
HAL Id: hal-01618698
https://inria.hal.science/hal-01618698

Submitted on 18 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware support for UNUM floating point arithmetic
Andrea Bocco, Yves Durand, Florent de Dinechin

To cite this version:
Andrea Bocco, Yves Durand, Florent de Dinechin. Hardware support for UNUM floating point arith-
metic. 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Jun 2017,
Taormina, Italy. pp.93 - 96, �10.1109/PRIME.2017.7974115�. �hal-01618698�

https://inria.hal.science/hal-01618698
https://hal.archives-ouvertes.fr

Hardware support for UNUM floating point arithmetic

Andrea Bocco
CEA-LETI

Grenoble, France
Email: andrea.bocco@cea.fr

Yves Durand
CEA-LETI

Grenoble, France
Email: yves.durand@cea.fr

Florent de Dinechin
INSA-Lyon

Lyon, France
Email: Florent.de-Dinechin@insa-lyon.fr

Abstract—The Universal NUMber, or UNUM, is a variable
length floating-point format conceived to substitute the current
one defined in the IEEE 754 standard. UNUM is able, through
an internal algebra based on interval arithmetic, to keep
track of the precision during operations, offering better result
reliability than IEEE 754.

This work discusses the implementation of UNUM arith-
metic and reports hardware implementation results of some of
the UNUM operators.

1. Introduction

The IEEE 754 standard [1] for floating-point (FP)
numbers [2] is widely used by the scientific community.
However, FP representation intrinsically introduces several
problems, such as: accuracy in iterative algorithms (due
to cancellation and accumulation errors), memory footprint
and energy consumption (as even low-precision applications
require long IEEE 754 FP numbers).

UNUM is an alternative representation format intro-
duced by John L. Gustafson [3]. It is a variable-length
FP format with an interval-based semantics. It is originally
meant for scientific computing, where its improved accuracy
and interval semantics can be very precious, or for embed-
ded application which may benefit from reduced memory
footprint.

However, as far as we know, the only realizations of
UNUM arithmetic have been implemented in software [3].
It is not clear if an hardware implementation of UNUM
can achieve the claimed potential. The aim of this work is
therefore to investigate such an hardware implementation
of UNUM, and in particular assess its cost compared to a
conventional IEEE 754 FPU.

After a presentation of the UNUM format and algebra
in Sections 2, implementation choices left open in [3] are
discussed in Section 3. The proposed implementation is de-
scribed in Section 4 and evaluated and compared to classical
FP in Section 5.

2. The UNUM format and algebra

As Figure 1 shows, a UNUM number is composed of
several fields. Compared to standard floating points, it has
two distinctive features:

s e

exponentsign
f

fraction

u

ubit

es-1
exponent

size

fs-1

fraction
size

es bits fs bits

Figure 1. The UNUM format

First, it is a variable-size, self-descriptive format: the es-
1. and fs-1 fields contain the bit lengths of the e (exponent)
and f (fraction) fields, minus one. The size of these two
fields is itself defined by the UNUM environment [3] (UE).
For example, when using a (4,6) UE: 4 bits for es-1 and
6 bits for fs-1, the largest UNUM numbers can count up
to 16 bits of exponent and 64 bits of fraction (more than
double-precision numbers). The smallest ones have 1 bit of
fraction and 1 bit of exponent, but are still encoded on 14
bits because of the other fields.

The second distinctive feature is the u field (or ubit,
for “uncertainty” bit). When 0, the UNUM represents a
scalar number, whose value encoded into the three fields
(s, e, f). When set, it represents an open interval defined
between the scalar value obtained when the ubit is 0, and
the one with the fraction field incremented by one Unit in
the Last Position (ULP). A u-bit of 1 can be interpreted
as “the fraction begins with the provided bits, but there are
more and they are unknown”.

Finally, a real number can also be represented as an
interval defined as a tuple of two UNUMs. Such an interval
is called a u-bound [3]. It can be open or closed at each
endpoint, depending on the corresponding ubit. The set
of u-bounds is closed under the basic operations. During
such operations, the resulting interval endpoints are rounded
toward ±∞, to ensure the property that the real result is
included in the resulting interval in spite of rounding error.

The longer-term objective of this work is to propose
a parametric hardware+software implementation of a com-
plete UNUM system that addresses the dark spots of [3] e.g.
the interval size explosion that plagues interval arithmetic.
We are interested in studying how UNUM arithmetic can
help deploying known (non-automatic) techniques to contain
this interval size explosion.

Closer to this work, the promise of lower consumption
has to be challenged against 1/ the increased power budget

978-1-5090-6508-0/17/$31.00 ©2017 IEEE

PRIME 2017, Giardini Naxos–Taormina, Italy Digital Circuits and Sub-Systems

93

Figure 2. The u-layer operator general architecture

Figure 3. The g-layer operator general architecture

of the units themselves, 2/ the need to transfer intervals
instead of scalar numbers, 3/ the additional complexity of
managing variable-size data in the memory subsystem.

3. UNUM hardware implementation choices

Gustafson organizes the computation of UNUMs into
three different layers [3]. Well-defined conversion functions
are used to move numbers among layers. The h-layer, deals
with the data format used for human interaction. We will
not address it in this work. The u-layer is where the UNUM
formats are defined, corresponds to the FP layer in existing
systems. The g-layer is the underground layer where the
operations are actually carried out (also called the scratchpad
layer). Its format is not necessary identical to the u-layer
i.e. numbers may be represented with a fixed size in the
g-layer, to match the fact that hardware is fixed. Finally,
fused operations can be embedded inside the g-layer to
compute complex functions with high accuracy [3]. Since
the UNUM actually implements an algebra of intervals, the
g-layer actually handles g-bounds [3] (the g-layer version
of u-bounds). What we will call g-numbers in this work are
g-bound endpoints.

As Figures 2 and 3 show, the u-layer and g-layer op-
erators are composed of different sub-units, interfaced each
other using u-bound and g-bound formats.

A first design choice is to expand variable-size UNUMs
into a hardware-friendly fixed-size internal UNUM format
which retains the es-1 and fs-1 fields, but pads both exponent

Figure 4. The g-number format

and mantissa with zeroes to the maximum size allowed
by the UE. The conversions between variable-size UNUMs
and this internal format involve shifts (computed out of
the es-1 and fs-1 fields), but no rounding or special case
management.

A second design choice is the g-number format adopted
for the g-bound endpoints. Our solution is depicted on
Figure 4. It is a large classical FP format, with two additions:
1/ five summary bits encode exceptional cases, in order to
avoid area and latency of decoding them from the exponent
field. 2/ an endpoint termination flag, true if the interval
endpoint is closed, false if it is open. Like for internal
UNUMs, the size of this g-number format is chosen large
enough to handle the full set of all possible UNUMs for
the chosen UE. The leading bit of the mantissa, which
is implicit in IEEE754 formats, is here explicit. A signed
exponent (instead of the usual biased one [1]) simplifies the
conversion functions algorithm.

Currently, our internal g-numbers can be subnormals,
in which case the leading mantissa bit 0. This conservative
choice will be discussed in the conclusion.

4. UNUM units architecture

4.1. Overview

Four u-bound operators (uOP) have been implemented:
an u-bound adder u add, an u-bound comparator u cmp, an
u-bound multiplier u mul, and an u-bound divider u div.

They all (except u cmp) share the same macro archi-
tecture depicted on Figure 2. The U2G sub-unit converts
the input u-bounds into g-bounds. The obtained g-bounds
are input to the g-bound operators (gOP) detailed below.
The G2U sub-unit converts the obtained g-bound back in u-
bound (not needed in the u cmp since it directly outputs the
comparison result flags computed by the g cmp sub-unit).

The uOP differ only by the gOP sub-unit (g add, g cmp,
g mul, g div). They share the same conversion functions.

Each gOP unit (except g cmp) has the same interval
processing [4] macro architecture depicted on Figure 3. The
endpoints of the two input g-bounds are used to perform
the relevant endpoint operations, rounded to the outside of
the interval. The maximum and minimum values are then
selected as the endpoints of the output g-bound.

The endpoint computations in gOP units follow a classi-
cal floating-point scheme [2]: the input mantissas are aligned
to a common format if needed, the operation (+,-,*,/) is
computed on the aligned operands, the result is normalized
and rounded, and the input exceptions [3] are handled.

The next subsections describe the g-bound operators
algorithms. The symbols used are: for a gOP unit, G1 and

Paper P101 PRIME 2017, Giardini Naxos–Taormina, Italy

94

G2 for the two input g-bounds, and Z for the output g-
bound. For a g-bound A, we note A and A as its lower
and upper endpoints. For a real x we also note 5(x) (resp.
4(x)) the rounding of x to the g-format in the −∞ (resp.
+∞) direction.

4.2. g-bound adder

The g-bound adder has to compute the sum of two g-
bound provided in input.

Z =

{
Z = 5

(
G1 +G2

)

Z = 4
(
G1 +G2

) (1)

Here neither the input multiplexing unit, nor the mini-
mum and maximum endpoint selection units are needed: the
g-bound input endpoints are connected directly to the two
endpoint computation units, and their output correspond to
the final interval endpoints.

Inside each endpoint computation unit, the final endpoint
is computed. The algorithm chosen to sum the two g-
numbers is the one shown in [2]: the two input mantissa are
aligned to a common exponent value; the aligned mantissa
are summed (or subtracted, depending on the input signs)
together; The final result is normalized and rounded; The
input exception are handled.

4.3. g-bound comparator

On intervals, the comparison A < B may be true (if
A < B), false (if A ≥ B), or “I can’t say” (in the other
cases). As a side note, for UNUM to supplant FP, all the
programming languages have to be modified to support this
third option... But this is out of the scope of this paper.

To allow for that, UNUM comparison unit has to com-
pute the six following comparison flags [3]: Lower Than
(LT), Greater Than (GT), EQual (EQ), Not Nowhere EQual
(NNEQ), Nowhere EQual (NEQ). In order to do that, it com-
pares each g-bound input endpoint with the two endpoints
of the other input. Depending how the two input g-bounds
intersect (or not) each others, the four output flags are set
or unset, also taking care of the exception values.

The hardware implementation of this function there-
fore consists of six greater-than comparators and six equal
comparators. Their results drive a combinational logic that
generates the 6 output flags.

4.4. g-bound multiplier

The g-bound multiplier has to compute the multiplica-
tion of two g-bound provided in input.

{
Z = min

(
5
(
G1G2

)
,5
(
G1G2

)
,5
(
G1G2

)
,5
(
G1G2

))

Z = max
(
4
(
G1G2

)
,4
(
G1G2

)
,4
(
G1G2

)
,4
(
G1G2

))
(2)

Fortunately, looking only at the signs allows to eliminate
two of the 4 inputs to the max and min operations. As a con-
sequence, with some multiplexing of the inputs endpoints,
it is enough to instantiate four endpoint multiplication units,
one two-input max, and one two-input min.

In addition, in 15 cases out of 16 input endpoint
sign combinations, only one multiplication per endpoint is
needed. The proposed implementation exploits this to reduce
the average power consumption.

Again, the multiplication algorithm itself is a classical
FP one [2]. In this case, there is no alignment of the mantis-
sas, the two operand are directly multiplied each other. After
that, the intermediate result is normalized and rounded.

4.5. g-bound divider

The g-bound divider has to compute the division of two
g-bound provided in input.
{
Z = min

(
5
(
G1/G2

)
,5
(
G1/G2

)
,5
(
G1/G2

)
,5
(
G1/G2

))

Z = max
(
4
(
G1/G2

)
,4
(
G1/G2

)
,4
(
G1/G2

)
,4
(
G1/G2

))
(3)

However, it is possible to demonstrate here that, looking
at the sign of the input g-bound endpoints, at most one
endpoint is a good candidate for each output endpoint.
Thanks to that, multiplexing correctly the input g-bound
endpoints to the endpoint computation units, it is possible
to remove the minimum and maximum sub-units and output
the endpoints directly.

5. Synthesis results and comparison between
UNUM and IEEE 754

In this work we have described in hardware and vali-
dated the four basic floating point UNUM operators (+,-,*,/).
The division was validated with the fixed point mantissa di-
vision described as behavioral (/ in VHDL). Unfortunately
it is unsuitable for synthesis in this context. Therefore there
will be no synthesis result for division in this submission.

The designed units were described in VHDL. They
were validated using Mentor Questasim against a reference
python library [5] on 2 · 106 pseudo-random input vectors.
Then they were synthesized using Synopsys Design Com-
piler with the CORE65LPSVT library.

As reference for the designed UNUM units, a 64bit
FPU compliant with the IEEE 754 standard is taken from
OpenCores [6]. The UE chosen is the (ess = 4, fss = 6):
it is the smallest UE that includes all double-precision
IEEE 754 FP numbers. Its g-layer operators have 64-bit
significands, and are therefore slightly more accurate than
the double-precision ones (53-bit significands).

Table 1 shows the synthesis results of the proposed
UNUM units, decomposed in their sub-units as per Sec-
tion 4. For each unit is showed the timing latency (ns), the
area (number of cell/gate instances chosen by the synthesizer
and µm2), and the power consumption (mW). For each
operator replicated inside the g-layer (g add and g mul),

PRIME 2017, Giardini Naxos–Taormina, Italy Digital Circuits and Sub-Systems

95

TABLE 1. SYNTHESIS RESULTS OF UNUM AND IEEE 754 UNITS.

Timing Area Power
Unit (ns) (cells) (µm2) (mW)
u add 16.59 41852 132398 1.89
U2G in add 3.54 16573 52429 0.46
g add 8.98 16113 50973 0.94

= 2×8057 = 2×25486 = 2× 0.47
64-bit FP add 8.23 7183 23068 1.75
G2U in add 4.07 9166 28995 0.49

u mul 16.55 83430 375472 8.37
U2G in mul 3.10 13933 62704 0.64
g mul 9.20 63157 284232 6.86

= 4×16790 = 4×71058 = 4×1.72
64-bit FP mul 8.51 17635 77086 4.53
G2U in mul 4.25 6341 28536 0.85

u cmp 4.00 20273 66512 2.75
U2G in cmp 3.38 18651 61191 2.37
g cmp 0.62 1622 5321 0.37

we also factor out the replication. This enables comparison
of g add and g mul with the corresponding IEEE-754 oper-
ators. Note however that the reported g add and g mul also
involve input multiplexers and the minimum and maximum
units. In this table we have slightly different results for
the U2G and G2U units, although these units are identical
in each operator. Obviously the synthesizer optimizes them
slightly differently in each context.

Comparing gOP and IEEE units synthesis results, the
lessons from this experiment are the following. Our g add
and g mul are comparable to the IEEE ones (slightly slower
and larger as expected, since their fraction size is 64 instead
of 53). The real cost here is the x2 and x4 area overheads
due to interval arithmetic. The observed power overhead
is limited to a factor 2 in the multiplier, as explained in
Section 4.4. The lower power consumption of the g add
unit is due to its simpler subnormal handling.

As highlighted in Table 1, gOP units individually are not
so different with respect to standard IEEE ones. The main
differences (and design complexities) are the conversion
functions inside each uOP unit. In fact they almost double its
latency. If we are to integrate an UNUM unit in a processor,
this is not acceptable. It pleads for exposing the g-layer to
the instruction set (with a g-layer register file and instruc-
tions that operate in the g-layer), and fusing operations in
the g-layer as much as possible (as a compiler optimization).
This would dilute the overhead of the conversion functions.

But then, we also need explicit conversions G2U instruc-
tions to the UNUM format. Program optimization would
attempt to use as few as possible of such instructions, typi-
cally only when spilling to external memory. Currently, such
conversions compute the smallest matching UNUM format.
For iterated computations, the fraction size tends to grow
and quickly saturates to its maximum. This will negate the
potential power saving due to transmitting UNUM numbers
stored on a few bits only. To address this problem, Gustafson
suggests starting with a small UE and growing it if needed
[3]. A more practical alternative in a hardware context would
be that the G2U conversion instructions take as argument the
number of significand bits to which to round. The issue, of

course, is more burden on the programmer. This idea has to
be evaluated on actual applications.

Let us now come back to one design choice: subnormal
handling in the g-layer. One valid alternative would be to
have only normal numbers in the g-layer. To ensure that
all UNUM numbers are representable, we would need one
more exponent bit than the maximum allowed by the UE, but
the corresponding hardware overhead would be negligible.
This would simplify and speed-up the g-layer operations,
especially the multiplication. On the other hand it would
make the conversions more complex since they would have
to handle subnormalisation. However, this is consistent with
the idea of a g-layer instruction set with as few as possible
G2U instructions.

6. Conclusion

The new UNUM format is presented with two potential
benefits. The first is safer numerical computing thanks to
its well defined interval semantics. The second is power
reduction in the data transfers thanks to a self-descriptive,
variable-size format. However, these two benefits come at
the cost of more expensive and more power-hungry comput-
ing unit. This work presents a first quantitative assessment
of this trade-off. It also discusses some of the design choices
that must be made.

The next steps are: to implement and synthesize the
g-bound divider unit core, to pipeline the designed units,
to complement the proposed UNUM units with a matching
register file, to implement a full processor, in order to be
able to compare the area and power overhead with the data
data transfer with respect to IEEE 754 standard operations.

This requires some deeper rethinking, in particular in
the control flow management instructions. For example
comparisons require three outputs and not only two as in
usual processors. This changes the usual control flow. The
programming environment must also expose finer precision
control than in classical systems.

Finally, the promises of the UNUM format remain to
be demonstrated on full-scale applications. This is the long
term objective of this research.

References

[1] American National Standards Institute and Institute of Electrical and
Electronic Engineers. IEEE Standard for Binary Floating-Point Arith-
metic. ANSI/IEEE Standard 754-1985, 1985.

[2] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI
10.1007/978-0-8176-4705-6, Birkhäuser, 2010.

[3] John L. Gustafson, “The End of Error - Unum Computing”, CRC Press,
2015.

[4] M. J. Schulte and E. E. Swartzlander, “A family of variable-precision
interval arithmetic processors,” in IEEE Transactions on Computers,
vol. 49, no. 5, pp. 387-397, May 2000.

[5] Github project of the UNUM python library https://github.com/
jrmuizel/pyunum.

[6] FPU 64 bit IEEE 754 compliant, Opencores, FPU 64 bit http://
opencores.org/project,fpu double

Paper P101 PRIME 2017, Giardini Naxos–Taormina, Italy

96

