalable performance has
become extremely challenging. The use of explicit programming models demands a huge e�ort to develop and maintain the
application and results in a code that is tightly coupled to the target hardware. Such programming model is unfeasible in the
hybrid scenario where the accelarator's technology is changing fast, e.g., Cell Broadband Engine Architecture (2006), Graphics
processing unit (2007), XeonPhi (2013).

The pressure on parallel programming tools has contributed to the popularization of the task-based programming model.
While the traditional parallel programming paradigm relies on low-level abstractions like threads and explicit synchronizations,
the task-based model describes the application in terms of dependent sequential (or parallel) tasks. Explicit synchronizations
are replaced by tasks dependencies that can be, in several cases, inferred automatically from data access. The task-based model
is implemented by several programming models: OpenMP 4 (2), OmpSs (3), PaRSEC (4), StarPU (5), etc. Despite the growing
availability of tools to program and execute task-based applications on hybrid platforms, there are few analysis tools with a focus
on such scenario. One of the main reasons is that the burden of getting the maximum performance from the machine shifts from
the application to the runtime developer, who implements a given scheduling heuristic. Usually, tools that are capable of giving
insights to developers, such as Paraver (6), Vite (7), and others (8, 9), are unsuited to scheduling specialists because assumptions
and performance bottlenecks are di�erent from classical parallel programs.

In this article, we explain how we designed a �exible and versatile framework that enables a better understanding and easy
identi�cation of subtle performance problems due to bad scheduling choices in task-based parallel applications. Most of the
problems would go unnoticed and misunderstood with classical trace visualization approaches. We built the framework1 on
top of modern data analytics tools, combining the R programming language (and in particular the ggplot2 library) and org-
mode (10). The framework comes at a very low development cost when compared to a traditional and monolithic performance
visualization tool. The designed views depict many di�erent facets of the program behavior, enabling the correlation of already
available performance metrics with those derived from the traces. In summary, this article presents a �exible, extensible, and
versatile visual performance analysis framework whose main strengths compared to other tools are the following: (a) combin-
ing the intuitiveness of visual trace exploration with the expressiveness of statistical queries (Section 4); (b) easily creating and
synchronizing application-speci�c views that allow to better understand how the scheduling unfolds (Section 4.1.1); (c) auto-
matically �ltering dependencies to quickly identify which scheduling opportunities may have been missed (Section 4.1.1); (d)
a two-phase implementation as a work�ow where the �rst part can be run on the data server, for pre-processing, and the second
part on the analyst laptop, for visualization (Section 4.3).

We demonstrate the e�ectiveness of our visualization approach by analyzing traces from the dense linear algebra Cholesky
factorization of the Chameleon/MORSE package (11), implemented using the StarPU task-based runtime (5) and its MPI exten-
sion (12). Our experiments rely on two hybrid multi-core/multi-GPU/multi-node clusters and reveal many interesting behavior
that lead us to pinpoint resource usage mistakes, to compare StarPU schedulers (DMDA, DMDAS and Work Stealing), and to
conduct an extensive analysis of StarPU-MPI performance. The use of our framework have enable us to propose many optimiza-
tions to StarPU-MPI, ultimately leading to the following performance gains:(a) constraining certain task types to particular
resource types may help reducing idleness in multi-GPU scenarios;(b) �xing the lack of message pipelining with MPI by
increasing the eager mode limit of the OpenMPI implementation, hence reducing the slow start of the application; and(c)

detecting that too many MPI concurrent operations are harmful when reaching the maximum of parallelism. Regarding the last
item, we have proposed a two-fold solution including communication priorities and a limit on the number of concurrent MPI
requests from StarPU. Combined, all these contributions bring several improvements that are already implemented in the main
trunk of StarPU-MPI code, for the bene�t of other parallel applications.

Section 2 provides a background on task-based runtimes for hybrid platforms, the tiled Cholesky algorithm used as case study,
and the StarPU runtime and its MPI extension. Section 3 presents related work of traditional BSP-based and task-oriented trace
visualization, motivating our own study. Section 4 presents our visualization framework and work�ow, detailing all the panels,
a discussion about scalability, the implementation and performance, as well as some limitations of our strategy. In Section 5,
we detail three case studies demonstrating the e�ectiveness of our visualization strategy to debug the tiled task-based Cholesky
application, and the MPI extension of the StarPU runtime. Section 6 gives a summary of results and future work.

1Code available at https://gitlab.in2p3.fr/schnorr/ccpe2017/
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2 BACKGROUND AND EXPERIMENTAL CONTEXT

2.1 Background

Traditional HPC applications have been designed following the bulk-synchronous parallel (BSP) paradigm. In this model, the
application execution has well-de�ned phases: computation, communication and barrier. The BSP design has been used for
a long time in homogeneous platforms with identical nodes connected by a fast and stable interconnection. However, current
HPC platforms rely on hybrid nodes where accelerator devices are attached to multicore processors to increase the computa-
tional power of the system. In this scenario, the use of explicit programming models where one should indicate where and when
each computation should be done, as done in the BSP paradigm, becomes impractical as it requires to tightly couple the imple-
mentation to the hardware con�guration to achieve good performances. Although this strategy might lead towards the maximal
achievable performance, it su�ers from bad performance portability, it is sensitive to variability and it is really hard to develop
and maintain.

Task-based programming tools have emerged to address the heterogeneity of state of art HPC platforms. In this model, the
application is designed in terms of hardware-independent tasks and their dependencies. Task-based tools rely on dynamic runtime
systems to e�ciently exploit the multilevel parallelism of the platform. Once the programmer describes the application in
terms of abstract tasks and their dependencies, the runtime system is responsible for platform-related activities such as task
scheduling, data transfers, and dependencies management. To perform these activities, the runtime system infers platform and
code characteristics such as provided task implementations, available processing units (CPU cores, GPUs devices), estimated
task duration, data locality and interconnection bandwidth. From these details, the runtime can use appropriate scheduling
heuristics and perform optimizations (e.g., anticipating an overlap of data transfers) in order to achieve a better performance.

Several successful tools have been developed in the recent years. Initially, they focused on speci�c applications. MAGMA (13),
for instance, supports the execution of linear algebra applications in a combination of multi-core with GPUs. OmpSs (3) pro-
vides an extension to OpenMP tasks through new directives that allow supporting multi-core systems enhanced with GPUs.
PaRSEC (14) is a generic framework for architecture-aware scheduling of tasks on many-core heterogeneous clusters. StarPU (5)
is designed to exploit hybrid architectures and o�ers an MPI-based extension (12) to exploit multiple nodes. Despite the ini-
tial focus on dense linear algebra applications, currently, these runtime systems are being used in many other domains, such as
FEM applications (15), seismic wave modeling (16), sparse linear algebra (17, 18), aerodynamic simulations (19) and climate
modeling (20).

2.2 The Tiled Task-based Cholesky decomposition

In the context of task-based applications, the overall performance is intrinsically related to the e�ciency of the runtime system.
For that reason, focusing our analysis on the runtime system can help us to identify important issues and mistakes that impact the
overall performance of the application. However, to study the runtime system performance we should rely on a representative and
already well-optimized application. Using a non-optimized application can hide runtime system performance issues while a non-
representative one could lead us to problems and mistakes that have no signi�cant in�uence on the performance of commonly-
executed applications. In this work, we use a Cholesky decomposition as our case study application. This factorization is one of
the most common linear algebra operations and is used by many scienti�c applications. In order to improve the reproducibility
and the stability of our tests, we adopt the tiled Cholesky implementation provided by the Chameleon/MORSE package (11).
This implementation is built on top of the StarPU runtime system (5) and compiled with standard BLAS (CPU) and CUBLAS
(GPU) libraries.

Figure 1 shows a simpli�ed version of this application. The lines with calls todpotrf , dtrsm , dsyrk anddgemm(Figure 1a)
represent the creation of StarPU tasks with double-precision implementations for CPUs and GPUs (except thedpotrf that has
only the CPU version). The underlined labels RWand Rindicate the access mode of the subsequent matrix block. From these
access mode hints, the runtime can infer the dependencies and then build the Directed Acyclic Graph (DAG) of tasks. Figure 1b
shows the corresponding DAG for a5 • 5 matrix. In each iterationk of the outer loop, onedpotrf task enables the execution
of N * k * 1 dtrsm , thenN * k * 1 dsyrk tasks, followed byù. N * k/2_2 dgemmtasks. From the dependencies, we can conclude
that several iterations can be executed simultaneously and that the number of repetitions in the internal loops decreases at the
same time ask increases. Finally, the execution time of a task highly depends on its type (dpotrf , dtrsm , dsyrk , anddgemm)
and the target resource (CPU or GPU). Note that the color scheme used in this Figure to represent the task types is respected in
all the following graphics of this paper.
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for (k = 0; k < N; k++) {
DPOTRF(RW, A[k][k]);
for (i = k+1; i < N; i++)

DTRSM(RW, A[i][k], R , A[k][k]);
for (i = k+1; i < N; i++) {

DSYRK(RW, A[i][i], R , A[i][k]);
for (j = k+1; j < i; j++)

DGEMM(RW, A[i][j], R , A[i][k],
R, A[j][k]);

}
}

The Cholesky Algorithm.
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Corresponding DAG forN = 5.

FIGURE 1 The Cholesky code and its DAG (forN = 5).

2.3 The StarPU Runtime and the MPI extension for multi-node platforms

StarPU (5) is a runtime system for task-based programming on hybrid architectures. The runtime was initially designed to handle
single-node hybrid platforms composed of multicore processors (CPUs) and accelerators (GPUs, Intel Xeon Phi). To e�ciently
exploit the parallelism of the platform, StarPU relies on multiple implementations of the same tasks e.g., with CPU and/or GPU
versions. The runtime scheduler decides on-the-�y where to execute the tasks considering the available processing resources,
their type, the current locations of data, and the provided task implementations. StarPU o�ers several task scheduling policies.
The DMDA/DMDAS policies are based on precalibrated performance models, while the WS/LWS uses a work stealing design,
stealing tasks from the most loaded worker (original) or the most loaded neighbor worker (locality version). The PRIO policy
only relies on priority hints speci�ed by the application programmer.

TheDMDA (Deque Model Data Aware) andDMDAS (Deque Model Data Aware Sorted) algorithms are members of a family
of StarPU schedulers that take the predicted task duration and data transfer duration into account when performing the task
scheduling. These strategies are based onlist scheduling, i.e., every time a resource is idle, if a task is ready, it will be scheduled
on this particular resource. Such a scheduler therefore never leaves a resource idle on purpose, which ensures the well-known
.2*1_ p/ competitive ratio for homogeneous machines (21). Deciding which ready task to select has a major in�uence in practice
and the classical heuristic consists in prioritizing tasks based on the critical path. However, the critical path notion is dynamic and
obtaining a proper estimation can be quite challenging. With heterogeneous computing resources, such prioritization is generally
done with variants of the HEFT (Heterogeneous Earliest Finish Time) strategy (22). The DMDA and DMDAS algorithms are
greedy heuristics that schedule tasks in the order they become available, taking into account the predicted task duration, the
estimated data transfer duration between CPUs and GPUs and the relative performance of resources on each computation kernel
when making its decision. The DMDAS algorithm improves DMDA decisions by sorting tasks on per-worker lists by number
of data-slices already transferred and by priority, which can be expensive when the number of tasks is large. It is therefore rather
close to the original HEFT algorithm by respecting priorities and taking past scheduling decisions into account.
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TheWS (Work Stealing) andLWS (Locality Work Stealing) algorithms use one list per worker; new tasks are kept local by
default. When a worker is idle, in the WS policy, it steals tasks from the most loaded worker. The LWS policy, on the other hand,
imposes that the worker must steal �rst from the most loaded neighbor worker. This victim's choice di�ers from the classical
work stealing algorithm (23) where the victim is chosen using a random strategy.

ThePRIO algorithm uses a mere centralized list that is shared by all the workers. This list keeps the tasks sorted respecting
thepriorities speci�ed by the application programmer.

The StarPU-MPI (12) extension provides additional support to handle multi-node architectures, adopting the MPI speci�cation
as a mean of access to the network. The main characteristic of the extension is that it has one independent StarPU scheduler per
node. For example, if an experiment is con�gured with DMDA, this scheduler will be used in each of the nodes to process a
part of the whole application DAG. Existing dependencies among nodes are satis�ed through MPI send/receive point-to-point
operations, and managed like any other task scheduled by the runtime. StarPU-MPI has one speci�c thread to handle MPI
communications per node. Since the domain decomposition is static, in the beginning of the application, the MPI threads call
asynchronous send/receive operations to satisfy all task dependencies of the node it runs on. After all operations have been
posted, the thread keeps testing all requests to verify when they arrive, and then release the execution of tasks.

The classical Two-dimensional Block-Cyclic Distribution (24) has been previously modi�ed to support multi-node runs with
static decomposition under the auspices of StarPU-MPI. The decomposition depends on the P Ö Q parameter and the number
of MPI nodes, governing how the input matrix is partitioned among nodes in a per-tile basis. The value of P can range from
one to the number of nodes. Figure 2 depicts the four possible situations cases for a Cholesky factorization with eight nodes
and a matrix with 16Ö16 tiles: the data decomposition shown in the left facet is obtained when P=1 Ö Q=8 and leads to a row
based distribution of tiles (one color per node); for P=2 Ö Q=4 and P=4 Ö Q=2, shown in the center left and right facets, the
data distribution is interleaved; �nally, when P=8 Ö Q=1, data distribution is by column as shown by the right facet. In an ideal
scenario, for a given number of nodes, the value of P should be de�ned so as to minimize the communication perimeter of each
node as it is related to the total volume of communications.

1x8 (by row) 2x4 4x2 8x1 (by column)

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
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FIGURE 2 Di�erent static partitioning schemes fordtrsm tasks as dictated by the P parameter when eight nodes are used to
run Cholesky: P=1 (left, by row), P=2 (center left), P=4 (center right), and P=8 (right, by column).

3 RELATED WORK AND MOTIVATION

There are very few established tools to conduct a proper task-aware analysis. This contradicts the latest trend towards runtime
systems for task-based applications, with a plethora of these (see Section 2). As a consequence, developers rely on BSP-based
tools, seeking unexpected heterogeneity where homogeneous behavior is common. These classic visualization techniques are
unsuited to the performance analysis of task-based applications because heterogeneity and unstructured execution is the expected
common behavior. We detail trace visualization strategies for both BSP and DAG-based applications highlighting their di�er-
ences (Sections 3.1 and 3.2), and motivate our work with the design challenges (Section 3.3) of novel visualization techniques
for DAG applications, as well as the typical questions raised during the analysis process.
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3.1 Traditional BSP-based Visualization

Many tools exist to visualize traces from BSP-based applications, where regularity among resources is common and clear
application phases can be visually and automatically detected. Most of these tools focus on message-passing applications relying
on the widely-known MPI interface (25). The most common technique is based on space/time plots, which get inspiration from
the traditional Gantt charts (26), where computational resources or application entities (process, threads) are arranged vertically,
sometimes hierarchically organized, while the application states (functions, actions) are laid out horizontally along time. Colors
are extensively used to depict di�erent thread states e.g., MPI operation. Interaction between application components are depicted
as arrows whose width may correlate with the the amount of transferred data. Such technique has been implemented multiples
times with di�erent technologies to improve human perception and scalability.

Yet, the race towards Exascale computing brings thousands to millions of cores into play, turning slow the rendering of space/-
time views when there are millions of states to be shown in a single screen. To mitigate this problem, Vite (7) uses an OpenGL
canvas with GPU acceleration to improve rendering performance. Since Vite relies on the semantic-free Paje language (27) as
trace input, it can depict virtually any kind of traces. Paraver (6) also tackles the scalability issue by implementing trace aggrega-
tion before the visualization. So, instead of sending all trace data to the rendering driver, it decides (based on user con�guration)
which element to draw in a speci�c location of the screen. Vampir (9) is a closed-source visualization tool with multiple views
for MPI-based OTF2 trace �les. It is considered to be more scalable than similar tools since it can leverage the nodes of a clus-
ter to increase the data bandwidth towards the client node that renders the space/time view. In general, all these tools focus on
interactivity, enabling one to �lter, zoom, interact, query data with a GUI. More recently, some of these tools have been adapted
to handle application traces collected in hybrid machines (28).

Space/time views are very useful to depict per-thread application states along time. However, the interaction among threads,
represented by arrows from source to destination, usually makes the representation hard to understand. The problem is that
asynchronous communication and priority communication queues turn the visualization into a clutter of graphical lines, without
any kind of regularity. This problem has for example been addressed in Ravel (8). The tool fully replaces the notion of time
(along the X axis of space/time views) by the order and simplicity of logical clocks. In exchange, a lateness metric is proposed
to encode how much each state is delayed with respect to other states in the same logical step of the application. Since phases are
clearly identi�ed, the tool is capable of clustering thread behavior by similarity. The approach enables one to focus on the causal
relationship among process and, at the same time, have a perception of bad performance with colors. An alternative approach to
handle numerous communication arrows is given through graphical edge bundling (29), keeping the temporal scale untouched.
Individual communication actions are bundled together to highlight the high-level communication patterns of the application.

3.2 Task-oriented Visualization

Parallel applications that are described as a Directed Acyclic Graph (DAG) of tasks have di�erent requirements during the
performance analysis, mainly because task scheduling is naturally stochastic. Besides, task dependencies in the DAG impose a
certain order on task execution. These are especially important in the beginning and end of the execution, when the number of
tasks is not su�cient to occupy all resources. Such kind of perception is nonexistent in BSP-based performance analysis tools. As
a consequence, there are very few tools that are truly oriented towards DAG-based application and runtime performance analysis.
Very frequently, these tools inspire from the already established �eld of BSP-based trace visualization, using the intuitive view
of Gantt charts supplemented with interactions i.e., mouse pointer. Haugenet al. (30), for instance, proposes an interactive
Gantt chart enhanced with dependencies, drawn as edges between tasks, that are highlighted when the mouse pointer hovers.
We believe this approach su�ers from three issues. First, in terms of scalability, since (e.g., in Cholesky) tasks typically have
many dependencies (up toNoutgoing dependencies fordtrsm anddpotrf tasks, i.e., a total of�. N 3/), drawing everything and
�nding interestingtasks and dependencies only through mouse interaction can be very tedious. In practice, only tasks close to
the critical path are important. Second, only one-level dependencies are depicted, while several levels are required to understand
the history leading to the scheduling problem. Third, this tool does not really account for the heterogeneity of resources.

An alternative approach to Gantt-like views is implemented in DAGViz (31). The tool o�ers a visual representation of the
DAG, which is retrieved using macros (translated to Cilk, Intel TBB or OpenMP) and presented in a hierarchical way. The
resulting representation can be folded/unfolded on-demand to show details and the node color indicates where they are executed.
There is no way to retrieve the time dimension and task duration, which can make performance analysis di�cult. The clear
problem with such approach is the scalability: very often DAG with large inputs may be composed of millions of tasks. Even
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with an arti�cial hierarchical organization, exploring the application structure (blocks, tiles), the representation will be very hard
to understand.

Temanejo (32) provides similar timeless DAG interactive views for many task-based runtimes. These DAG views can be
dynamically improved with information about the resource that executes the task, its scheduling status or its duration. The main
features of this tool are the online debug capabilities, e.g., the user can put a breakpoint in a task and �x its dependencies.
Temanejo relies on Ayaduame library to interact with the target runtime system and control the application execution at the task
level. These capabilities are very useful during algorithm design on small scale, but unsuited for performance analysis.

3.3 Challenges and Motivation

The design challenges for novel analysis techniques targeting task-based applications have two parts. The �rst one is behavioral,
connected to hypothesis formulation and checking. For such a challenge, we need to be able to answer the many key questions
regarding the runtime. The evaluation of scheduling decisions must enable the analyst to understand, for instance, the reason
why one task that belongs to the critical path has been delayed. This kind of micro evaluation must be carried out together
with a macro analysis, such as, what is global idleness of resources. One must also consider the DAG structure, compare to
lower bounds, compare against other executions with slightly di�erent con�gurations, and so on. To address these behavioral
challenges, we believe that a declarative, �exible analysis, must be proposed (33). The second type of challenge is technical,
and it is related to the feasibility when faced with large-scale scenarios where traces are voluminous. Any analysis framework
should scale and be responsive, enabling one to rapidly iterate in the performance investigation loop.

The next section presents our visualization framework and work�ow, addressing all these issues and challenges.

4 VISUALIZATION FRAMEWORK AND WORKFLOW

Data visualization enables one to check many assumptions at once. Automatically checking some of these assumptions through
computations would require to build on more hypothesis that would also have to be veri�ed. This justi�es an analysis with a list
of various expectations made on the system or application under investigation. For the task-based Cholesky case used in this
work, the usual expectations on uniformity, task dependencies, progress, potential improvements, aggregation and �ltering, and
multi-node data distribution, are as follows.

ˆ Uniformity. Task duration is expected to depend solely on their type (dgemm, dsyrk , dtrsm or dpotrf ) and on the type
of resource (CPU or GPU) on which it is executed. Such assumption should be visually veri�ed, highlighting all tasks
whose duration is abnormally large compared to the others of the same type/resource. We expect outliers to be space/time
location independent, unrelated to other tasks behavior. If not so, it may mean that the whole platform has been perturbed
at particular moments or that some resource di�ers from the others. For this particular analysis, we tag a task as anomalous
if its duration exceeds the sampled third quartile plus 1.5 times the sampled interquartile range. This outlier notion has
shown to be an e�ective anomaly classi�er for this analysis.

ˆ Dependency problems. Large input matrices generate a parallelism explosion after the beginning of the application.
We therefore want to monitor the number of ready and submitted tasks. For this Cholesky implementation, all tasks are
expected to be submitted when the application starts on each node participating in the execution. On scale, the number
of task dependencies is extremely large. Automatically selecting which ones to display is haphazard. If a detailed view
becomes necessary for some task dependencies, we rely on the scripting capability of our framework to select and visualize
the o�ending task dependencies from the performance point of view. A common way to understand problematic task
dependencies is to select tasks in front of idle time, because there should not be idle time whenever there is enough
parallelism.

ˆ Progress. The task graph resulting from dense linear algebra always share a common structure (for instance, see Figure 1 in
Section 2.2). In a classical semi-sequential execution, the DAG would be executed much similarly to abreadth-�rst search.
However, it is also possible to carry out adepth-�rst traversal, favoring task execution on the critical path. Following
the pipelining of the sets of tasks submitted by each outer loop iteration can be su�cient to get an overview of how the
scheduler is handling the DAG and if it corresponds to the analyst's intuition or not.
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ˆ Potential improvements. Dependencies are expected to be easily handled with large workloads. To check whether
improvements are still possible for a given run, one might rely on the classical scheduling bounds such as thearea bound
and thecritical path bound. Such bounds, especially the area bound, are expected to be tight when the workload is large
and allow to estimate how much further improvement can be expected. More accurate lower bounds (34) could be used as
well, in particular for intermediate size workloads. Furthermore, an ideal task allocation can sometimes be infered from
such bounds, which may allow to help understanding how scheduling could be improved.

ˆ Aggregation and Filtering. Displaying information on hundreds of thousands of tasks on a small area in a blunt way
generally leads to harmful visualization artifacts (35). For example, in a classical Gantt chart, visually estimating how
much time was spent idle can be quite di�cult. This is why it is generally important to �lter useless information (e.g.,
with thresholds con�gured by the analyst) or to aggregate it in a meaningful and non ambiguous way.

ˆ Multi-node data distribution . In an ideal scenario, the workload is evenly distributed among the participating MPI nodes
(di�erent machines of the computation pool of resources). If that is not the case, performance losses might be explained
by the communication-boundness in the end of the execution, where the critical path going through very loaded nodes
delays remaining MPI processes.

From such list of expectations, we propose a series of visualization panels designed to verify assumptions. They can be used by
application and scheduler developers, assisting them to rapidly identify performance problems as well as potential solutions for
task-based applications. The set of hypothesis to check is fairly rich in heterogeneous multi-node platforms targeted by task-based
runtime systems. It is thus important to build a visualization framework that enables one to easily and rapidlycombine various
viewsandpropose new alternative views in an agile way. Moreover, since dynamic scheduling and machine heterogeneity
bring a lot of variability, the ideal visualization shouldexploit anypotential regularity coming from theapplication algorithm.
For example, as we have seen in Figure 1, each task can be identi�ed by the loop indexesi; j; k . Such kind of information is
much more useful than internal runtime identi�er and should thus be provided by the application to the runtime so that it can be
traced and further exploited during the visualization.

To meet these di�erent goals, we decided to build our framework on top of modern data analytics tools, combining
pj_dump (27), theR programming language (36), itsggplot2 library (37) and the data manipulation functions provided by
the tidyverse meta-package (38), org-mode (10), and plotly (39) for interactive exports. Section 4.1, along with Figure 3,
presents an overview of the visualization panels proposed in our framework. Section 4.2 describes fundamental data aggrega-
tion techniques necessary for a proper data visualization on scale. The �nal work�ow is presented in Section 4.3, and depicted
in Figures 10 and 11. This approach allows to build static views in a fully automatic and very e�cient way. Although such visu-
alizations could probably be sped up even further by programming everything in C/C++, the used libraries are already well
optimized and bene�t from the know-how of data analysts. Furthermore, a combination of small scripts is easier to maintain
and adapt to a new necessity or to a particular situation than a rigid monolithic visualization environment. We �nally present
limitations, in Section 4.4, discussing workarounds.

4.1 Visualization Panels

Our framework enables an easy composition of multiple visualization panels to evaluate di�erent performance scenarios. As an
introductory illustration, we consider the Chameleon/Cholesky decomposition of an input matrix of dimension 72,000, divided
in 75Ö75 tiles of size 960 (i.e., with 75dpotrf tasks), executed on two nodes comprising �ve CPU and two GPU workers
each, and interconnected through a 10Gb_sEthernet network. The StarPU runtime has been con�gured with theprio scheduler
(with a central queue on each node, sorting tasks by priorities given by the developer), and dedicates, on each node, one core
for task submission (using the Sequential Task Flow paradigm (40)) and another core to handle MPI operations. Figure 3
shows, from top to bottom, the composite image generated by our framework. The plots are temporally-aligned (the X axis
represents time) and depict the behavior of three layers of the computation system: application, runtime, and platform metrics.
The application behavior (Section 4.1.1) consists in the Cholesky Iteration (A), Application Workers (B), and Submitted Tasks
(C). The runtime performance footprint (Section 4.1.2) is depicted with the StarPU workers behavior (D) and the ready tasks plot
(E). Finally, performance metrics gathered from the platform (Section 4.1.3) have the observed GFlops rate (F), for both CPU
and GPU resources, the GPU memory bandwidth (G), the MPI communication bandwidth (H) and the number of concurrent
MPI operations (I). Albeit being representative, other plots may be added very easily according to the needs of a particular
performance analysis. In what follows, we detail each of this plots individually, grouped by layer.
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FIGURE 3 Overview showing the visualization panels available in our framework, for a 2-node multi-core and multi-GPU
Chameleon/Cholesky experiment. Panels are grouped by system layer (application � top, runtime � middle, and platform �
bottom): the application contains the Cholesky Iteration plot (A), the task behavior (B) and the submitted tasks (C); the runtime
has the state of StarPU workers (D) and the amount of ready tasks (E); the platform performance metrics are composed of
GFlops rate (F), GPU memory bandwidth (G), MPI network transfers (H) and the number of concurrent MPI operations (I).

4.1.1 Application Behavior
The application behavior is detailed with three visualization panels, as shown in Figure 3: the application-speci�c Cholesky
Iteration plot (A), the enriched space/time view with the application workers behavior (B), and the number of submitted tasks
(C). All panels show information along the execution time (the horizontal axis).

As previously discussed, the tiled version of the Cholesky decomposition has an outer main loop which provides a hint of
the general progression on the critical path. Tasks are tagged, when being submitted, according to their membership to a given
loop. Using the tags in the visualization, the Cholesky Iteration plot, in further details in Figure 4, depicts the tasks (color) along
time (on X axis) according to their loop number (on Y). The vertical coordinates run from 1 to 75 because there are 75 blocks
in the case. Tasks may be drawn one on top of the others on each row because several workers might be computing tasks of the
same loop. For a given row (one Y axis coordinate), the lack of tasks (white areas, as pointed by A.1) indicate that there are no
workers computing that particular loop for that speci�c time frame. The two rounded borders (on the bottom, A.2; on the top,
A.3) indicate the speci�c timestamp when a given iteration of the outer-most loop starts to be computed until the moment the
last task belonging to this iteration is completed. The borders and the inner task glyphs provide an unique application signature
directly in�uenced by the runtime scheduler. For example, it shows the number of loops that are active at the same time: atù75s,
theprio scheduler is computing a little less than 40 loops at the same time, achieving high parallelism.
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A.2

A.3

A.1

FIGURE 4 The Cholesky Iteration plot (A) shows the application-tasks (colors) along time (on X) using as Y coordinates the
loop the tasks belong to. Periods of time where a loop is not being computed are shown as white areas (A.1); while the bottom
(A.2) and top (A.3) borders illustrate the moments when loop iterations start and �nish to be computed. These borders provide
an application signature and can be used to compare runtime schedulers.

Figure 5 illustrates the main elements of the enriched space/time view proposed in our approach (left) and the solution of the
Area Bound Estimation (right). The space/time view shows the task execution, represented by colors (for Chameleon/Cholesky:
dgemmare green,dpotrf are red,dsyrk are violet, anddtrsm are blue), along time (X axis) by the resource which executed
each task (Y axis). The height of the colored rectangles (B.0), in each resource row, correlates with the resulting values of the
task-aware temporal aggregation (more details in Section 4.2.1). Besides this, the maximum height dedicated for GPUs is two
times the height occupied by CPUs, since GPUs provide a higher GFlops rate than CPUs. Theresource hierarchy(B.1) groups
resources by node (Node 0 and top, Node 1 in the bottom). Our makespan de�nition is the time from the beginning of the �rst
application task to the end of the last. Theobserved makespan(B.2) is drawn in the graphical position identi�ed by its value.
In the example of the �gure, the total makespan was of 124,279ms. The graphical representation might mislead the analyst
to think that the resource occupation is good, since many small idle periods might be hidden because of the overwhelming
number of tasks. Besides that, visually comparing two or more resources occupation is hard. For these reasons, we compute
theoverall idleness(B.3) of each resource. We can see that idleness of GPUs in Node 1 is higher (ù22%�25%) than those of
Node 0 (ù12%�18%). For the tiled Cholesky decomposition we have used in this work, tile size is �xed, which enables to create
simple performance models for each kind of task. We exploit this application characteristic to detecttask execution outliers
(B.4: see region marked), which are represented with darker colors. The outlier de�nition is provided by the analyst according
to the knowledge of application. In this particular case, a task is considered anomalous if its duration exceeds the sample third
quartile plus 1.5 times the sample interquartile range. Although this outlier notion is highly debatable and context-speci�c,
other de�nitions could be easily incorporated (e.g., if the analyst has an a priori knowledge on the task duration distribution).
In the example of the �gure, we can see that CPU0 of Node 1 and the top GPU of Node 0 always demonstratedgemmexecution
anomalies. Both GPUs of Node 1 generate outliers in the �rst 25 seconds of execution; after that, tasks are mostly normal.
Besides considering the load balancing within a node, the multi-node tiled Cholesky decomposition must take care of equal load
distribution among all nodes involved in the computation, considering CPU/GPU heterogeneity. Since one knows the average
time wr;t needed to perform a task of typet on a resource of typer on a given node, as well as the total numbernt of tasks per
type, one can consider that a fraction� r;t of tasks of typet will be done on resourcer and that the� r;t should thus verify:

År :
É

t

� r;t :nt:wr;t f T, whereT is the total execution time.

Since such constraints are linear it is possible to compute the optimal makespanT and the corresponding allocation� i;k . TheT
value is called theArea Bound Estimation (ABE) (B.5) and is a lower bound for the execution time for the load assigned to
each node. We can see in the example that load distribution is not equal: the estimation for Node 0 isù125s, while for Node 1 is
ù95s (24% less). We depict in the right part of the �gure the solution of the linear program (B.6): the bars depict the observed
load distribution (per node, resource, and task types), while the dots represent the ideal solution given by the linear program.
For instance, a fair amount ofdsyrk anddtrsm tasks were executed on GPU (CUDA), but the ideal solution tells us that much
more should be given to the CPUs. Another way to evaluate the tightness of the schedule is theCritical Path Estimation (CPB)
(B.7). It is calculated by summing the observed duration of all tasks in the critical path of the application DAG, assuming they
are executed on the faster processing resource for that task. This can also be viewed as a minimal execution time if application






































