A generative model for sparse, evolving digraphs

Abstract : Generating graphs that are similar to real ones is an open problem, while the similarity notion is quite elusive and hard to formalize. In this paper, we focus on sparse digraphs and propose SDG, an algorithm that aims at generating graphs similar to real ones. Since real graphs are evolving and this evolution is important to study in order to understand the underlying dynamical system, we tackle the problem of generating series of graphs. We propose SEDGE, an algorithm meant to generate series of graphs similar to a real series. SEDGE is an extension of SDG. We consider graphs that are representations of software programs and show experimentally that our approach outperforms other existing approaches. Experiments show the performance of both algorithms.
Type de document :
Communication dans un congrès
6th International Conference on Complex Networks and their applications, Nov 2017, Lyon, France. 〈10.1007/978-3-319-72150-7_43〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01617851
Contributeur : Preux Philippe <>
Soumis le : mardi 17 octobre 2017 - 11:01:17
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32

Fichiers

analysis-pa-model.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Georgios Papoudakis, Philippe Preux, Martin Monperrus. A generative model for sparse, evolving digraphs. 6th International Conference on Complex Networks and their applications, Nov 2017, Lyon, France. 〈10.1007/978-3-319-72150-7_43〉. 〈hal-01617851〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

19