Could Blobs Fuel Storage-Based Convergence Between HPC and Big Data?

Abstract : The increasingly growing data sets processed on HPC platforms raise major challenges for the underlying storage layer. A promising alternative to POSIX-IO-compliant file systems are simpler blobs (binary large objects), or object storage systems. They offer lower overhead and better performance at the cost of largely unused features such as file hierarchies or permissions. Similarly, blobs are increasingly considered for replacing distributed file systems for big data analytics or as a base for storage abstractions like key-value stores or time-series databases. This growing interest in such object storage on HPC and big data platforms raises the question: Are blobs the right level of abstraction to enable storage-based convergence between HPC and Big Data? In this paper we take a first step towards answering the question by analyzing the applicability of blobs for both platforms.
Type de document :
Communication dans un congrès
CLUSTER 2017 - IEEE International Conference on Cluster Computing, Sep 2017, Honolulu, United States. pp.81 - 86, 2017, 〈10.1109/CLUSTER.2017.63〉
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01617655
Contributeur : Pierre Matri <>
Soumis le : lundi 16 octobre 2017 - 19:54:04
Dernière modification le : jeudi 11 janvier 2018 - 06:28:14

Fichier

HPC_BD_Convergence___Short_Pap...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre Matri, Yevhen Alforov, Alvaro Brandon, Michael Kuhn, Philip Carns, et al.. Could Blobs Fuel Storage-Based Convergence Between HPC and Big Data?. CLUSTER 2017 - IEEE International Conference on Cluster Computing, Sep 2017, Honolulu, United States. pp.81 - 86, 2017, 〈10.1109/CLUSTER.2017.63〉. 〈hal-01617655〉

Partager

Métriques

Consultations de la notice

452

Téléchargements de fichiers

33