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Abstract

We present an adaptation of the MA-LBR scheme to the Monge-Ampère equation with
second boundary value condition, provided the target is a convex set. This yields a fast
adaptive method to numerically solve the Optimal Transport problem between two absolutely
continuous measures, the second of which has convex support. The proposed numerical
method actually captures a specific Brenier solution which is minimal in some sense. We
prove the convergence of the method as the grid stepsize vanishes and we show with numerical
experiments that it is able to reproduce subtle properties of the Optimal Transport problem.

1 Introduction

Given two bounded open domains X and Y subsets of R2 and (strictly positive) probability
densities f and g defined respectively on X and Y , our goal is to solve numerically the quadratic
Monge-Kantorovich problem

inf
{T :X 7→Y, T#f=g}

ˆ
X
‖x− T (x)‖2 f(x) dx (1)

where T#f = g is a mass conservation property meaning (see also (5)):
ˆ
T−1(A)

f(x) dx =

ˆ
A
g(y) dy, for all measurable subset A of Y . (2)

This problem has been extensively studied, we refer the reader to the classical monograph
of Villani [Vil09] and also the more recent book by Santambrogio [San15] for a comprehensive
review of its mathematical theory and applications.
From the numerical point of view, the oldest approach is the linear programming formulation
of Kantorovich [Kan42] which relaxes the problem in the product space X × Y . This approach
however does not scale with the size of the discretization. The so called “Benamou-Brenier”
approach [BB00] is based on a different convex relaxation in a time extended space. It is difficult
to assess exactly its efficiency but its many numerical implementations suggest it does no better
than O(N3).
Significant progress has been achieved this last decade and new algorithms are now available

1



which can reach almost linear complexity. They can be classified in two groups : First, alternate
projection methods (aka Split Bregman, Sinkhorn, IPFP) [Cut13, Gal16, BCC+15] which are
based on the entropic regularization of the Kantorovich problem. These methods are extremely
flexible, they apply to a much wider range of Optimal Transport problems and are easy to par-
allelize. The entropic regularization however blurs the transport map. Decreasing this effect
requires more sophisticated tools, see [CPSV16] and references therein.

The second class relies on the Monge-Ampère (MA) interpretation of problem (1). Because
the optimal solution satisfies T = ∇u, u convex (see theorem 2.1) below), one seeks to solve

det(∇2u) =
f

g ◦ ∇u
on X,

∇u(x) ∈ Y a.e. x ∈ X,
u convex.

(3)

Classical solutions of this problem have been studied in [Urb90]. They are unique up to a constant
which can be fixed, for example by adding

´
X u dx to the equation which has to vanish because

of the densities balance.
Weak solutions can also be considered either in the Aleksandrov sense or in the regularity

framework developed after Cafarelli in the 90s using Brenier weak solutions, that is solutions
of (1). Section 2 briefly reviews these notions as we will work with C1 solutions.

Numerical methods based on Monge-Ampère subdivide again in two branches, the semi-
discrete approach where g is an empirical measure with a finite number of dirac masses N
[OP88,CP84,Mér11,Lév15a], and finite-difference methods (FD) where f is discretized on a grid
of size N [LR05, SAK15,BFO14]. Efficient Semi-Discrete algorithms rely on the fast computa-
tion of the measure of Laguerre cells which correspond to the subgradient of the dual OT map
at the Dirac locations. In this paper we focus on the second approach, but will also use that
finite differences solutions can be interpreted as approximation of this subgradients at grid points.

The second boundary value conditions (BV2)

∇u(x) ∈ Y a.e. x ∈ X (4)

is a non local condition and a difficulty for the Monge-Ampère finite differences approach. Under a
convexity hypothesis for Y , an equivalent local non-linear boundary condition is given in [BFO14]
which preserves the monotonicity (aka “degenerate ellipticity” after Oberman [Obe06]) of the
scheme. In particular a Newton method can be applied for the solution of the discretized system
as or periodic BC [LR05, SAK15] or for Dirichlet BC [FO13,Mir15]. We provide in Section 3
a new interpretation of these BC in term of an infinite domain “minimal” convex extension. It
can be used to build the same boundary conditions as in [BFO14], it shows how to extend the
FD scheme outside of possiby non convex supports of f and also provides a suitable continuous
interpolation tool for the convergence proof in Section A.

Existing convergence proofs for FD methods in [FO13,Mir15] rely on the viscosity solutions of
Crandall and Lions [CIL92] and the abstract convergence theory of Barles and Souganidis [BS91].
This is a powerful framework which can be applied, in particular, to general degenerate ellip-
tic non-linear second order equations. Our problem however has two specificities. First, the
Monge-Ampère operator is degenerate elliptic only on the cone of convex function and this con-
straint must somehow be satisfied by the discretization and preserved in the convergence process.
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Second, the theory requires a uniqueness principle stating that viscosity sub-solution are below
super-solution. The first problem or more generally the approximation of convex functions on a
grid, has attracted a lot of attention, see [Mir16a] and the references therein. The Lattice Basis
Reduction (LBR) technique in particular was applied to the MA Dirichlet problem in [BCM16].
The second issue (uniquess principle) is more delicate and, even though the BV2 reformula-
tion in [BFO14] clearly belongs to the family of oblique boundary conditions (see [CIL92] for
references) there is, to the best of our knowledge, no treatment of the specific (MA-BV2) and
convexity constraint in the viscosity theory literature.

We follow a different path in this paper. We build a “minimal” convex extension interpolation
of the discrete solutions and interpret it as an Aleksandrov solution of an adapted semi-discrete
problem. We can then use classical optimal transport theory to prove convergence of our finite
difference discretization. Instead of monotonicity and consistency of the scheme, the proof relies
on three ingredients : specific properties of the LBR discretization of the Monge-Ampère operator
(Section 4.5), the volume conservation enforced by the BV2 boundary condition and the unique-
ness and the C 1 regularity of the limit problem. This last condition also requires the convexity
of the target Y . We borrow here some of the techniques used in [CMOB15] to prove convergence
of semi-discrete approximation of JKO gradient steps problems. In the case where g the tar-
get density is not constant, we show that simple centered FD is sufficient for the discrete gradient.

A common feature of the semi-discrete and FD approaches is the successful use of a damped
Newton method to solve the discrete set of equation. It results in a numerically observed linear
complexity of these methods. Mérigot, Kitagawa and Thibert [KMT16] have proven in the semi
discrete case that the Jacobian of the discrete non-linear system is strictly positive definite, they
show convergence of the Newton method and provide speed convergence. For finite difference
similar results are available for the periodic and Dirichlet problems [LR05, FO13,Mir15]. The
convergence of the Newton method relies on the invertibility of the Jacobian of the non-linear
scheme. It remains open in the BV2 BC case. We provide a numerical study in Section 6
indicating convergence and that the method has linear complexity.

2 Monge-Ampère fomulations and solutions of (1)

2.1 Weak solution theory for (3)

2.1.1 Brenier Solutions

The connection between the Monge-Ampere equation and the optimal transport problem is made
clear by the following theorem.

Theorem 2.1 ( [Bre91]). Let µ and ν be two compactly supported probability measures on Rn,
and assume that µ and ν are absolutely continuous with respect to the Lebesgue measure, with
respective densities f and g. Then,

(i) There exists a unique solution T to the optimal transport problem (1),

(ii) There exists a convex lower semi-continuous function u : Rn → R ∪ {+∞} such that the
optimal map T is given by T (x) = ∇u(x) for µ-a.e. x ∈ Rn.

Moreover, T is differentiable µ-a.e. and

|det(∇T (x))| = f(x)

g(T (x))
for µ-a.e. x ∈ Rn. (5)
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Hence, the theorem implies that u is a (possibly weak) solution of (3). We shall call any
convex lsc function u : Rn → R ∪ {+∞} which satisfies (5) and (4) a Brenier solution to the
Monge-Ampère problem (3).

Remark 2.2 (Uniqueness). As the Brenier map is unique, note that uniqueness of the potential
u up to a constant carries over to the other notions of solution recalled in this section.

Remark 2.3. In Theorem 2.1, it is actually the uniqueness of the restriction of T (or ∇u) to
supp(f) which is asserted. It is obviously possible to modify T (or u) on Rn \ supp(f) without
changing the optimality of T . In section 3, we use this fact to choose a solution with a “good”
behavior outside X.

Remark 2.4. Given u such that ∇u]µ = ν, the mass equality between µ and ν implies that the
condition (4) is equivalent to ∇u(X) ⊆ Y .

2.1.2 Aleksandrov Solutions and Semi-Discrete OT

Definition 2.5 (Aleksandrov solution). Let µ and ν be two compactly supported probability
measures on Rn, A convex function u is an Aleksandrov solution of (3) if for every measurable
set E ∈ R2,

ν(∂u(E)) = µ(E).

When µ and ν are absolutely continuous with respect to the Lebesgue measure with respective
densities f and g as in (2.1) then Aleksandrov and Brenier solutions coincide.

Semi-Discrete Optimal Transport corresponds to the situation when one of the two measures
is an empirical measure. If the target measure ν has only atoms, for instance ν =

∑N
i=1 gi δyi is

an empirical measure here (gi)s are positive weigths and (yi)s the location of dirac masses in the
plane, the Brenier map is still well defined and takes values on the finite set (yi).

Conversely, if the source measure is an empirical measure µ =
∑N

i=1 fi δxi then it is not
possible to define a Brenier map, but the Aleksandrov solution u still makes sense and satisfies

ˆ
∂u(E)

g(y) dy = f(E) =
∑
xi∈E

fi (6)

or equivalently for all i ˆ
∂u(xi)

g(y) dy = fi (7)

The mass concentrated at the Dirac locations is mapped to cells corresponding to the sub-
gradients. The Semi-Discrete numerical approach is based on solving system (7) using a Newton
method and fast computations of the subgradients ∂u(xi). These subgradients are known as
Laguerre cells tesselation in computational geometry [Mér11, Lév15a]. It should be noted that
u∗, its Legendre Fenchel transform is still a Brenier solution for the reverse mapping ν to µ. For
more on the duality properties of Semi-Discrete OT see [BFO14].

2.2 Cafarelli regularity

Based on Brenier solutions Caffarelli has developed a regularity theory for MA. In particular,
when Y is convex, the following result holds :
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Theorem 2.6 ( [Caf92, Caf96]). Let X,Y ⊆ Rn be two bounded open sets, f : X → R+,
g : Y → R+ be two probability densities, bounded away from zero and infinity respectively on X
and Y , i.e.

∃λ > 0,
1

λ
≤ f ≤ λ a.e. on X,

1

λ
≤ g ≤ λ a.e. on Y (8)

and let T = ∇u : X → Y be the optimal transport maps sending f to g. If Y is convex, then

(i) T ∈ C0,α
loc (X) for some α > 0.

(ii) If in addition f ∈ Ck,βloc (X) and g ∈ Ck,βloc (Y ) for some β ∈ (0, 1), then T ∈ Ck+1,β
loc (X).

(iii) If f ∈ Ck,βloc (X), g ∈ Ck,βloc (Y ) and both X and Y are smooth and uniformly convex, then
T : X → Y is a global diffeomorphism of class Ck+1,β.

In the following, we shall assume that f and g are bounded away from zero and infinity. The
first conclusion of the theorem thus implies that u ∈ C1,α

loc (X).

We finally recall a slightly more general regularity result due to Figalli and Loeper wich does
not require lower bounds on the source density f and which holds in the plane (n = 2) :

Theorem 2.7 ( [FL09, Theorem 2.1]). Let X,Y ⊆ R2 be two bounded open sets, Y convex,
f : X → R+, g : Y → R+ be two probability densities, such that there exist λ > 0 with f ≤ 1

λ in
R2 and λ ≤ g in Y . Let u : R2 → R be a Brenier solution to

det(∇2u) =
f

g ◦ ∇u
on X,

det(∇2u) = 0 on R2 \X,
∇u(x) ∈ Y a.e. x ∈ X,
u convex.

(9)

Then u ∈ C 1(R2).

3 Minimal Brenier Solutions in R2

3.1 Definition

From now on, we consider X ⊆ R2, Y ⊆ R2 two bounded open domains, and we assume that Y
is convex. We assume that the probability densities f , g are bounded away from zero and infinity
respectively on X and Y (see (8)). We consider a specific Brenier solution to the Monge-Ampère
problem which is characterized by the following Proposition.

Proposition 3.1. Assume that Y is convex. Then there is a unique (up to an additive constant)
convex lower semi-continuous function ũ : R2 → R ∪ {+∞} which is a Brenier solution to (3)
and which satisfies ∂ũ(R2) ⊆ Y .

Moreover, ũ ∈ C 1(R2).

Proof. We first prove uniqueness. Let u1, u2 be two such functions. Then the gradients of their
Legendre-Fenchel conjugates u∗1 and u∗2 solve the optimal transport problem from ν to µ, and by
Theorem 2.1, ∇u∗1(y) = ∇u∗2(y) for a.e. y ∈ Y . As a result, there is some C ∈ R such that those
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two convex functions satisfy u∗1(y) = u∗2(y) +C for all y ∈ Y . Let us prove that the equality also
holds on ∂Y . Let y0 ∈ ∂Y , y1 ∈ Y . By lower semi-continuity and convexity

u∗1(y0) ≤ lim inf
y→y0
y∈Y

u∗1(y)

= lim inf
y→y0
y∈Y

(u∗2(y) + C)

≤ lim inf
t→0+

((1− t)u∗2(y0) + tu∗2(y1)) + C = u∗2(y0) + C.

The converse inequality is obtained by swapping the role of u∗1 and u∗2, and the equality is proved.
Now, since u1, u2 are proper convex lower semi-continuous, we know from [Roc83] that

∀i ∈ {1, 2}, ri (domu∗i ) ⊆ dom (∂u∗i ) ⊆ domu∗i .

Since Y ⊆ ri(domu∗i ) and dom (∂u∗i ) = ∂ui(R2) ⊆ Y , we get domu∗i = Y . The double conjugate
reconstruction formula yields

∀x ∈ R2, u1(x) = sup
y∈Y

(〈y, x〉 − u∗1(y)) = sup
y∈Y

(〈y, x〉 − (u∗2(y) + C)) = u2(x)− C.

To prove the existence of ũ, let u0 be a Brenier solution to the Monge-Ampère problem (3).
We define

∀x ∈ R2, ũ(x)
def.
= sup

y∈Y
{〈x, y〉 − u∗0(y)} , (10)

where u∗0 is the Legendre-Fenchel conjugate of u0.

∀y ∈ Y , u∗0(y)
def.
= sup

x∈R2

{〈x, y〉 − u0(x)}. (11)

It is immediate that ũ is convex lower semi-continuous. From Theorem 2.6, we know that u0 is
a convex function which is C 1,α

loc in X. Moreover, u0 is continuous up to ∂X since, for all x ∈ X,
∇u0(x) ∈ Y which is a bounded set. As the supremum of a (finite) upper semi-continuous
function on the compact set Y , ũ is finite on R2.

Now, we prove that ũ(x) = u0(x) for all x ∈ X. Since u0 is proper convex lsc,

u0(x) = 〈x, ∇u0(x)〉 − u∗0(∇u0(x)) = sup
y∈R2

(〈x, y〉 − u∗0(y)) ≥ sup
y∈Y

(〈x, y〉 − u∗0(y)) = ũ(x).

But since ∇u0(x) ∈ Y , 〈x, ∇u0(x)〉 − u∗0(∇u0(x)) ≤ supy∈Y (〈x, y〉 − u∗0(y)), and the above
inequality is in fact an equality.

To prove that ∂ũ(R2) ⊆ Y , let x ∈ R2, p ∈ ∂ũ(x). Since for all h ∈ R2, ũ(x + h) ≥
ũ(x) + 〈p, h〉,

sup
y′∈Y

(
〈x, y′〉 − u∗0(y′)

)
+ sup
y∈Y
〈h, y〉 ≥ sup

y′∈Y

(
〈x+ h, y′〉 − u∗0(y′)

)
≥ sup

y′∈Y

(
〈x, y′〉 − u∗0(y′)

)
+ 〈h, p〉.

As a result, supy∈Y 〈h, y〉 ≥ 〈h, p〉 for all h ∈ R2, hence p ∈ Y , and ∂ũ(R2) ⊆ Y .
We conclude that ũ is also a Brenier solution to (3), and by Theorem 2.7, we deduce that ũ

is C 1(R2).

Remark 3.2. From (10), one may observe that ũ(x) ≤ u0(x) for all x ∈ R2. It is the minimal
convex extension of u0 outside X in the sense that it is the smallest convex function defined on
R2 which coincides with u0 on X. Additionally, it is minimal among all Brenier solutions in the
sense that its subdifferential is the smallest possible.
Remark 3.3. Standard arguments from convex analysis show that any y0 ∈ Y is a subgradient
(hence the gradient) of ũ at x ∈ R2 if and only if 〈y0, x〉 − u∗0(y0) = ũ(x).
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Figure 1: Surf and contour plot of the potential ũ when mapping X = [0.2, 0.8]2 to Y = B(0, 1)
(with uniform densities). The potential is smooth and affine in D \X.

3.2 The affine ray property

The aim of this section is to give some insight on the behavior of ũ outside X, which helps
motivate the discrete scheme of Section 4. In the following, co(X) denotes the closed convex hull
of X.

Proposition 3.4. The function ũ has the following properties.

(i) For all x ∈ R2 \ co(X), there exists x0 ∈ ∂ co(X) such that ũ is affine on the half-line
{x0 + t(x− x0) ; t ≥ 0}. Moreover, ∇ũ(x) ∈ argmaxy∈Y 〈y, x− x0〉 ⊆ ∂Y .

(ii) For all x ∈ co(X)\X, there exists x0 ∈ ∂X such that ũ is affine on the line segment [x, x0].

The potential ũ is shown in Figure 1 when mapping X = [0.2, 0.8]2 to B(0, 1) (with uniform
densities) (for more detail on the numerical experiment, see Section 6.1). The potential is smooth
and affine in one direction in D \X.

Proof. In view of the uniqueness (up to a constant) stated in Proposition 3.1, we may assume
without loss of generality that the function u0 used in the construction of ũ (see (10)) is convex
lower semi-continuous and satisfies

∀x ∈ R2 \ coX, u0(x) = +∞, (12)

as this does not change its being a Brenier solution.
Let y0 ∈ Y be a slope. It is optimal for x ∈ R2 in (10) iff

x ∈ ∂
(
u∗0 + χY

)
(y0) = ∂u∗0(y0) +NY (y0) = (∂u0)

−1(y0) +NY (y0), (13)

as there is a point y′ ∈ Y where χY is continuous and u∗0 is finite. In the above equation, χY
and NY respectively stand for the characteristic function and the normal cone of Y ,

χY (y) =

{
0 if y ∈ Y ,
+∞ otherwise,

, NY (y0) =
{
x′ ∈ R2 ; ∀y ∈ Y , 〈x′, y − y0〉 ≤ 0

}
. (14)
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Equation (13) is equivalent to the existence of some x0 ∈ (∂u0)
−1(y0) ⊆ coX such that 〈x −

x0, y−y0〉 ≤ 0 for all y ∈ Y (or equivalently y0 ∈ argmaxy∈Y 〈y, x−x0〉). Clearly, if y0 is optimal
for x, it is also optimal for x+ t(x− x0) for t > −1.

Moreover, sets of the form (13) cover the whole space R2, since by compactness and semi-
continuity, there always exists an optimal y0 for (13). Incidentally that slope is in fact ∇ũ(x)
since, provided y0 is optimal for x,

∀e ∈ R2, ∀t > 0, ũ(x+ te)− ũ(x) ≥ 〈x+ te, y0〉 − u∗0(y0)− (〈x, y0〉 − u∗0(y0)) ,
hence t〈e, ∇ũ(x)〉+ o(t) ≥ t〈e, y0〉.

Dividing by t→ 0+ yields y0 = ∇ũ(x).
To summarize, we have proved (i) since x−x0 6= 0 for all x ∈ R2\co(X), hence {x+ t(x− x0) ; t > 0}

does indeed define a half line. As for (ii),∇ũ(x) ∈ Y , hence there exists x0 ∈ (∂u0)
−1(∇ũ(x))∩X,

so that ∇ũ(x0) = ∇ũ(x) (and since {x′ ; ∇ũ(x′) = ∇ũ(x)} is convex, it is not restrictive to as-
sume x0 ∈ ∂X).

Remark 3.5. Another point of view, using standard tools of convex analysis (see e.g. [Roc83, Th.
16.4]) is to interpret ũ as an infimal convolution

∀x ∈ R2, ũ(x) = inf
{
u0(x

′) + σY (x− x′) ; x′ ∈ coX
}
. (15)

where σY : x 7→ supy∈Y 〈y, x〉 is the support function of Y .

3.3 Discussion

From Proposition 3.4, we see that the function ũ defined in proposition 3.1 formally satisfies the
equations

det(D2 u) g(∇u) = f on X, (16)

det(D2 u) = 0 on R2 \X, (17)

min
e∈S1
〈(D2u)e, e〉 = 0 on R2 \X, (18)

sup
e∈S1
{〈∇u, e〉 − σY (e)} = 0 on R2 \ co(X). (19)

Indeed, (16) is the Monge-Ampère equation (see Theorem 2.1), (17) and (18) follow from the
affine property in Proposition 3.4. If ũ is smooth and the minimum eigenvalue of D2u is null,
this also enforces convexity (see [Obe08] for the connection with the convexe enveloppe problem).
As for (19), since Y is convex, the inequality supe∈S1{〈∇u, e〉 − σY (e)} ≤ 0 is an equivalent
formulation of the BV2 boundary condition ∇ũ(R2) ⊆ Y . The equality actually means that
∇ũ(x) ∈ ∂Y for x ∈ R2 \ co(X).

The discretization strategy is presented in Section 4 and then the convergence proof in Sec-
tion 5. The convergence will hold in the Aleksandrov/Brenier setting but the limit solution
regularity itself will depend on the the regularity of f and g.

Remark 3.6 (Uniqueness). It is not difficult to show that ũ is a viscosity solutions of equations
(16-19) but it is is much harder to prove uniqueness for this class of equations, see [CIL92] and
its references to oblique boundary conditions . However, ũ coincide with the unique Brenier
solution on X and the R2 extension is also unique. More precisely (see remark 2.2) ũ is unique
up to a constant.

8



4 Finite Difference Discretization

This section explains how our scheme is built from the set of the equations of Section 3.3 and
discuss the properties of the resulting discrete system.

We will consider a sequence of discretization steps (hn)n∈N, hn > 0, hn ↘ 0+, and we define
an infinite lattice of points Gn

def.
= hn Z2. We work in a compact square domain D ⊆ R2 (say

D = [−1, 1]2) which contains X in its interior. We assume without loss of generality that 0 ∈ X.
A discrete solution Un ∈ Rcard(Gn∩D) is defined on that grid : if u is a continuous solution of our
problem, its discrete interpolant on the grid is Un[x] = u(x) for all x ∈ Gn ∩D.

We will use the following finite differences formulae in each grid direction e,

δhne Un[x]
def.
= Un[x+ hn e]− Un[x]

and
∆hn
e Un[x]

def.
= δhne Un[x] + δhn−eUn[x].

4.1 Discretization of the target Y

Our discrete scheme is only able to estimate the directional gradient in a finite number of direc-
tions contained. This limit extends naturally to the support function σY . Hence the constraint
we can impose in practice when discretizing (19) is that the gradient belongs to a polygonal
approximation of Y . More precisely given a finite family of irreducible vectors Vn ⊆ Z2 \ {0}, we
consider the corresponding set

Yn
def.
=
{
y ∈ R2 ; ∀e ∈ Vn, 〈y, e〉 ≤ σY (e)

}
(20)

which is nonempty, closed and convex. We assume that

1. Vn contains {(0, 1), (1, 0), (0,−1), (−1, 0)} (so that Yn is compact)

2. Vn ⊆ Vn′ for n′ ≤ n (so that Y ⊆ Yn′ ⊆ Yn),

3.
⋂
n∈N Yn = Y .

The third point holds as soon as Y is defined by a finite number of inequalities of the form (20)
(in which case the constraint ∇u(x) ∈ Y is exact) or provided that

{
e/ |e| ; e ∈

⋃
n∈N Vn

}
is

dense in S1.
In any case, the three points above ensure that Yn converges towards Y in the sense of the

Hausdorff topology [Sch93, Lemma 1.8.1], that is

lim
n→+∞

max

(
sup
y∈Y

d(y, Yn), sup
y∈Yn

d(y, Y )

)
= 0. (21)

Additionally, we assume that the following holds,

X + hnVn ⊆ D. (22)

That property will be useful in Proposition 4.4 to ensure that the variations of Un inside X are
bounded by σYn .

Example 4.1 (Disc). If Y = B(0, 1) is the unit disc, one may choose

Vn =
{
e ∈ Z2 ; e irreducible and ‖e‖∞ ≤ ρn

}
(23)

where ρn → +∞ and ρn/hn → 0 as n→ +∞ (for instance ρn =
√
hn).
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4.2 Discretization of the Monge-Ampère operator in X

We will use the (MA-LBR) scheme for the Monge-Ampère operator det(D2u) discretization [BCM16].
It relies on the notion of superbase :

Definition 4.2. A basis of Z2 is a pair (e′, e′′) ∈ (Z2)2 such that |det(e′, e′′)| = 1.
A superbase of Z2 is a triplet (e, e′, e′′) ∈ (Z2)3 such that e+ e′ + e′′ = 0, and (e′, e′′) is a basis
of Z2.

The finite difference MA-LBR operator, is a consistent and monotone approximation of the
Monge-Ampère operator given by

MAn(Un)[x]
def.
=

1

h4n
min

(e,e′,e′′)∈(Z2)3

superbase

h(∆hn
e

+
Un[x],∆hn

e′
+
Un[x],∆hn

e′′
+
Un[x]) (24)

where ∆hn
e

+
Un[x] = max(∆hn

e Un[x], 0) and for a, b, c ∈ R+ we define

h(a, b, c) :=

{
bc if a ≥ b+ c, and likewise permuting a, b, c,
1
2(ab+ bc+ ca)− 1

4(a2 + b2 + c2) otherwise.
(25)

Note that the minimum in (24) is in fact restricted to superbases (e, e′, e′′) such that

{x, x± hne, x± hne′, x± hne′′} ⊆ D (26)

(that is, both x+ hne and x− hne belong to D and similarly for e′ and e′′). The number N of
such superbases is a priori very large, but the adaptive algorithm proposed in [BCM16] yields
a dramatic speed-up as it is asymptotically sufficient to test log(N) superbases out of N . We
use this refinement in our simulations and we refer to [BCM16] for the detail of the adaptive
algorithm.

The scheme consistency is remarkable. Given a quadratic form u(x) = 〈Mx, x〉, where M a
strictly positive definite matrix with condition number κ, its grid interpolation Un satisfies

MAn(Un)[x] = det(M)

provided that {x, x ± hne, x ± hne′, x ± hne′′} ⊆ D for all irreducible vectors e ∈ Z2 (and the
corresponding e′ and e′′) such that ‖e‖2 ≤ κ

√
2 (see [BCM16]).

It also provides interesting “discrete” convexity properties (see [BCM16] and proposition A.3
in [Mir16a]. That notion is used in Appendix A to study the finite difference approximation of
the gradient.

Finally the following property states that the MA-LBR operator overestimates the subgra-
dient of the convex envelope of Un at grid points. The proof was communicated to us by J.-M
Mirebeau, and we reproduce it in Appendix B with his kind permission. This result will be
useful in the convergence proof.

Lemma 4.3. Let u : R2 → R∪{+∞} be the largest convex lower semi-continuous function which
minorizes Un[x] at all points x ∈ Gn ∩D. Then,

∀x ∈ Gn ∩X, |∂u(x)| ≤ MAn(Un)[x]ωn, (27)

where ωn = h2n is the area of one cell of the grid.

In practice it is not possible to minimize (24) for all superbase in (Z2)3. The minimization
is limited to a stencil defined by its width, i.e. vectors on the grid Z ×Z with a given maximum
norm. It is shown in [BCM16] that the lagest width of the vectors in the optimal superbase
grows with the condition number of the Hessian of u.
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4.3 Discretization in of the Monge-Ampère operator and the BV2 conditions
in D \X

The MA-LBR scheme is only suitable to discretize strictly convex functions. When at least one
eigenvalue decreases to 0, the stencil width (see above) becomes infinite. To capture the flat
behavior of solutions in R2 \X, we need to add more and more directions to the minimization.

Instead we apply the Wide-Stencil (WS) formulation proposed by Oberman in [Obe08] to
discretize (18), that is, the minimum eigenvalue of the Hessian should be 0. This simply yields
the scheme

MA0
n(Un)[x]

def.
= min

e∈V (x)
∆hn
e Un[x], (28)

where V (x) denotes the set of irreducible vectors e ∈ Z2 \ {0} such that {x− e, x, x+ e} ⊆ D
Additionally, we take advantage of the points in D \ X to impose the (BV2) boundary

condition, by modifying the scheme (28) as follows :

M̃A0
n(Un)[x]

def.
= min

e∈V (x)∪Vn
∆̃hn
e (29)

Where for all x ∈ Gn ∩D,

∆̃hn
e Un[x]

def.
= δ̃hne Un[x] + δ̃hn−eUn[x],

and δ̃hne Un[x]
def.
=

{
Un[x+ hne]− Un[x] if x+ he ∈ D,
σY (hne) otherwise.

The rationale of that scheme comes from (18) and (19): for fixed e ∈ R2, imposing ∆̃hn
e Un[x] = 0

is consistent with

〈D2u(x)e, e〉 = 0 if x ∈ int(D) \X,
〈∇u(x), e〉 = σY (e) if x ∈ ∂D and e points outwards D.

The formal consistency with with (18) and (19) is straightforward. In pratice, the same
stencil can be used for V (x), i.e. discretization of the degenerate Monge-Ampère operator and
Vn, i.e. the discretization of the target geometry.

4.4 Gradient Approximation

Except when g is the constant density on Y , one needs to discretize the gradient ∇u in order to
discretize the Monge-Ampère equation (16).

In Section 5, we prove the convergence of the scheme as n → +∞. The main assumption
to obtain this convergence is that the discrete gradient D1

nUn satisfies the following uniform
convergence

lim
n→+∞

sup
x∈X∩Gn

sup
y∈∂ũn(x)

∣∣D1
nUn[x]− y

∣∣ = 0, (30)

where ũn is the continuous interpolation of Un defined in the next Section (Eq. (41)). Provided
a solution Un to the scheme exists, Theorem 5.5 then ensures that its interpolation ũn converges
towards the minimal Brenier solution ũ such that ũ(0) = 0.

In particular, we prove in Appendix A that this property holds for

11



• the centered finite difference on the cartesian grid,

D1
nUn[x]

def.
=

1

2hn

(
δhn(1,0)Un[x]− δhn(−1,0)Un[x]

δhn(0,1)Un[x]− δhn(0,−1)Un[x]

)
, (31)

• the forward and backward finite differences on the cartesian grid,

D1
nUn[x]

def.
=

1

hn

(
δhn(1,0)Un[x]

δhn(0,1)Un[x]

)
, D1

nUn[x]
def.
=

1

hn

(
−δhn(−1,0)Un[x]

−δhn(0,−1)Un[x]

)
. (32)

4.5 Summary of the scheme and property of the discrete system

Finally, for fixed h ∈ (0, h0], we plan on computing Un solution of

∀x ∈ Gn ∩D,


MAn(Un)[x]− f(x)

g((D1
nUn)[x])

= 0 if x ∈ X
M̃A0

n(Un)[x] = 0 otherwise
Un[0] = 0

(33)

The added scalar equation Un[0] = 0 fixes the constant.

Now, we list several properties of the scheme which will be useful for the proof of convergence.

Proposition 4.4. If Un is a solution to (33), then

1. For all x ∈ Gn∩X, and all e irreducible such that {x+hne, x, x−hne} ⊆ D, ∆hn
e Un[x] > 0.

2. For all x ∈ Gn∩(D\X), and all e ∈ Vh such that {x+hne, x, x−hne} ⊆ D, ∆hn
e Un[x] ≥ 0.

3. For all x ∈ Gn ∩D, e ∈ Vn and (k, `) ∈ N2, such that k ≤ `,

−σY (−hne) ≤ Un[x+ (k + 1)hne]− Un[x+ khne]

≤ Un[x+ (`+ 1)hne]− Un[x+ `hne] ≤ σY (hne)
(34)

whenever x+ ihne ∈ D for i ∈ {k, k + 1, `, `+ 1}.

4. If x ∈ D and e ∈ Vn irreducible are such that Un[x + hne] − Un[x] = σY (hne), then
Un[x+ khne] = Un[x] + kσY (hne) for all integer k ≥ 0 such that x+ khne ∈ D.

5. There exists C > 0 such that for all x, x′ ∈ D,∣∣Un[x]− Un[x′]
∣∣ ≤ C ∥∥x− x′∥∥

1
. (35)

Proof. The first point follows from MAn(Un)[x] = f(x)
g((D1

nUn)[x])
> 0 and the inequality h(a, b, c) ≤

min{ab, bc, ca} (see [BCM16]). As for the second, point it follows immediately from the definition
of ∆̃hn

e Un and the scheme D \X.
To prove the third point, let us first assume that ` ∈ Z2 is such that {x+`hne, x+(`+1)hne} ⊆

D but x+ (`+ 2)hne /∈ D. By (22) we deduce that x+ (`+ 1)hne ∈ D \X, so that

0 ≤ ∆̃hn
e Un[x+ (`+ 1)hne] = Un[x+ `hne]− Un[x+ (`+ 1)hne] + σY (hne),
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which yields Un[x+ (`+ 1)hne]−Un[x+ `hne] ≤ σY (hne). Similarly −σY (−hne) ≤ Un[x+ (k+
1)hne] − Un[x + khne] if x + (k − 1)hne /∈ D but {x + khne, x + (k + 1)hne} ⊆ D. The other
intermediate inequalities follow from ∆hn

e Un[x+ ihne] ≥ 0.
The fourth point is a consequence of (34).
Now, we deal with the last point. Write x − x′ = khe1 + `he2 where e1

def.
= (1, 0) ∈ Vn and

e2
def.
= (0, 1) ∈ Vn. Applying (34), we get

Un[x]− Un[x′] ≤ h
(
k+σY (e1) + (−k)+σY (−e1) + `+σY (e2) + (−`)+σY (−e2)

)
,

and Un[x′]− Un[x] ≤ h
(
k+σY (−e1) + (−k)+σY (e1) + `+σY (−e2) + (−`)+σY (e2)

)
,

where, as before, k+ def.
= max(k, 0). Hence (35) holds with C = max{σY (e1), σY (−e1), σY (e2), σY (−e2)}.

Degenerate Ellipticity. In [Obe06], a theory of convergence is built for non-linear schemes
based on viscosity theory using a modified version of monotonicity called Degenerate Ellipticity
(DE). To the best of our knowledge, there are only two instances of DE scheme for the Monge-
Ampère operator : the Wide-Stencil and MA-LBR schemes.

We discuss here the potential application of this theory to our scheme.
An abstract scheme is represented at each point x ∈ Gn ∩D by an equation of the form

S(x, Un[x], {δy−xUn[x]}y∈Gn∩D\{x}) = 0. (36)

Definition 4.5. The scheme S is Degenerate Elliptic (DE) if for all x ∈ Gn ∩ D, S(x, ·, ·) is
nonincreasing in its first variable, and nondecreasing in any other variable.

A DE Lipschitz and proper scheme is well defined and has a unique solution.

These properties can be checked on (33) when g is the uniform density. Otherwise and even
when g is uniformly Lipschitz, the gradient approximation we propose is not degenerate elliptic.
A fix proposed by Froese and Oberman [FO13] is to remark that a uniform positive bound on
the Monge-Ampère operator is sufficient to dominate the DE defect potentially induced by the
gradient discretization. Unfortunately this bound is not straightforward to establish. In practice,
Froese and Oberman impose it by truncated their scheme. We found that our scheme works just
as is but we have no further theoretical results.

Newton solver. As in [BCM16,BFO14,Mir15,LR05,Mér11,Lév15b] we use a damped New-
ton algorithm to solve the system (33). For the description of the algorithm and proof of its
convergence we refer to the paper above. The crucial ingredient is to prove global convergence of
Newton iterates is the invertibility of the Jacobian matrix of the system. See for example [Mir15]
where the case of Dirichlet boundary conditions is treated.

In our case there the invertibilty of the Jacobian remains open regarding :

• The proposed discretization of the BV2 condition.

• The non constant g density case
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In practice and in the implementation, the system (33) is unchanged but for the residual
inversion in the Newton procedure we use an inexact Jacobian wich forces positive definiteness
as follows.

For each line x of the Jacobian : set dF1[x] = ∂q1F (x,Dh
CUn[x]) and dF2[x] = ∂q2F (x,Dh

CUn[x])
and add coefficients of an upwind type discretization on the classical five point stencil :

At column x+ (1, 0)h : Gw = −max(0, dF1[x])
At column x+ (−1, 0)h : Ge = min(0, dF1[x])
At column x+ (0, 1)h : Gn = −max(0, dF2[x])

At column x+ (0,−1)h : Gs = min(0, dF2[x])
On the diagonal : Gn+Gs+Gw +Ge

(37)

Finally, g needs to be defined globally in case the iterate generate gradients outside of the
target Y . We use a constant extension of g.

5 Convergence

We now assume that for all discretization steps (hn)n∈N, hn > 0, hn ↘ 0+, we have a unique
well-defined solution (Un[x])x∈Gn∩D and proceed to show that it converges to the Brenier solution
of the problem.

5.1 Convex extension as an interpolation and its properties

Let us recall that we assume that f (resp. g) is continuous on X (resp. Y ) We will assume that
there exists (αf , βf , αg, βg) ∈ (0,+∞)4, such that

∀x ∈ X, αf ≤ f(x) ≤ βf , (38)

∀y ∈ Y , αg ≤ g(y) ≤ βg. (39)

In fact, possibly changing g in R2 \ Y , it is not restrictive to assume that g is continuous on
Y0 ⊇ Y and that (39) holds for y ∈ Y0.

From the values (Un[x])x∈Gn∩D of the discrete problem (see Section 4.5), we build the following
function ũn : R2 → R, with

ũn(x)
def.
= sup

{
L(x) ; L : R2 → R is affine, ∇L ∈ Yn, and ∀x′ ∈ Gn ∩D,L(x′) ≤ Un[x′]

}
. (40)

Equivalently,

∀x ∈ R2, ũn(x)
def.
= sup

y∈Yn
(〈x, y〉 − U?n(y)) (41)

where U?n(y)
def.
= sup

x∈Gn∩D
(〈y, x〉 − Un[x]) . (42)

The following proposition gathers some properties which typically hold with such construc-
tions (see also [CMOB15]).

Proposition 5.1. The following properties hold.

1. ũn is convex, finite-valued, and by construction ũn(x) ≤ Un[x] for all x ∈ Gn ∩D.
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2. ∂ũn(R2) = ∂ũn(Gn ∩D) = Yn.

3. Let x ∈ Gn ∩D. If ũn(x) < Un[x], then |∂ũn(x)| = 0.

Proof. The first point is left to the reader. To prove the second one, consider any slope y ∈ Yn.
There is some x ∈ Gn ∩D which minimizes x′ 7→ Un[x′]− 〈y, x′〉 over Gn ∩D (let α denote the
corresponding minimum). Then the affine function L : x′ 7→ 〈y, x′〉 + α satisfies L(x′) ≤ Un[x′]
for all x′ ∈ Gn ∩ D, and L(x) = Un(x). Hence, by construction of ũn, L(x′) ≤ ũn(x′) for all
x′ ∈ R2, and L(x) = ũn(x), which means that y ∈ ∂ũn(x). As a result Yn ⊆ ∂ũn(Gn ∩D). The
fact that ∂ũn(R2) ⊆ Yn follows from ∂ũn(R2) ⊆ dom(ũ∗n) = dom(U?n + χYn).

Now, let us prove the third point. Assume by contradiction that |∂ũn(x)| > 0. Since ∂ũn(x)
is convex, it must have nonempty interior, hence there is some y0 ∈ Yn, r > 0 such that
B(y0, r) ⊆ ∂ũn(x). For all x′ ∈ R2, all p ∈ B(y0, r), ũn(x′) ≥ ũn(x) + 〈p, x′ − x〉 hence

ũn(x′) ≥ ũn(x) + 〈y0, x′ − x〉+ r
∥∥x′ − x∥∥ .

For x′ ∈ Gn ∩D \ {x}, Un[x′] ≥ ũn(x′) and ‖x′ − x‖ ≥ h. Hence, for α ∈ (0, 1] small enough, the
affine function L : x′ 7→ ũn(x) + 〈y0, x′ − x〉 + αrh satisfies L(x′) ≤ Un[x′] for all x′ ∈ Gn ∩D,
and ũn(x) < L(x) which contradicts the definition of ũn.

The next Lemma describes more specific properties of ũn which follow from the construction
of Un.

Lemma 5.2. The family {ũn}n∈N ⊆ C (R2) is relatively compact for the topology of uniform
convergence on compact sets. Moreover,

∀x ∈ Gn ∩X, |∂ũn(x)| ≤ MAn(Un)[x], (43)
∀x ∈ Gn ∩ (D \X), |∂ũn(x)| = 0. (44)

Proof. We observe that (ũn)n∈N is uniformly equicontinuous by Proposition 5.1 and the fact that
Yn ⊆ Y0. Moreover, from Proposition 4.4 and Un(0) = 0, we deduce that

∀n ∈ N,∀x ∈ Gn ∩D, |Un[x]| ≤ C sup
x′∈D

∥∥x′∥∥
1
.

As a result, ũn(0) ∈ [−C supx′∈D ‖x′‖1 , 0]. We deduce the claimed compactness by applying the
Ascoli-Arzelà theorem.

The inequality (43) follows from Lemma 4.3. Indeed, let u : R2 → R ∪ {+∞} be the largest
convex l.s.c. function which minorizes Un[x] at all points x ∈ Gn ∩ D. If ũn(x) < Un[x], then
|∂ũn(x)| = 0 and there is nothing to prove. Otherwise, ũn(x) = u(x) = Un[x] and ũn ≤ u imply
that ∂ũn(x) ⊆ ∂u(x). As a result,

∀x ∈ Gn ∩X, |∂ũn(x)| ≤ |∂u(x)| ≤ MAn(Un)[x].

Now, we prove (44). Let x ∈ Gn ∩ (D \X). Again, if ũn(x) < Un[x], then |∂ũn(x)| = 0, so we
assume that ũn(x) = Un[x]. Assuming by contradiction that |∂ũn(x)| > 0 there must exist again
some y0 ∈ Yn, r > 0 such that B(y0, r) ⊆ Y , and ũn(x′) ≥ ũn(x) + 〈y0, x′ − x〉+ r ‖x′ − x‖.

Since mine∈Vn ∆̃eUn[x] = 0, there exists e ∈ Z2\{0} such that ∆̃eUn[x] = 0. If {x−hne, x, x+
hne} ⊆ D, then

0 = (Un[x+ hne]− Un[x]) + (Un[x− hne]− Un[x]) ≥ (ũn(x+ hne)− ũn(x)) + (ũn(x− hne)− ũn(x))

≥ 2rhn ‖e‖ > 0,
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which is impossible. On the other hand, if x+ hne /∈ D (the case x− hne /∈ D is similar), then
x−hne ∈ D and Un[x−hne]−Un[x] = −hnσY (e). The slope of ũn is monotone in the direction
e, and it cannot exceed σY (e/ |e|), hence ũn(x + te) = ũn(x) + tσY (e) for t ≥ −hn. But this
contradicts the inequality

ũn(x+ te) ≥ ũn(x) + t〈y0, e〉+ r |t| ‖e‖ .

We conclude that |∂ũn(x)| = 0.

5.2 A semi-discrete optimal transport problem

Let us define the following measures

µn
def.
=

∑
x∈Gn∩D

Fh[x]δx, νn
def.
=

∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x)L

2, (45)

where Fh[x] is defined for all x ∈ Gn ∩D as

Fh[x]
def.
= g(D1

nUn[x]) |∂ũn(x)| ≤ g(D1
nUn[x])MAn(Un)[x]ωn = f(x)ωn, (46)

and ωn = h2n is the area of one cell of the grid.
Incidentally, let us note that from Proposition 5.1 and Lemma 5.2, the Monge-Ampère mea-

sure (see [Gut01]) associated with ũn satisfies

det(D2ũn)
def.
= |∂ũn| =

∑
x∈Gn∩X

Fh[x]

g(D1
nUn[x])

δx. (47)

Lemma 5.3. There exists v ∈ C 1(R2), and non-negative measures µ̂ ∈ M(R2), ν̂ ∈ M(R2),
such that

• up to the extraction of a subsequence, the measures µn and νn respectively weakly converge
to µ̂ and ν̂ as hn → 0+,

• µ̂(R2) = ν̂(R2) and ∇v is the optimal transport of µ̂ to ν̂.

Proof. Let us consider the transport plan γn ∈M(R2 × R2)

γn
def.
=

∑
x∈Gn∩D

g(D1
nUn[x])δx ⊗ 1∂ũn(x)L

2

We note that γn is an optimal transport plan between µn and νn since its support is contained
in the graph of ∂ũn [San15].

From the inequalities,

µn ≤ ωn
∑

x∈X∩Gn

f(x)δx, νn ≤ βgL2xYn, (48)

we deduce that the supports of µn, νn, γn are respectively contained in the compact sets X,
Yn, X × Yn, and their masses are uniformly bounded. Hence, there exists µ̂, ν̂ ∈ M(R2),
γ̂ ∈ M(R2 × R2) such that, up to the extraction of a (not relabeled) subsequence, µn, νn and
γn respectively converge to µ̂, ν̂, γ̂ in the weak topology. As for ũn, we already know from
Lemma 5.2 that we may extract an additional subsequence so that ũn converges uniformly on
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compact sets to some (convex function) v ∈ C (R2). We also note that γ̂ has respective marginals
µ̂ and ν̂, and µ̂, ν̂ have densities with respect to the Lebesgue measure f̂ , ĝ which satisfy

f̂ ≤ f and ĝ ≤ βg1Y .

Let us note that g(D1
nUn[x]) ≥ αg, hence

νn ≥ αg
∑

x∈Gn∩D
(1∂ũn(x)L

2) = αgL2xYn,

thus µn(R2) = νn(R2) ≥ αg |Y |, and in the limit, µ̂(R2) = ν̂(R2) ≥ αg |Y | > 0.
Moreover, any element of supp γ̂ is the limit of (a subsequence of) elements (xn, yn) of

supp γn ⊆ ∂ũn. Passing to the limit in the subdifferential inequality

∀x′ ∈ R2, ũn(x′) ≥ ũn(xn) + 〈yn, x′ − xn〉,

we obtain
supp γ̂ ⊆ graph ∂v.

As a result, and since µ̂ is absolutely continuous with respect to the Lebesgue measure L2,
γ̂ = (I ×∇v)]µ̂ and ∇v is the optimal transport map between µ̂ and ν̂.

Additionally, passing to the limit in (47) with Fh[x]
g(D1

nUn[x])
≤ βf

αg
ωn, we get

det(D2v) ≤
βf
αg
1X , and ∂v(R2) = Y .

and from [FL09, Theorem 2.1], we deduce that v ∈ C 1(R2).

Lemma 5.4. Assume that (30) holds. Then, with the notations of Lemma 5.3, µ̂ = µ and ν̂ = ν.

Proof. For all y ∈ Y ⊆ Yn, there exists x ∈ Gn ∩ D such that y ∈ ∂ũn(x). Except for a set
of y with zero Lebesgue measure, that x is unique [Gut01, Lemma 1.1.12], and x ∈ X (see
Lemma 5.2). Then, denoting by ωg the modulus of continuity of g over Y0, we get∣∣g(D1

nUn[x])− g(y)
∣∣ ≤ ωg ( max

x′∈Gn∩X
max

y′∈∂ũn(x′n)

∣∣D1
nUn[x′])− y′

∣∣) −→ 0

as n→ +∞.
As a result the following convergence holds

lim
n→+∞

∥∥∥∥∥ ∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x) − g

∥∥∥∥∥
L∞(Y )

= 0. (49)

We deduce that ĝ ≡ g on Y and from (49) and (21) we obtainˆ
R2

f̂(x)dx = lim
n→+∞

µn(R2)

= lim
n→+∞

νn(R2)

= lim
n→+∞

ˆ
Yn

( ∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x)(y)

)
dy

=

ˆ
Y
g(y)dy =

ˆ
R2

f(x)dx.

Since, f̂ ≤ f , we get f = f̂ .
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To sum up, we are now in position to prove the following result.

Theorem 5.5. As n → +∞, the function ũn converges uniformly on compact sets towards the
unique minimal Brenier solution ũ which satisfies ũ(0) = 0.

Proof. Up to the extraction of a sequence, we obtain from Lemma 5.3 and 5.4 that ũn converges
uniformly on compact sets towards some convex function v ∈ C 1(R2) which satisfies in the
Brenier sense

det(D2v) = f(x)/g(∇v(x)), and ∂v(R2) = Y .

However, the function v may depend on the choice of the subsequence. By Proposition 3.1 which
states the uniqueness of the minimal Brenier solution up to an additive constant, we can prove
that v = ũ by proving that v(0) = 0. Then we obtain that the full family (ũn)n∈N converges
towards ũ by uniqueness of the cluster point.

We know that v is a solution to the Monge-Ampère equation, hence (in our setting) also in
the Aleksandrov sense. As a result, for all r > 0,

´
B(0,r) fdL2 =

´
∂v(B(0,r)) gdL2, and

0 < αf |B(0, r)| ≤ βg |∂v(B(0, r))| .

But by weak-convergence of the Monge-Ampère measures [Gut01, Lemma 1.2.2],

|∂v(B(0, r))| ≤ lim inf
n→+∞

|∂ũn (B(0, r))| = lim inf
n→+∞

|∂ũn (B(0, r) ∩ Gn)| (50)

As a result, for all n large enough, there exists xn,r ∈ B(0, r)∩Gn such that |∂ũn(xn,r)| > 0, and
thus, by Proposition 5.1, ũn(xn,r) = Un[xn,r]. By a diagonal argument we construct a sequence
x∗n such that x∗n → 0 and ũn(x∗n) = Un[x∗n]. By Proposition 4.4

|ũn(x∗n)| = |Un[x∗n]| ≤ C ‖x∗n‖1 . (51)

Passing to the limit n→ +∞, we get v(0) = 0. As a result v = ũ and the full family converges
towards ũ.

6 Numerical study

The numerical method, as we implemented it, depends on two main parameters :

• h the step size of the cartesian grid discretizing the square D wich contains the support of
f .

• The stencil width, i.e. the maximun norm of the vectors on the grid Z2 which will be used
in the variational schemes. More precisely we use superbases with vector with maximum
norm given by the stencil width in (24), we use the same set of vectors for V (x) in (24)
and finally we also use the same vectors to define Vn in (20) for the discretization of the
target.

There are also parameters linked to the precision of the damped Newton algorithm, but they
have a very limited impact on the efficiency of the method.
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Figure 2: Left: Map deformation of the cartesian grid for square to ball test case. Right: Zoom
of the Map deformation of the cartesian grid (test case to see D \X mapped tp ∂Y . Only the
position of the grid points is really significant...)

6.1 Experiment with h

A standard test is to optimally map a uniform density square to a uniform density circle. We
use here the a stencil width of 5 (we recall that means that we will use vectors on the grid Z2 of
maximum `∞ norm 5).

X is a square [0.2, 0.8]2 immersed in a bigger square D = [0, 1]2.

Table 1 shows, for different values of h, the number of iterations the norms of the reached
residuals and the value of the u(x0), which is not exactly 0 as the geometry of the Y is not
exactly preserved by the discretization.

Figure 2 shows the deformation of the computational grid under the gradient map. Notice
that the grid volume is well preserved and that all grid points in D \X are collapsed onto the
boundary of Y which is approximated as polygon (see next section).

N = 1
h # It. ‖Res.‖∞ ‖Res.‖2 u(x0)

128 32 4e-12 7e-13 1.4e-03
256 72 3e-12 3e-11 4.5e-02
512 103 1e-10 1e-11 1.7e-02
1024 209 3e-10 5e-11 1.1e-02

Table 1: Number of iterations / Norms of the reached residuals / Value of forced constant

On a standard Laptop a non optimized Julia implementation needs less than 5 minutes to
solve the 512 case and 1.5 hours for the 1024× 1024 case.
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6.2 Experiments with stencil width

In all this section N = 128, and we vary the stencil width, meaning the number of vector on the
grid used in scheme. The target is an heptagone whose normals directions are not necessarily
vectors in the stencil.

Table 2 shows, for increasing values of the stencil width , the number of iterations the norms
of the reached residuals and the value of the u(x0), which decreases as the accuracy of the dis-
cretization of Y improves.

Figure 3 to 5 shows the deformation of the computationnal grid under the gradient map
and zooms. They show how the geometry of the computed target improves with the domain
discretization which also depends on the stencil width. Notice again that grid volume is well
preserved and that all grid points in D \X are collapsed onto the boudary of Y .

S. width # It. ‖Res.‖∞ ‖Res.‖2 u(x0)

2 32 9e-12 1.5e-12 1.5e-01
4 42 9e-12 6e-12 6.4e-02
8 39 8e-12 4e-12 3.9e-02
16 42 4e-12 7e-13 2.2e-02

Table 2: Stationary residual reached in `∞ and `2 norms / Number of iterations to reach
stationary minimal residual / Value of forced constant
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Figure 3: Left: Mapping a square to heptagon, Stencil width = 2. Right: zoom.
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Figure 4: Mapping a square to heptagon. Left: stencil width = 4. Right: stencil width = 8.
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Figure 5: Left: Mapping a square to heptagon, Stencil width = 16. Right: zoom.
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6.3 Experiment with inhomogeneous right hand side

In this section we show results obtained with heterogeneous densities f to a constant density
ball Y , N = 128 and stencil width is 5 .

Figure 6 shows heterogeneous sources and the corresponding deformation of the cartesian
grid.
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Figure 6: Left column: Source density f . Right column: Corresponding optimal map deformation
of the grid.

6.4 Experiments with non convex and non connex sources

In this section we map constant source densities f with non convex and non connex supports
to a constant density ball Y . The solution is still C1 but is is know that the inverse mapping,
i.e. the Legendre-Fenchel transform of the potential, has gradient singularities. This has been
analyzed by Figalli in [Fig09]. Figures 7 to 10 show different densities an the associated map
deformations. The zero densities inclusions created singular structures in the target which cor-
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respond to gradient singularities of the dual map. These structures are consistent with those
predicted by Figalli. We use N = 128 and stencil width is 5 .
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Figure 7: Left column: Source density f . Right column: Corresponding optimal map deformation
of the grid.

7 Conclusion

In this work, we have proposed an novel way to impose the BV2 boundary condition for the
Monge-Ampère equation in schemes such as MA-LBR. The idea consists in slightly extending
the domain of the solution so as to capture the behavior of “minimal” Brenier solutions to the
optimal transport problem. Our proof of convergence as the grid stepsize goes to zero does
not appeal to the theory of viscosity solutions, but rather to simple arguments combined with
standard optimal transport results. The numerical experiments faithfully reproduce the typical
behavior of optimal transport solutions.

Although numerically we have not encountered any particular difficulty with the resolution
of the scheme, the existence of a solution to the discrete problem remains an open problem that

23



1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 8: Left column: Source density f . Right column: Corresponding optimal map deformation
of the grid.

we leave for future work.
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A Convergence of the finite difference schemes

The aim of this section is to prove that (30) holds for the centered, forward and backward finite
difference schemes, respectively D1,C

n (see (31)), D1,F
n and D1,B

n (see (32)).
We have defined in Section 4, the values (Un[x])x∈D∩Gn , and in Section 5 their “interpolation”

ũn using (41) as a convex function. In Lemma 5.3, we have shown that this interpolation
converges (along some sequence) towards some function v ∈ C 1(R2). We wish to prove that the
discrete gradients D1,C

n Un, D1,F
n Un and D1,B

n Un converge in some sense to the gradient ∇v.
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A.1 Convergence of the gradient of convex functions

We begin with some general results on convex functions. The following lemma is standard, and
mainly follows from the results in [HUL96, Section VI.6.2]. However, we provide a proof below,
as this result is not explicitly stated there.

Lemma A.1. Let Ω ⊆ R2 be a nonempty open convex set, C > 0, and {vn}n∈N be a sequence
of finite-valued convex functions on Ω which converges pointwise on Ω towards some function
v : Ω→ R as n→ +∞.

If v ∈ C 1(Ω), then for all compact set K ⊆ Ω,

lim
n→+∞

sup
x∈K

sup
|x′−x|≤Chn

sup
y∈∂vn(x′)

|∇v(x)− y| . (52)

Proof. Let us recall that the convexity of vn implies that v is convex, and vn converges uniformly
on the compact sets of Ω towards v. Let ρ > 0 such that ρ ≤ 1

4 dist(K,R2 \ Ω), and let
K ′

def.
=
{
x′ ∈ R2 ; dist(x′,K) ≤ ρ

}
⊆ Ω.
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Observe that ∂vn(K ′) is bounded independently of n. Indeed, for any x′ ∈ K ′, any yn ∈
∂vn(x′), if y 6= 0,

vn

(
x′ + ρ

yn
|yn|

)
≥ vn(x′) + ρ |yn| , (53)

hence |yn| ≤
1

ρ

(
vn

(
x′ + ρ

yn
|yn|

)
− vn(x′)

)
, (54)

and the right-hand side is uniformly bounded by uniform convergence of vn on {x′′ ∈ Ω ; dist(x,K) ≤ 2ρ}.
Now, assume by contradiction that there is some ε > 0, some (not relabeled) subsequence

xn ∈ K, x′n ∈ B(xn, Chn), and yn ∈ ∂vn(x′n) with |yn −∇v(xn)| ≥ ε.
By compactness, there exists y ∈ R2, x ∈ K, such that (up to an additional extraction)

yn → y and xn → x. Passing to the limit in the subgradient inequality

∀x′′ ∈ Ω, vn(x′′) ≥ vn(x′n) + 〈yn, x′′ − x′n〉, (55)
we obtain ∀x′′ ∈ Ω, v(x′′) ≥ v(x) + 〈y, x′′ − x〉. (56)

Hence y = ∇v(x) which yields a contradiction with |yn −∇v(xn)| ≥ ε for n large enough. This
yields the claimed result.

Now, we consider the finite difference scheme applied to a convex function.

Lemma A.2. Let Ω ⊆ R2 be a nonempty open convex set, and {vn}n∈N be a family of finite-
valued convex functions on Ω which converges pointwise on Ω towards some function v : Ω→ R.
Define Vn[x]

def.
= vn(x) for all x ∈ Ω ∩ Gn. Then, for all compact set K ⊆ Ω,

lim
n→+∞

sup
x∈K∩Gn

∣∣D1,C
n Vn[x]−∇v(x)

∣∣ (57)

where the centered finite difference operator D1,C
n is defined in (31).

Proof. By [HUL96, Theorem VI.2.3.4], we see that

δhn(1,0)Vn[x] = Vn[x+ hn(1, 0)]− Vn[x] = hn

ˆ 1

0
max

y∈∂vn(x+shn(1,0))
〈y, (1, 0)〉ds, (58)

so that by Lemma A.1, the above quantity converges uniformly on K towards ∂v
∂x1

(x).
Similarly, the quantities δhn(−1,0)Vn[x], δhn(0,1)Vn[x] and δhn(1,0)Vn[x] respectively converge to− ∂v

∂x1
(x),

∂v
∂x2

(x) and − ∂v
∂x2

(x) uniformly.

A.2 Finite difference schemes for the subsampled sequences

Now, let us turn to the values (Un[x])x∈D∩Gn defined in Section 4 and the function ũn defined
in (41). In the following, v denotes the function constructed in Lemma 5.3, as the limit of (ũn)n∈N.
Unfortunately, we cannot directly apply Lemma A.2 to ũn as it is not really an interpolation of
(Un[x])x∈D∩Gn : there could be some points x ∈ D∩Gn such that ũn(x) < Un[x] hence D1,C

n Un is
not a priori the centered finite difference scheme applied to ũn.

However, the first two properties of Proposition 4.4 express the fact that Un is directionally
convex, in the sense of [Mir16b, Appendix A]. In particular, defining the subsampled grids

G(I)n
def.
= h(2Z)× (2Z), G(II)n

def.
= h(2Z + 1)× (2Z),

G(III)n
def.
= h(2Z)× (2Z + 1), G(IV )

n = h(2Z + 1)× (2Z + 1),
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there exist convex lower semi-continuous functions v(I)n , v(II)n , v(III)n , v(IV )
n : R2 → R ∪ {+∞}

such that

∀x ∈ G(I)n ∩D, v(I)n (x) = Un[x], (59)

and similarly, replacing (I) with (II), (III), (IV ).
The following Lemma shows that those convex functions are not too far from our interpolation

ũn, at least far from the boundary of D. We define Dn
def.
= {x ∈ D ; x+ 2hnVn ⊆ D}.

Proposition A.3. The following inequalities hold.

∀x ∈ G(I)n ∩D, v(I)n (x) ≥ ũn(x), (60)

∀x ∈ G(I)n ∩Dn, ũn(x) ≥ v(I)n (x)− Chn, (61)

where C = 4 max
{
σY (e) ; e ∈ {(±1, 0), (0,±1)

}
.

The corresponding inequalities also hold for v(II)n , v(III)n , v(IV )
n .

Proof. The first inequality readily follows from the construction of ũn,

∀x ∈ G(I)n ∩D, ũn(x) ≤ Un[x] = v(I)n (x).

Now we deal with (61). Let x ∈ G(I)n ∩ Dn. We first prove that ∂v(I)n (x) ⊆ Yn. For any
y ∈ ∂v(I)n (x), all e ∈ Vn, and using Proposition 4.4,

〈y, 2hne〉 ≤ v(I)n (x+ 2hne)− v(I)n (x) = Un[x+ 2hne]− Un[x] ≤ σY (2hne)

Hence 〈y, e〉 ≤ σY (e) for all e ∈ Vn, that is y ∈ Yn. Moreover, by the subgradient inequality,

∀x′ ∈ G(I)n ∩D, Un[x′] = v(I)n (x′) ≥ v(I)n (x) + 〈y, x′ − x〉. (62)

For all x′′ ∈ Gn ∩D, there exists x′ ∈ G(I)n ∩D such that ‖x′′ − x′‖∞ ≤ hn. Let e
def.
= 1

hn
(x′′ − x′)

satisfying ‖e‖∞ ≤ 1 (hence |〈y, e〉| ≤ 2 max
{
σY (e) ; e ∈ {(±1, 0), (0,±1)

}
). Using Un[x′] ≤

Un(x′′) + σY (−hne) in (62) we get

Un(x′′) + σY (−hne) ≥ v(I)n (x) + 〈y, x′′ − x〉 − 〈y, hne〉,
hence Un(x′′) ≥ 〈y, x′′ − x〉+ v(I)n (x)− Ch.

As a result, the affine mapping L : x′′ 7→
(
〈y, x′′ − x〉+ v

(I)
n (x)− Ch

)
minorizes Un[x′′] at each

x′′ ∈ Gn ∩ D, and ∇L = y ∈ Yn. We deduce that ũn ≥ L. In particular, ũn(x) ≥ L(x) =

v
(I)
n (x)− Chn.

The next proposition shows that, along sequences, ũn and v(I)n share the same limit as h→ 0+.

Proposition A.4. Let K ⊆ int(D) be a compact set.
There exists v̂ ∈ C (K) such that for n large enough v(I)n ∈ C (K) and up to a subsequence,

lim
n→+∞

∥∥∥v(I)n − v̂
∥∥∥
L∞(K)

= lim
n→+∞

∥∥∥v(II)n − v̂
∥∥∥
L∞(K)

= 0, (63)

lim
n→+∞

∥∥∥v(III)n − v̂
∥∥∥
L∞(K)

= lim
n→+∞

∥∥∥v(IV )
n − v̂

∥∥∥
L∞(K)

= 0, (64)

lim
n→+∞

‖ũhn − v̂‖L∞(K) = 0. (65)
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Proof. The first point follows from Proposition 4.4 which ensures that (Un[x])n∈N is bounded
uniformly in x ∈ Gn ∩ D. As a result, the convex function v

(I)
n is uniformly bounded (hence

uniformly Lipschitz) in a neighborhood ofK and Ascoli-Arzelà’s theorem ensures the convergence
of v(I)n towards some v̂ up to a subsequence.

By Proposition A.3, we see that ũhn must converge (pointwise) towards v̂ on a dense subset
of K. Since K is compact and the functions are uniformly Lipschitz, the convergence is uniform
on K.

Since Proposition A.3 also holds for v(II)n , v(III)n , v(IV )
n , we deduce that those convex functions

also converge uniformly (along the same subsequence) towards v̂.

In Lemma 5.2, we show that {ũn}n∈N ⊆ C (R2) is precompact for the topology of uniform
convergence on compact subsets of R2. As a consequence of Proposition A.3, if ũhn converges
along some subsequence towards some function v, then v(I)n , . . . v(IV )

n converge uniformly towards
v on compact subsets of int(D), along the same subsequence. Now, in Lemma 5.3, we show that
v ∈ C 1(R2). We may now state the main result of this section.

Proposition A.5. Assume that (up to a subsequence) ũhn converges uniformly on the compacts
subsets of R2 towards some function v ∈ C 1(R2). Then, for all K ⊆ int(D) compact,

lim
n→+∞

max
x∈K∩Gn

∣∣D1,C
n Un[x]−∇v(x)

∣∣ = 0, (66)

lim
n→+∞

max
x∈K∩Gn

∣∣D1,F
n Un[x]−∇v(x)

∣∣ = 0, (67)

lim
n→+∞

max
x∈K∩Gn

∣∣D1,B
n Un[x]−∇v(x)

∣∣ = 0. (68)

Proof. We note that from Proposition A.4, v(I)n , . . . v(IV )
n also converge uniformly on compact

subsets of int(D) towards v.
We begin with the forward and backward differences defined in (32). Let e = (1, 0) or

e = (0, 1). By monotonicity of the slopes (see Proposition 4.4),

Un[x+ 2hne]− Un[x]

2hn
≥ Un[x+ hne]− Un[x]

hn
≥ Un[x]− Un[x− hne]

hn
≥ Un[x]− Un[x− 2hne]

2hn
(69)

To fix ideas, let us assume that x ∈ G(I)n . Then x± 2hne ∈ G(I)n and applying Lemma (A.2)
to v(I)n (in some compact set K ′, K ⊆ K ′ ⊆ int(D)), we see that the left and right-hand sides of
(69) converge towards 〈∇v(x), e〉, uniformly in x ∈ G(I)n ∩K. The same argument holds for x in
G(II)n , G(III)n or G(IV )

n , so that we get (67) and (68).
By linear combination, we deduce (66).

B MA-LBR overestimates the subgradient

The following proof of Lemma 4.3 was suggested to us by J.-M. Mirebeau. We denote by ∂xu
the subgradient of a convex function u at a point x.

Lemma B.1. Let Ω be a convex neighborhood of a point x ∈ Rd, and let u, v : Ω→ Rd be convex.
If u ≤ v, and u(x) = v(x) then ∂xu ⊆ ∂xv. In particular |∂xu| ≤ |∂xv|.

The following Lemma is a consequence of the Brunn-Minkowski inequality (see [Sch93]).
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Lemma B.2. Let Ω be a convex neighborhood of a point x ∈ Rd, and let u, v : Ω→ Rd be convex.
Let w = (1− t)u+ tv with 0 ≤ t ≤ 1. Then (1− t)∂xu+ t∂xv ⊆ ∂xw, where the sign plus denotes
a Minkowski sum. In particular (1− t)|∂xu|

1
d + t|∂xv|

1
d ≤ |∂xw|

1
d .

We denote by u the largest convex function bounded above by u.

Proposition B.3. Let X ⊆ Rd be a finite point set, and let x ∈ X. Let Y ⊆ X be symmetric
w.r.t. the point x, i.e. ∀y ∈ Y one has 2x− y ∈ Y . Let u : X → R, and let v : Y → R be defined
by v(y) := 1

2(u(y) + u(2x− y)). Then

|∂xu| ≤ |∂xv|. (70)

Proof. If u(x) > u(x), then |∂xu(x)| = 0 and there is nothing to prove. We thus assume
u(x) = u(x). Introduce the restriction uY := u|Y , and its symmetry u−Y := uY (2x − ·), and
note that 1

2(uY + u−Y ) ≤ v.
The equality u(x) = u(x) implies uY (x) = uY (x), hence also u−Y (x) = u−Y (x) and v(x) =

v(x). We have

u ≤ uY hence |∂xu| ≤ |∂xuY |,
1

2
(uY + u−Y ) ≤ v hence

1

2
|∂xuY |

1
d +

1

2
|∂xu−Y |

1
d ≤ |∂xv|

1
d .

The announced result follows since |∂xuY | = |∂xu−Y |.
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