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WHY IS EVOLUTION IMPORTANT IN CANCER AND

WHAT MATHEMATICS SHOULD BE USED TO TREAT

CANCER? FOCUS ON DRUG RESISTANCE

LUIS ALMEIDA∗, REBECCA H. CHISHOLM†, JEAN CLAIRAMBAULT‡,

TOMMASO LORENZI§, ALEXANDER LORZ¶, CAMILLE POUCHOL‖AND

EMMANUEL TRÉLAT∗∗

The clinical question of drug resistance in cancer, our initial motivation to study

continuous models of adaptive cell population dynamics, leads naturally and more
generally to consider the cancer disease itself from an evolutionary biology view-

point, a consideration without which even the best targeted therapies will likely

most often eventually fail. Among the challenging questions to mathematicians
who tackle the task of understanding this disease and optimising its treatment

are the representation of phenotypic heterogeneity of cancer cell populations and
of their plasticity in response to anticancer drug insults. Such representation can

be obtained using phenotype-structured models of healthy and cancer cell popula-

tions, and optimal control methods to optimise drug effects, with the perspective
to implement them in the therapeutics of cancer, aiming at both avoiding the

emergence of drug resistance in tumours and taking into account a constraint of

limiting unwanted adverse effects to healthy tissues.
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1. Introduction to mathematical modelling in cancer

Mathematical models of cancer growth and therapy have already known nu-

merous developments and publications in the past twenty years or so. They

belong to two general classes: agent-based models, ruled by stochastic rules

of growth (for division, death, motion, interactions with the environment)

in which the individual agents are cancer cells, and continuous models that

rely on ordinary or partial differential equations, sometimes delay differ-

ential equations, whose solutions are densities of cancer cell populations.

The benefits and limitations of these two respective classes of models, with

examples, are discussed, e.g.., in [Chisholm et al. 2016a]6. As regards

anticancer treatments, the continuous version allows to take advantage of

mathematical optimisation and optimal control algorithms that have been

designed in this framework, originally in engineering settings. A short re-

view of models designed with this therapeutic control vision is presented

for instance in [Billy and Clairambault 2013]2. It is sometimes possible

to obtain a continuous model starting from an agent-based one by averag-

ing methods; alternatively, one can also develop in parallel the two types

of models applied to the same biological problem and compare the pre-

dicted behaviour of the modelled cell populations, as e.g., in [Chisholm et

al. 2015]9, or in a general setting, in [Byrne and Drasdo 2009]4.

The goal of such models of cancer growth may be to merely understand

the biological phenomenon of cancer growth, by designing accurate mod-

els that are all the more relevant to describe a biological reality as they

are identified and validated on biological measurements in vitro in culture

dishes, in vivo on laboratory animals, or from observations (e.g. radio-

logical images) on humans, to be confronted to theoretical growth curves

depending on a priori unknown parameters (the physicist’s viewpoint). But

it may also be of a different nature, to represent the effects of treatments

on tumours, with the aim to optimise them. In the latter case, these effects

may be described either by their molecular effects on known drug targets

(keeping in mind that precision targeting is often alluring, since drugs may

have unpredictable effects on non recognised targets) or by their functional

effects on the possible fates of cell populations, namely proliferation, ex-

tinction, differentiation or senescence. The respective advantages of these

two points of view are also discussed, with examples, in [Chisholm et al.

2016a]6. Whatever the chosen point of view, molecular or functional, the

goal of these models is here clearly established as understanding and im-

proving the efficacy of anticancer treatments (the physician’s viewpoint).
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2. Drug resistance in cancer

2.1. The two main pitfalls of cancer therapeutics

Unwanted toxic side effects on healthy cell populations and emergence of

resistance to treatments in cancer cell populations are the two main pitfalls

of cancer therapeutics in the clinic. Toxicity is always a concern for the

clinician, as it limits the tolerable doses of drugs delivered to the patient,

who otherwise might see his tumours eradicated, but at the expense of

deadly insults to essential organs or functions (haematopoiesis, digestion,

skin covering, liver function, heart function). It has lately been proposed

that instead of delivering for short periods of time the maximum tolerated

dose (MTD), it might be as efficient to deliver small drug doses (the so-

called metronomic strategy), thus minimising toxicity, with as good results

on the cancer cell population. To what extent is the immune system in-

volved in the efficacy of this new way of designing delivery schedules is not

completely clear and might depend on the anticancer drug in use [Zitvogel et

al. 2008, 2011]39,40, however metronomic therapies certainly challenge the

MTD strategy in both limitation of toxicity and improvement of efficacy.

Note that an initial interpretation of the success of metronomic therapies

was more mechanic, postulating that too high amounts of drugs destroy the

blood vessels that bring the drugs to the tumour [Benzekry and Hahnfeldt

2013, Pasquier et al. 2010]1,28. It is not exclusive of the immunogenic ex-

planation [Zitvogel et al. 2008, 2011]39,40, which proposes that giving small

drug doses may reveal hidden (internalised) cancer antigens by shattering

a small number of cancer cells, enough to trigger an efficient immune re-

sponse towards the whole cancer cell population. Both explanations still

remain to be more biologically documented - especially with respect to the

immune response -, mathematically modelled and tried in clinical settings;

however, they address the question of toxicity in an apparently paradoxical

way (“more is not necessarily better”) that is a challenge for modellers.

Drug resistance, the other major pitfall of cancer therapeutics, is a treat-

ment efficacy limitation of another nature; it may be defined as adaptation

of the target cancer cell populations to the hostile environment created by

the drug. Resistance to treatments in cancer cell populations, insofar as

it is not constitutive of organisms therapies apply to, but secondary, i.e.,

induced by treatments as a stress response. In many cases (in fact, in

most cases), treatments that show remarkable initial efficacy by drastically

shrinking tumours see their response decrease with time, until they become

totally inefficient as tumours regrow. Furthermore, the newly growing can-
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cer cell populations, that have become resistant to the drug in use, are out

of reach for this therapy, and often for others that have not been employed

(multi-drug resistance). At the molecular scale, different mechanisms have

been identified, such as overexpression of drug efflux pumps (ABC trans-

porters [Gottesman et al. 2002]16, such as the P-glycoprotein, also known

as MDR1, or ABCB1), of intracellular drug processing enzymes or of DNA

repair enzymes, and it has been proposed to combine cytotoxic drugs with

inhibitors of these mechanisms, unfortunately eventually to no avail. As

mentioned above, the molecular point of view in pharmacological treat-

ments in principle offers a satisfying framework to perform cancer treatment

optimisation, but so-called targeted therapies (i.e., that target intracellular

molecular pathways), with a few exceptions, result in disappointing out-

comes (see, e.g., [Gillies et al. 2012, Goldman et al. 2017a]13,14).

2.2. From the single cancer cell to cancer cell populations

Indeed, these treatments share the same flaw, which is that they focus on a

given molecular target (or on several molecular targets), considering cancer

as the disease of the same single cell extended to large quantities, instead

of taking into account the population of cancer cells in its diversity, which

might offer a key explanation of their failure [Goldman et al. 2017b]15.

Such population diversity (or heterogeneity) is not necessarily of genetic

nature but linked to epigenetic changes in the chromatin, thus reversible

[Sharma et al. 2010]34, at least on the initiation of drug resistance (mu-

tations can come later to irreversibly establish resistance in a subclone of

the cell population), and may result in differently expressed phenotypes

in different cells, potentially inducing different resistance mechanisms as

responses to cytotoxic stress in a population of cells bearing all the same

genotype.

Introducing the population of cancer cells (indeed, the actual target of

anticancer treatments) naturally sets the scenery for Darwinian evolution

of cells exposed to anticancer drugs seen as an environmental selection pres-

sure, as will be developed in the next section. This viewpoint, introduced

in theoretical ecology for quite a long time already, is rather new in bi-

ology and medicine (where it has given rise to the new field of Darwinian

medicine), however, does not allow to decide whether the selection is of pure

Darwinian nature (selection of the fittest, cells that were already present

in the population before exposure to the drug) or may involve a part of

Lamarckian adaptation (no resistant cells initially present, but stochastic
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triggering of resistance mechanisms in a few cells for which the response to

stress happens to be well adapted to resist the cytotoxic effects of the drug

in use). This alternative, discussed in a mathematical setting in [Chisholm

et al. 2015]9 was already the object of the biological experiment by Luria

and Delbrück [Luria and Delbrück 1943]27, concluding to sheer Darwinian

selection. However, Luria and Delbrück’s experiment was performed not on

cancer cells exposed to drugs, but on bacteria exposed to bacterium-eating

viruses (phages), while human and animal cancer cells bear a genome - and

epigenome, i.e., chromatin (histones) - than is by far richer than the bac-

terial genome, which in our case does not allow to conclude. Nevertheless,

the cell population point of view clearly opens new ways to understand and

overcome drug resistance in cancer.

3. Cancer as evolutionary disease

3.1. Evolution of multicellularity and cancer

Darwinian evolution (together with possible Lamarckian adaptation) of

cancer - and healthy - cell populations (but healthy cell populations are

in principle well controlled as regards their possibilities of phenotype evo-

lution) must of course be considered on the short-time level of a human life

or disease, but the much larger time of evolution in the course of billions

of years, from unicellular organisms towards the organised and coherent

forms of multicellularity represented by present animals and plants, may

also shed light on cancer as evolutionary disease. Cancer is a disease of

multicellular organisms, that may be defined as loss of coherence between

tissues due to loss of coherence control by those genes that have been es-

sential in the evolution towards multicellularity. In [Davies and Lineweaver

2011]10, it is advocated that the genes that are altered in cancer are pre-

cisely the ones that have been employed by evolution to design multicellular

organisms. Indeed, evolution proceeds, as stated by Nobel prize laureate

François Jacob in [Jacob 1977]20, by tinkering, i.e., it proceeds by trials and

errors taking advantage of any existing material, and, as regards multicel-

lularity, such tinkering may result in localised (in organs and physiologi-

cal functions elicited by corresponding genes) fragilities, that secondarily,

under environmental pressure, may be caught off guard and result in lo-

calised cancers. Such loss of coherence control, unmasking a pluripotent

phenotype that is also named plasticity, may in particular be seen in the

process of de-differentiation of cancer cells, i.e., adoption of a pluripoten-

tial phenotype (eventually yielding the so-called ‘cancer stem cell’, whose
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existence is likely to be transient [Li and Laterra 2012]23) making the cells

that bear it, as endowed with a rich panel of non-repressed genes, able to

develop a wide variety of responses to cytotoxic stress. The involvement of

such failed multicellularity (i.e., unpreserved normal differentiation) con-

trol genes in revealing an ancient ‘toolkit’ of prexisting adaptations [Davies

and Lineweaver 2011]10 still remains to be documented, but it certainly

offers new ways of considering cancer as an evolutionary disease and drug

resistance in cancer as an evolutionary - and adaptive - mechanism.

3.2. Heterogeneity and plasticity in cancer cell populations

Heterogeneity in cancer cell populations has been documented in advanced

solid tumours as of genetic nature, with evidence of multiple branched mu-

tations [Gerlinger et al. 2012]12, but, as mentioned above, it may also con-

sist of sheer epigenetic and reversible modifications [Sharma et al. 2010]34

linked to enzymatic activities located on the chromatin, i.e., without muta-

tions in the genome. However, as recently shown in [Shaffer et al. 2017]33,

such fast epigenetic, non genetic, reprogramming of a sparse subpopulation

of cancer cells may eventually result in a stably resistant state.

Another look at heterogeneity induced in cancer cell populations by ex-

posure to cytotoxic drugs is presented in [Wu et al. 2015]38. In this article,

it is proposed that so-called cold genes, that have been identified as ex-

pressed in the genome of cancer cells (multiple myeloma cells) have a very

ancient origin, being conserved without changes throughout evolution from

unicellularity, and may be responsible for stress response in extremely hos-

tile and unpredictable situations (resulting from events comparable, mutatis

mutandis, to the impact on animal life of the meteorite that 60 million years

ago fell on Earth - creating the Chicxulub crater in Yucatan -, subsequently

putting an end to the dominance of dinosaurs), by possibly launching sec-

ondary expression of various resistance mechanisms. In this respect, these

very ancient ‘cold genes’, elaborated in a remote past of our planet, when

conditions of life were different from the present (UV radiation, acidity, low

oxygen concentration in the oceans and in the atmosphere), might be the

genetic toolkit of preexisting adaptations mentioned above, or part of it.

The variety of resistance mechanisms developed by cancer cell popula-

tions exposed to letal doses of cytotoxic drugs has been related to what is

called bet hedging in theoretical ecology. The term ‘bet hedging’ is used

to qualify behaviour relying on an ensemble of traits that make a popula-

tion of living individuals adaptable to an unpredictable environment, using
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a so-called ‘risk-spreading strategy’ , that at the scale of the population,

may result in keeping safe only a small part of it, but a part that will be

able to reconstitute the whole population, with preservation of its common

genome, after such adaptation to the new environment [Philippi and Seger

1989]29. Bet hedging in tumours has been proposed as a stochastic ‘cancer

strategy’ in [Brutovsky and Horvath 2013]3. It is also presented as “an ul-

timate explanation of intra-tumour heterogeneity” in chapter XVII of the

book [Ujvari, Roche and Thomas 2017]36.

Plasticity, mentioned above about de-differentiation of cancer cells and

the transient state of cancer stem cell, may be evidenced at the level of

the single cell (derepression of genes that must be epigenetically repressed

in physiology to produce the differentiation that yields about 200 differ-

ent functional cell types in the human organism), but also at the level

of the cell population, since the spreading of such pluripotent cells makes

the population adaptable to environmental changes (plastic), possibly by

using expression of cold genes in a tiny subpopulation and stochastic (or

distributed) bet hedging of resistance phenotypes.

The plasticity - physiologically normal in highly undifferentiated cell

states, close to stem cells, but totally pathological in cell populations

for which a defined terminal physiological function exists - of the epige-

netic landscape of a given human genome, as metaphorically proposed in

[Waddington 1957]37, recently revised from a systems biology viewpoint by

Sui Huang, see, e.g., [Huang 2011, 2013]17,18, provides another approach to

plasticity and evolution of cancer, that has been for instance exploited to

study lineage commitment in haematopoiesis by using bifurcation analysis

of an ordinary differential equation model [Huang et al. 2007]19.

4. Continuous mathematical models

4.1. Phenotype-structured mathematical models

The modelling framework of adaptive dynamics we present here is more

likely to correspond biologically to epigenetic modifications rather than to

genetic mutations, as the evolution in phenotype is in this mathematical

setting always reversible (not to mention that eventual induction of emer-

gent resistant cell clones due to mutations under drug pressure is never

to be excluded in the long run). From the biologist’s point of view, we

study phenotypically heterogeneous, but genetically homogeneous, cancer

cell populations under stress by drugs.

The models considered here are all based on the so-called logistic ODE
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model, which we recall here. It is given by the equation

dN

dt
= (r − dN)N,

which describes the time-evolution of the number of individuals N(t), start-

ing from a prescribed initial condition N0.

Coefficient r denotes the net selection rate of the individuals, namely

the difference between their proliferation and death rates, while the logistic

term dN stands for an added death rate proportional to the number of

individuals.

The underlying assumption is that competition for nutrients and space

inside the population does not allow for exponential unconstrained prolifer-

ation. Mathematically, it is indeed true that if N0 ≤ r
d , then N(t) converges

increasingly toward the carrying capacity r
d .

Let us now introduce a basic phenotype-structured model, where the

quantity of interest is a number of cells n(t, x) at time t > 0, and of pheno-

type x ∈ (0, 1) standing for the resistance to a given drug. We stress that

this phenotype is taken to be continuous, because, as already mentioned, it

can be correlated to biological characteristics which themselves are contin-

uous. Here, (0, 1) is taken for simplicity but multi-dimensional phenotypes

can of course be considered.

The model reads

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t))n(t, x),

where ρ(t) :=
∫ 1

0
n(t, x) dx is the total number of individuals at time t, start-

ing from some initial condition n0(·). As before, r(x) is the net proliferation

rate of cells of cells of phenotype x, while d(x)ρ(t) is the natural extension

of the previous logistic term. Note that more general logistic death terms

through a Kernel K can be considered, in the form
∫ 1

0
K(x, y)n(t, y) dy.

Model (4.1) is characterised by two main phenomena: convergence and

concentration. The first one means convergence of ρ(t) towards max
(
r
d

)
,

and concentration of the density n on the set of phenotypes where r
d reaches

its maximum, namely arg max
(
r
d

)
. This is why this class of models is

extensively used in adaptive dynamics to model selection: only some fitter

phenotypes remain, which corresponds mathematically to the convergence

of n(t, ·) to a sum of Dirac masses located on the set arg max
(
r
d

)
.

This modelling framework also extends to several populations, in which

case the competition between the populations are modelled through Lotka-

Volterra-like terms. Let us introduce a model of two interacting popula-
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tions, which will be further developed in the next section with the mod-

elling of chemotherapy as control terms. It is concerned with two densities

of healthy and cancer cells nH(t, x) and nC(t, x) respectively, where x is

again a continuous phenotype describing the resistance to a given drug.

The model is given by

∂nH
∂t

=
[
rH(x)− dH(x) (aHHρH(t) + aHCρC(t))

]
nH(t, x), (1)

∂nC
∂t

=
[
rC(x)− dC(x) (aCCρC(t) + aCHρH(t))

]
nC(t, x), (2)

where, as before, ρH(t) =
∫ 1

0
nH(t, x) dx, ρC(t) =

∫ 1

0
nC(t, x) dx. The

logistic terms now incorporate an intraspecific competition term weighted

by coefficients aHC and aCH . Because cells belong to different ecological

niches, it is quite natural tu assume

aHC < aHH , aCH < aCC .

Under hypothesis (4.1), it is proved in [Pouchol et al. 2016]31 that

the behaviour of (1) is again convergence and concentration, where the

asymptotic values of ρH , ρC and the sets on which nH , nC concentrate can

also be explicitly computed.

4.2. Optimal control for anticancer therapeutics

Optimal control methods (reviewed in [Trélat 2005]35) applied to mod-

els of cancer therapeutics using systems of ordinary differential equations

[Carrère 2017;  Ledżewicz and Schättler 2006, 2014]5,21,22 or of partial dif-

ferential equations [Pouchol et al. 2016]31 are the appropriate tool to theo-

retically optimise cancer therapeutics, in particular by taking into account

the inevitable emergence of drug resistance in cancer cell populations.

The built-in targets for theoretical therapeutic control that are present

in the phenotype-structured PDE models we advocate here are not sup-

posed to represent well-defined molecular effects of the drugs in use, but

rather functional effects, i.e., related to cell death (cytotoxic drugs), or

to proliferation in the sense of slowing down the cell division cycle with-

out killing cells (cytostatic drugs). We propose that cell life-threatening

drugs (cytotoxics) induce by far more resistance in the highly plastic can-

cer cell populations than drugs that only limit their growth (cytostatics),

and that a rational combination of the two classes of drugs - and possibly

others, adding relevant targets to the model - may be optimised to propose
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therapeutic control strategies to avoid the emergence of drug resistance in

tumours.

We address this optimal control problem in the context of two popula-

tions, healthy and cancer as in the model is given by (1), now complemented

with two types of drugs of infusion rates u1 and u2 for cytotoxic and cy-

tostatic drugs, respectively. The resistance phenotype x they are endowed

with is defined with respect to the cytotoxic drug pressure, and is taken

to range from sensitiveness (x = 0) to resistance (x = 1). The controlled

model thus reads
∂nH

∂t (t, x) =

[
rH(x)

1+αHu2(t)
− dH(x)IH(t)− µC(x)u1(t)

]
nH(t, x),

∂nC

∂t (t, x) =

[
rC(x)

1+αCu2(t)
− dC(x)IC(t)− µH(x)u1(t)

]
nC(t, x),

(3)

On a fixed therapeutic time-window [0, T ], the optimal control problem

is to choose the controls u1 and u2 so as to minimise the number of cancer

cells ρC(T ), while satisfying the three following constraints.

• remaining under maximum tolerated doses: 0 ≤ u1(t) ≤ umax1 ,

0 ≤ u2(t) ≤ umax2 ,

• avoiding the emergence of too big a tumour : ρH(t)
ρH(t)+ρC(t) ≥ θHC ,

• limiting unwanted adverse effects to the healthy cell population:

ρH(t) ≥ θHρ0H .

This optimal control problem is motivated by the inefficacy of using

constant high doses of drugs, a strategy which on the long run violates

the last two constraints. This is indeed what is observed in the simulation

presented in Figure 1: although the tumour size first decreases, it is at the

expense of the cancer cell density concentrating on a resistant phenotype.

The treatment becomes inefficient and relapse occurs.

In [Pouchol et al. 2016]31, the previously defined optimal control prob-

lem is analysed both numerically and theoretically. As the time T increases,

it is found that the optimal control strategy becomes increasingly close to

a two-phase strategy.

• The first phase is long, and only constant low doses are given, so

as to saturate the second constraint. At the end of this first phase,

the drug pressure has been low enough to ensure that the cancer

cell density has concentrated on a sensitive phenotype.

• The second phase is short and starts with maximum tolerated doses

for both drugs, leading to a quick decrease of both cell numbers be-
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Figure 1. Simulation with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10.

Here ρCS(t) =
∫ 1
0 (1 − x)nC(t, x) dx is a measure of the number of sensitive cells in the

cancer cell population.

cause they are efficient on a sensitive cancer cell population. Once

the third constraint (on the heathy cell density) has been reached,

cytostatic drugs switch to some intermediate value (which can be

computed in feedback form) which allows for a further decrease of

the tumour size while keeping the healthy cell number at its lower

bound.

A numerical simulation of the optimal strategy is presented in Figure 2

below.

For a pratical implementation of the previous strategy, it is natural

to repeat it in a quasi-periodic manner. One can hope that after enough

cycles, the tumour will be eradicated, or at least made chronic. In order to

decide when to switch from the second short phase to another cycle with a

long first phase, one must identify markers for resistance. Indeed, as long

as constant low doses do not violate the second constraint on the relative

tumour size, they must be given to ensure that the (assumed to be plastic)



March 23, 2018 13:30 Proceedings Trim Size: 9in x 6in JCCPMoscouBiomatProc2017˙v3

12

Figure 2. Simulation of the optimal control problem for T = 60.

tumour is becoming sensitive to the treatment again. The switch to the

second phase can be led as soon as the markers indicate that the tumour

has become sensitive enough again. Finally, if the healthy cells tissue is too

damaged (namely the third constraint saturates), one can hope to still let

the tumour decrease with a properly chosen cytotoxic drug infusion. When

this is no longer possible, one must switch the the long first phase.

5. Future tracks in modelling for cancer therapeutics

5.1. Beyond present models to optimise cancer therapeutics

The models of adaptive population dynamics that we have presented here,

with their built-in targets for control, rely on a nonlocal Lotka-Volterra

vision of cell-cell population competition. This point of view could be

extended to other modes of interaction, which could be mutualistic or
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predator-prey like, and to an arbitrary number of cell populations. For an

analysis of a mutualistic integro-differential 2x2 system modelling interac-

tions between breast cancer cells and their supporting stroma (adipocytes),

we refer to [Pouchol 2015]30, whereas a more general Lotka-Volterra-like

model for N populations is analysed in [Pouchol and Trélat]32. The in-

ferred asymptotic behaviour is again convergence and concentration.

Let us now come to extensions of the integro-differential setting by con-

sidering the basis model (4.1). Recall first that more general logistic inter-

action terms can be considered. The other natural extension is to model

epimutations (occurring on the relevant time-scale, which is here that of a

tumour). They can either be modelled by a Laplacian, leading to

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t))n(t, x) + β∆n(t, x),

with Neumann boundary conditions, or more generally through a mutation

Kernel. Note that both modelling are linked at the limit through a proper

rescaling of the Kernel, as explained in [Perthame 2007]?.

A complementary advection term can be added, accounting for cells

actively adapting to their environment, seeking for phenotype changes that

make them fitter. These can be seen as stress-induced epimutations and

with them the model becomes

∂n

∂t
(t, x) +

∂

∂x
(v(x)n(t, x)) = (r(x)− d(x)ρ(t))n(t, x) + β∆n(t, x).

Note that in [Chisholm et al.]9, the advection happens to be compulsory

to observe quick enough dynamics to fit those obtained in the experiments

presented in [Sharma et al.]34.

A further advantage of these more general PDE models is that they are

able to represent possible asymptotic coexistence of phenotypes, which is

not the typical output of the integro-differential models.

A final possible extension worth-mentioning is the addition of a space

variable, since it is believed that the heterogeneity of a tumour varies from

its periphery to its center. This is also particularly relevant in view of

optimal control through chemotherapy since drugs will efficientlly access

the outer rim of the tumour but less its core. For possible cancer models

taking both phenotype and space into account, we refer to [Lorz et al.

2015]?.
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5.2. Need for models with a larger evolutionary perspective

From the biological part of this article, it clearly appears that the above-

mentioned models, sophisticated though they may be, are not enough to

study in mathematical settings the evolution of multicellularity and its

intrinsic failure, namely cancer, nor are they presently enough to design

optimised therapeutic strategies that can overcome drug resistance in can-

cer. Open questions to biologists remain if one wants to make available a

framework within which mathematical modelling may be designed. What

are the genes that must be silenced in physiology and are re-expressed in

de-differentiated cancer cells? What are the observable links between genes

that are known to be essential for multicellularity and what are the genes

that are altered in cancer (the same, following [Davies and Lineweaver

2011]10])? What models to study physiological coherence between tissues

in the same organism, i.e., what sticks together in harmony the 200 dif-

ferent cell types of a human organism? What part of the genome bears

the so-called cold genes, what part the individual signature of an organism

that is transmitted throughout differentiation (the ‘self’, certainly to be

related with the major histocompatibility complex, MHC), and what part

the genes that are normally sequentially silenced in the history of differen-

tiations? As regards mechanisms of drug resistance, what part of launching

in a cancer cell population is deterministic (triggering cold genes) and what

part is stochastic? And such list of open questions is not intended to be

comprehensive.

6. Conclusion: a challenging new field for mathematicians

In this short description of cancer as evolutionary disease, focusing on the

question of drug resistance and its possible overcoming by optimised strate-

gies in the clinic, we have presented what has been recently developed in

the framework of mathematical modelling, that is, adaptive dynamics of cell

populations represented by phenotype-structured models relying on partial

differential equations, together with optimal control methods to guide their

asymptotic behaviour. We have also proposed immediate tracks for future

extensions of these existing models, and only sketched the scenery for future

mathematical models that still lack biological answers to guide their design.

We are nevertheless confident in the fast progress of cancer biology to help

mathematicians design models that can be helpful in prevention, predic-

tion and control of cancer in the clinic, provided that the right questions

are posed, mathematically challenged and experimentally tackled.
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