S. Meuer-hans-werner, D. Erich, S. Jack, and D. Horst, The TOP500: History, Trends, and Future Directions in High Performance Computing, Chapman & Hall/CRC

A. Eduard, C. Nawal, and . Duran-alejandro, The design of OpenMP tasks, IEEE Transactions on Parallel and Distributed Systems, vol.20, issue.3, pp.404-418, 2009.

A. Duran-alejandro, B. Eduard, and M. Rosa, OmpSs: a proposal for programming heterogeneous multi-core architectures, Par. Proc. Letters, vol.21, issue.02, 2011.

B. George, B. Aurelien, D. Anthony, F. Mathieu, H. Thomas et al., Exploiting heterogeneity to enhance scalability, Computing in Science & Engineering, vol.15, issue.6, pp.36-45, 2013.

A. Cédric, T. Samuel, N. Raymond, and W. Pierre-andré, StarPU: a unified platform for task scheduling on heterogeneous multicore architectures, Conc. and Comp.: Pract. and Exp, vol.23, issue.2, 2011.

V. Pillet, J. Labarta, T. Cortes, and S. Girona, PARAVER: A Tool to Visualize and Analyze Parallel Code, Proceedings of WoTUG-18: Transputer and occam Developments, pp.17-31, 1995.

C. Kevin, F. Mathieu, and J. Johnny,

E. Isaacs-katherine, B. Peer-timo, and J. Ilir, Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, pp.2349-2358, 2014.
DOI : 10.1109/TVCG.2014.2346456

K. Andreas, B. Holger, and . Jens, The Vampir performance analysis tool-set, Tools for High Performance Computing: Proceedings of the 2nd International Workshop on Parallel Tools for High Performance Computing, pp.139-155, 2008.

S. Eric, D. Dan, D. Thomas, and D. Carsten, A Multi-Language Computing Environment for Literate Programming and Reproducible Research, J. of Stat. Soft, vol.46, issue.3, 2012.

E. Agullo, G. Bosilca, and B. Bramas, Matrices over Runtime Systems at Exascale, High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, pp.1332-1332, 2012.
DOI : 10.1109/sc.companion.2012.168

A. Cédric, A. Olivier, F. Nathalie, N. Raymond, and T. Samuel, StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators, Proceedings of the 19th European Conference on Recent Advances in the Message Passing Interface, pp.298-299, 2012.

A. Emmanuel, A. Olivier, and F. Mathieu, Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model, IEEE Transactions on Parallel and Distributed Systems, 2017.

A. Emmanuel, D. Jim, and D. Jack, Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects, Journal of Physics: Conference Series, vol.180, issue.1, 2009.

B. George, B. Aurelien, D. Anthony, H. Thomas, L. Pierre et al., DAGuE: A generic distributed {DAG} engine for High Performance Computing, Extensions for Next-Generation Parallel Programming Models, pp.37-51, 2012.

O. Satoshi, K. Satoshi, N. Kengo, T. Samuel, and N. Raymond, Implementation of FEM Application on GPU with StarPU, SIAM Conference on Computational Science and Engineering 2013, SIAM, 2013.

M. Víctor, M. David, and D. Fabrice, Towards seismic wave modeling on heterogeneous many-core architectures using task-based runtime system, Intl. Symp. on Comp. Arch. and High Perf. Comp. (SBAC-PAD), 2015.

E. Agullo, L. Giraud, A. Guermouche, S. Nakov, and J. Roman, Task-Based Conjugate Gradient: From Multi-GPU Towards Heterogeneous Architectures, Euro-Par 2016: Parallel Processing Workshops: Euro-Par 2016 International Workshops, pp.69-82, 2016.
DOI : 10.1137/1.9780898718003

URL : https://hal.archives-ouvertes.fr/hal-01334734

X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault, Taking Advantage of Hybrid Systems for Sparse Direct Solvers via Task-Based Runtimes, 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, pp.29-38, 2014.
DOI : 10.1109/IPDPSW.2014.9

URL : https://hal.archives-ouvertes.fr/hal-00987094

C. Jean, M. Couteyen, R. Jean, and B. Pierre, Design and analysis of a task-based parallelization over a runtime system of an explicit finite-volume CFD code with adaptive time stepping, Journal of Computational Science, 2017.

C. Michalis, C. Theodoros, M. Julián, A. Damian, and M. Hendrik, Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP) Geoscientific Model Development, pp.3483-3491, 2016.

R. L. Graham, Bounds for Certain Multiprocessing Anomalies, Bell System Technical Journal, vol.45, issue.9, pp.1563-1581, 1966.
DOI : 10.1002/j.1538-7305.1966.tb01709.x

H. Topcuoglu, S. Hariri, and . Wu-min-you, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 2002.
DOI : 10.1109/71.993206

URL : http://meseec.ce.rit.edu/eecc722-fall2002/papers/hc/5/l0260.pdf

B. Robert, D. , L. Charles, and E. , Scheduling Multithreaded Computations by Work Stealing, J. ACM, vol.46, issue.5, pp.720-748, 1999.

L. S. Blackford, J. Choi, and A. Cleary, ScaLAPACK user's guide, Society for Industrial and Applied Mathematics, 1997.
DOI : 10.1137/1.9780898719642

W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI: Modern Features of the Message-Passing Interface Computer science & intelligent systemsMIT Press, 2014.

W. James and M. , Gantt charts: A centenary appreciation, European Journal of Operational Research, vol.149, issue.2, pp.430-437, 2003.

F. Schnorr-lucas-mello, T. Mathieu, . François, and . Oliveira-stein-benhur, Kergommeaux Jacques Chassin. The Paje trace file format, 2016.

S. Dirk, P. Peter, and L. Daniel, Performance Analysis Techniques for Task-Based OpenMP Applications, OpenMP in a Heterogeneous World, pp.196-209, 2012.

D. Robert, W. Frank, W. Thomas, S. Jonas, H. Robert et al., Holistic Performance Analysis on Heterogeneous Architectures using the Vampir Toolchain, Proceedings of the International Conference on Parallel Computing PARCO, pp.793-802, 2013.

D. Böhme, F. Wolf, B. R. Supinski, M. Schulz, and M. Geimer, Scalable Critical-Path Based Performance Analysis, 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pp.1330-1340, 2012.
DOI : 10.1109/IPDPS.2012.120

B. Ronny, H. Michael, B. Holger, H. Tobias, and W. Matthias, Edge bundling for visualizing communication behavior, Proceedings of the Third Workshop on Visual Performance Analysis, pp.1-8, 2016.

H. Blake, R. Stephen, K. Jakub, S. Chad, A. et al., Visualizing Execution Traces with Task Dependencies, Proceedings of the 2nd Workshop on Visual Performance Analysis, VPA '15, pp.1-2, 2015.

T. Huynh-an, P. Douglas, T. Miquel, and . Kenjiro, DAGViz, Proceedings of the 2nd Workshop on Visual Performance Analysis, VPA '15, pp.1-3, 2015.
DOI : 10.1145/1594835.1504210

M. Ananya, J. Peter, A. , P. Artur, and B. Mats, Grain Graphs: OpenMP Performance Analysis Made Easy, 2016.

B. Keller-rainer, G. Steffen, N. José, and . Christoph, Temanejo: Debugging of Thread-Based Task-Parallel Programs in StarSS, Tools for High Performance Computing 2011: Proceedings of the 5th International Workshop on Parallel Tools for High Performance Computing, pp.131-137, 2011.
DOI : 10.1007/978-3-642-31476-6_11

M. Tamara, Visualization Analysis and Design, 2015.

W. Florian, E. Naser, D. Michel, and R. , A Declarative Framework for Stateful Analysis of Execution Traces, Software Quality Journal, vol.25, issue.1, pp.201-229, 2017.

A. Emmanuel, B. Olivier, and E. Lionel, Bridging the Gap Between Performance and Bounds of Cholesky Factorization on Heterogeneous Platforms, Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, IPDPSW '15, pp.34-45, 2015.

S. Lucas, M. , and L. Arnaud, Visualizing More Performance Data Than What Fits on Your Screen, Tools for High Performance Computing 2012, pp.149-162, 2013.

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical ComputingVienna, 2017.

W. Hadley, ggplot2: Elegant Graphics for Data Analysis, 2009.

W. Hadley, tidyverse: Easily Install and Load 'Tidyverse

S. Carson, P. Chris, and H. Toby, plotly: Create Interactive Web Graphics via 'plotly.js'2016

A. Emmanuel, B. Alfredo, G. Abdou, and L. Florent, Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems, ACM Trans. Math. Softw, vol.43, issue.2, pp.13-14, 2016.

D. Vincent, N. Raymond, and W. Pierre-andré, An Efficient Multi-level Trace Toolkit for Multi-threaded Applications, Proceedings of the 11th International Euro-Par Conference on Parallel Processing, Euro-Par'05, pp.166-175, 2005.

W. Hadley, feather: R Bindings to the Feather API2016

W. Leland, The grammar of graphics, Handbook of Computational Statistics, pp.375-414, 2012.

S. Garcia-pinto-vinicius, L. Luka, . Arnaud, T. Mello-schnorr-lucas, D. Samuel et al., Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach, Proceedings of the Third Workshop on Visual Performance Analysis, 2016.

G. Todd, L. Matthew, C. Michael, and R. , The Spack Package Manager: Bringing Order to HPC Software Chaos, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-4012, 2015.

L. João, V. F. Gautier-thierry, D. Vincent, R. Bruno, and M. Nicolas, Design and analysis of scheduling strategies for multi-CPU and multi-GPU architectures, Parallel Computing, vol.44, pp.37-52, 2015.

P. Hénon, P. Ramet, and J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing, vol.28, issue.2, pp.301-321, 2002.
DOI : 10.1016/S0167-8191(01)00141-7

E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, Task-Based Multifrontal QR Solver for GPU-Accelerated Multicore Architectures, 2015 IEEE 22nd International Conference on High Performance Computing (HiPC), pp.54-63, 2015.
DOI : 10.1109/HiPC.2015.27

URL : https://hal.archives-ouvertes.fr/hal-01166312

A. Emmanuel, B. Bérenger, C. Olivier, D. Eric, M. Matthias et al., Task-based FMM for heterogeneous architectures