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ABSTRACT

Dynamic scheduling of tasks in large-scale HPC platforms is nor-
mally accomplished using ad-hoc heuristics, based on task charac-
teristics, combined with some backfilling strategy. Defining heuris-
tics that work efficiently in different scenarios is a difficult task,
specially when considering the large variety of task types and plat-
form architectures. In this work, we present a methodology based
on simulation and machine learning to obtain dynamic scheduling
policies. Using simulations and a workload generation model, we
can determine the characteristics of tasks that lead to a reduction
in the mean slowdown of tasks in an execution queue. Modeling
these characteristics using a nonlinear function and applying this
function to select the next task to execute in a queue dramatically
improved the mean task slowdown in synthetic workloads. When
applied to real workload traces from highly different machines,
these functions still resulted in important performance improve-
ments, attesting the generalization capability of the obtained heuris-
tics.
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1 INTRODUCTION

The on-line scheduling of tasks in large-scale HPC platforms is a
notoriously and increasingly complicated subject to be tacked by
the scheduling systems. The need to address numerous schedul-
ing factors leads to the development of sophisticated scheduling
algorithms that are often difficult to reason about or hard to be
deployed in real systems. In this light, an appealing alternative is
to use scheduling policies to perform the scheduling. Scheduling
policies are functions that take as input the characteristics of the
tasks (e.g. processing time, requested amount of cores, waiting
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time, etc.) and they output a value that denotes the priority of the
task. These scheduling policies are often designed in an ad-hoc
manner, generally based on intuitions regarding which rules the
scheduling policies must impose to achieve a good scheduling per-
formance. One common practice of the scheduler systems is to add
a backfilling mechanism in conjunction to the scheduling policy.
The backfilling increases the utilization of the HPC platform and
consistently improves scheduling performance.

Another common practice of HPC platform maintainers is to
register information about the tasks that have been executed in
the platform. These workload logs contain several important in-
formation regarding the characteristics of the tasks such as the
characteristics mentioned above and the processing time estimate
of the tasks that was provided by the user. In light of the ever
increasing amount of information generated by HPC platforms and
the need for simple and efficient scheduling solutions, the main
question raised by this work is: Is it possible to design a simple
procedure, that employs simulation and machine learning techniques,
to extract general and simple scheduling policies from existing work-
load logs, which perform better than the current ad-hoc scheduling
policies?

In this work, we present a technique based on simulation and
machine learning algorithms to generate simple scheduling policies
represented by nonlinear functions. These nonlinear functions
effectively model the scheduling behavior of the tasks under several
distinct situations and, when used as scheduling policies, performs
a good improvement in the global scheduling of these tasks. More
specifically, this work presents the following contributions:

(1) We show that it is possible to generate efficient schedul-
ing policies in the form of nonlinear functions, obtained
from general workload characteristics, that considerably
improves the global scheduling, when compared to classi-
cal and state-of-the-art ad-hoc scheduling policies;

(2) We propose a simple simulation procedure and a machine
learning strategy, based on nonlinear regression, to observe
the effects of scheduling decisions over tasks obtained from
a workload model over distinct conditions, and to model
these effects into nonlinear functions that can be used as
on-line scheduling policies;

(3) We show that these obtained scheduling policies perform
impressively well in scheduling tasks from the same work-
load model used to observe the scheduling effects, with
performances up to 14 times better than the best perform-
ing ad-hoc scheduling performance in the most realistic
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setting evaluated (i.e. in conjunction with a backfilling algo-
rithm and considering the user estimates of task processing
times to perform scheduling decisions);

(4) We show that the scheduling policies obtained by the proce-
dure of the item 2 can generalize well, bringing competitive
scheduling performances in all evaluated real world sce-
narios, using real workload traces from highly different
HPC platform configurations.

The remainder of this paper is organized as follows: In Section 2
we present the closely related works and in Section 3 we present
the proposed strategy to obtain on-line scheduling policies. We
present the main results (i.e. the obtained scheduling policies and
its scheduling performances) in Section 4, and the conclusions in
Section 5.

2 RELATED WORK

Over the history of scheduling study, many works attempted to
tackle the problem of scheduling with a wide range of approaches,
covering from integer linear programming [3, 11] to genetic algo-
rithms [13, 20] and neural networks [1, 2]. Xhafa and Abraham [24]
present a review of recent computational models and heuristics
for scheduling in HPC platforms. While these works show good
improvements in scheduling, one aspect that these works share in
common is that they are either computationally complex or hard
to be deployed in real scenarios.

With regard to simpler scheduling policies, most of the policies
are defined by ad-hoc intuitions about how the scheduling should
behave in order to achieve good performance, from the classical
policies with simple reasoning such as First-Come, First-Served
(FCFS), Shortest Processing Time First (SPT) [19] and Longest Pro-
cessing Time (LPT) [19] to the smarter and more complex reasoning
policies such as WFP3 [22] and UNICEF [22].

One aspect of these ad-hoc scheduling policies is that they per-
form well only for some workload characteristics and HPC platform
configurations. The main difference from our work is that we use
observations over scheduling decisions results, using simulations
with several distinct workloads, to determine what are the best
combinations of task characteristics that result in improvements
over the average bounded slowdown of all tasks in the queue. The
objective is to obtain policies that generalize better over different
workloads and HPC platforms.

A noticeable phenomenon is the divergence between theory and
practice in the problem of scheduling tasks in HPC platforms [9].
With the introduction of the backfilling algorithms [16] — whose
reasoning is to allow a task with low priority to be executed before
a higher priority task if this low priority task does not delay the
higher priority one - in practice most recent systems responsible
for scheduling tasks in HPC platforms implement either FCFS with
aggressive backfilling (called EASY [16] algorithm) or the same
aggressive backfilling with some scheduling policy to sort the wait-
ing tasks. For example, SLURM job management system, a well
known scheduling system for HPC platforms [25], uses the EASY
algorithm or, alternatively, a multi-factor scheduling algorithm,
which is the aggressive backfilling with a scheduling policy defined

as a linear combination of priority factors (waiting time, size, share
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factors, etc.). The coefficients of this linear function — whose val-
ues establish the correlation between these priority factors — are
defined by the HPC platform maintainer. Other job management
systems such as TORQUE [21], PBSpro [17] or MOAB [6] imple-
ment similar approaches with their own specificities. Georgiou [12]
presents a detailed review of these job management systems. The
common point of these schedulers is that they use simple heuristics
for scheduling, that work reasonably well in a variety of situations.
Our work targets this kind of system, with the differential that,
instead of ad-hoc heuristics, we define a procedural way to find sim-
ple and efficient scheduling policies for the type of tasks normally
submitted for execution on these systems.

3 FINDING SCHEDULING POLICIES WITH
SIMULATION AND MACHINE LEARNING

We tackled the on-line scheduling problem of executing a set of
concurrent parallel tasks — whose resource requirements are known
in advance (also known as rigid tasks) — on a HPC platform. The
general idea proposed by this work is to design a simulation scheme
to observe the scheduling behavior of the tasks over several distinct
conditions and to use this observation information and machine
learning to model the observed behavior of the tasks into nonlinear
functions. These functions can then be used by production on-line
schedulers to determine — based on tasks characteristics, such as
estimated processing time, resource requirements and arrival time
— the next task to choose from the queue for execution.

3.1 Scheduling Background

We consider the HPC platform as constituted by a set of np,qx ho-
mogeneous resources connected by any interconnection topology
and the tasks arrive over time (i.e. in an on-line manner) in a cen-
tralized waiting queue. A task t is some workload which has the
following data:

o The estimated processing time e; of the task informed by
the user;

e The actual processing time r; of the task (only known after
the task has been executed);

o The resource requirement of the task, measured as the
number of cores n;;

o The arrival time s; of the task (also called release date).

Although some data sets have additional information, the se-
lected variables are available in most real workload traces, shared
using the Standard Workload Format (SWF) [10].

The performance of scheduling algorithms are mostly evalu-
ated [8] using the bounded slowdown objective function which is
defined as follows for a task ¢:

(1)

bsld = max ( Wi T )

max(rs,7)’

where wy is the time that task ¢t waited for execution (i.e. the
time that ¢ starts its execution minus the arrival time s;) and 7 is a
constant, with a typical value of 10s, that prevents small tasks from
having excessively large slowdown values. Similarly, we can define
the average bounded slowdown which is the slowdown average over
a sequence of tasks T:
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Wt + 1t

max (— 1) (2)

max(ry, 1)’

1
AVEDbsld(T) = T
| | teT
In this work, all scheduling evaluations are performed using this

objective function.

3.2 Simulation Scheme

We considered for simulation an HPC platform represented by an
homogeneous cluster compounded by np,4x resources (cores). We
defined two sets of tasks to be executed, S and Q. Set S contains
|S| tasks that are executed in any order at the beginning of the
simulation. Tasks from Q, which are used to extract information
about scheduling performance, start to arrive after all tasks from S
arrived. This scheme provides a realistic way to represent an initial
resource state of the cluster before the arrival of tasks from Q.

The first step is to determine, using simulations, how the schedul-
ing performance is affected when a task ¢ is selected for execution,
under different sets of tasks and resource states. To obtain this infor-
mation, several tuples of task sets (S, Q) were generated. For each
tuple (S, Q), we define P as a collection of random permutations
of Q and P(ty = t) as the subset from all permutations where ¢ is
the first task in the permutation. We then simulate the scheduling
execution for each pair (S, p) for all p € P. We call these pairs
(S, p) as trials of the tuple (S, Q). On each trial, each task t € Q is
submitted for execution in the order as they appear in p. We then
assign a score for each task ¢t € Q:

ijEP(to=t) AVEbsld(pj) (3)
Yy ep AVEDsld(py.)

The score denotes the impact of assigning a task ¢t € Q to execute
first, in the average bounded slowdown of all tasks in Q. The set
of scores for all tasks ¢t € Q constitute a trial score distribution of
the tasks of Q under initial resource state S. Typical distributions,
shown in Figure 1, contains most scores slightly above or below

the mean - = 31—2 = 0.031. Tasks with lower scores have a more

[
positive impact in the average bounded slowdown when they are

chosen to be executed first.

By joining the generated samples from multiple tuples (S, Q), we
generate a distribution score(r, n, s), containing the sample means
for tasks with processing time r, number of used cores n and arrival
time s. This is the central result obtained from the simulations. The
idea is that a scheduler from a HPC system will select the task from
the queue with (r, n,s) values that has the smallest score(r, n, s)
value.

score(t) =

3.3 Machine Learning Scheme

Using simulations we generate irregular score(r, n, s) distributions,
with values that can change each time a simulation is performed and
that provide good estimates only for certain tasks characteristics.
To obtain smother and more general representations of the score
distributions, we can use a machine learning technique, called
nonlinear regression, to determine a nonlinear function f(r, n,s)
that provides a good fitting to the distribution. This function can
then be later assigned as a scheduling policy. In other words, the
tasks arriving into a centralized queue of an HPC system can be
sorted in increasing order of the output of these functions.
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Table 1: Base functions chosen for nonlinear regression.

Name | Description

id id(x) =x

log log(x) =log;, x
sqrt | sqrt(x) = Vx
inv inv(x) = 1/x

Let T be the set of all tasks from all sets Q generated in the sim-
ulation phase (see Section 3.2). For a task ¢t € T,, we have a 4-tuple
(r¢,ne, se,score(ry,ny, sy )) obtained from the previously computed
trial score distributions. This 4-tuple denotes the observation of
the scheduling performance behavior of the task ¢. Given a collec-
tion F of nonlinear functions, the problem consists in finding the
function f(r,n,s) € ¥ that better fits the distribution score(r, n, s)
generated from all tasks ¢ € T,.

The functions in ¥ are functions of the form f = (c1a(r)) op:
(c2(n)) ops (c3y(s)). We call @, f and y as base functions and they
can be any of the functions presented in Table 1. Operators op; and
ops are any of the operators sum (+), multiplication (-) or division
(+). Coefficients c1, ¢z and c3 denotes the relative importance of the
base functions and are obtained by a nonlinear regression fitting.
We chose the base functions presented in Table 1 because they, in
conjunction, can express a wide variety of nonlinear relationships,
while maintaining a tangible amount of functions to perform the fit.
We employ a weighted nonlinear regression [4] procedure, which
minimizes the error:

error = 3" ((rene) - (f(resne, s0) = score(re,ne,s)f* (4)

teT,

We used the weight (r;n;) to emphasize that the fit must perform
a good estimation of the score of bigger tasks (i.e. tasks with large
r and n values). This is based on the argument that tasks that
consume a large amount of resources for a long period of time
have a potential of blocking the execution of many smaller tasks,
degrading the overall scheduling performance.

Once we perform the fit of all functions f € ¥, we use a rank
function (Equation 5) to evaluate the overall fitness of each nonlin-
ear function f to estimate the score(rs, ny,s;) for all tasks t € Tr.

1

rank(f) = i

Z lf(re,ne,se) = score(re, ne,se)ll - (5)

teT,

4 RESULTS

In this section we present the main results obtained by our work.
We first describe the simulation procedure used and the nonlinear
functions obtained with machine learning. Next, we evaluate per-
formance of the obtained functions to schedule synthetic workloads
under different conditions: (i) using actual task processing times, (ii)
user estimated task processing times, and (iii) backfilling. Finally,
we evaluated the obtained functions using real workload traces, for
the same three conditions used with the synthetic workloads.
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(b) Another example of a trial score distribution

Figure 1: Examples of trial score distributions generated by the simulation procedure for a tuple of task sets (S, Q), with |S| = 16
and |Q| = 32, in a cluster with 256 nodes. The black horizontal line represents the mean - = -L = 0.031.

Table 2: Scheduling policies used for comparison.

Name Function
FCFS score(t) = st
SPT score(t) = ry

WFP3 score(t) = —(wg 1)’ - np
UNICEF | score(t) = —w;/(logy(ny) - rt)

In the simulations to generate the distribution score(r, n, s) we
considered an HPC platform compounded by n,4x = 256 homo-
geneous cores. We used sets of tasks S and Q with |S| = 16 and
|Q| = 32 tasks. All simulations were performed using SimGrid [5].

We compared the performance of our scheduling policies with a
selection of classical scheduling and smart ad-hoc policies, used in
real HPC platforms (Table 2). Two classical and well known policies
are First Come First Served (FCFS), where tasks are scheduled by the
arrival order, and Shortest Processing Time First (SPT), where tasks
with smaller processing times are scheduled first. We also used the
WFP3 (WEFP, for short) and UNICEF (UNIL, for short) policies [22],
which are based on the processing time (r;), requested number of
cores (n;), and waiting time (w;) of the task. The reasoning of WFP
is that shorter and/or older tasks should be largely favored, while
preventing the starvation of large tasks. UNI in its turn attempts to
provide a fast turnaround for small tasks by favoring them.

4.1 Machine Learning: Obtained Nonlinear
Functions

The first step towards obtaining the nonlinear functions for usage
as scheduling policies is to produce the distribution score(r, n, s).
We start by generating permutations of the set of tasks Q, which
are used to construct the trial score distributions. Enumerating
and simulating the execution of all permutations of a set of tasks
of size |Q| = 32 is unfeasible and, therefore, we need to define a
suitable number of permutations that generate accurate trial score
distributions. For that, we selected one tuple (S, Q) and generated
the trial distributions with increasing amount of trials, repeating the
simulation procedure ten times per number of trials, and measuring
the standard deviation of the estimated scores. Figure 2 shows that
the standard deviation drops quickly with increasing amount of

o1~ 32 7~

trials. With 256 thousand trials, the resulting normalized standard
deviation was 0.02. We decided to use 256 thousand trials, since its
simulation takes less than 11 minutes using SimGrid [5] on an Intel
Xeon E5-2620v2 six-core CPU.

1.0

Standard Deviation
o o o
£y [*2} [ee]

I
N

o
=)

1 2 4 8 16 32 64 128256512
Number of Trials (Thousands)

Figure 2: Normalized standard deviations for the trial score
distributions obtained with different numbers of the trials.

After obtaining the trial score distributions, we generated the
distribution score(r, n, s) and performed the nonlinear regression
using the function leastsq() from the SciPy [14] Python library.
Table 3 shows the four best functions obtained with regard to the
Equation 5. These functions were mathematically simplified, with
a merging of the coefficients c1, ¢z and ¢3 into a single coefficient
c3/(cicz), in front of the log(s) term.

A noticeable phenomenon is their similarity, with all functions
constituted by a sum of two factors, one containing parameters r
and n and another with the dependency on log(s). Considering the
large values of the constant before the log(s) term, the functions
emphasize largely that tasks that arrived earlier (i.e. with lower s
values) should be prioritized in order to maintain lower slowdowns
(remembering that tasks with lower score value have a high sched-
uling priority). Figures 3b and 3c illustrate the strong dependency
on the submission time for all policies F1 to F4, with tasks that
arrive earlier receiving a large priority (darker colors) over more
recent tasks.

The second important factor is the size of the task, a product
of two functions f(r) and g(n) of the processing time and number
of cores used by the tasks. The policies F1 to F4 differ in the rel-
ative importance given to each of these values (r and n), with F1
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Table 3: The four higher ranked nonlinear functions ob-
tained using nonlinear regression.

ID | Nonlinear Function

F1 | log;(r) - n + 8.70 - 102 - log,o(s)
F2 | vr-n+2.56 - 10% - log;,(s)

F3 | r-n+6.86-10° - log;y(s)

F4 | r-yn+5.30 - 10° - log;o(s)

and F2 imposing a heavier penalization for increasing amounts of
requested cores n, F4 penalizing more higher processing times r,
and F3 penalizing higher values of r and n equally. Figure 3a shows
that, for a fixed value of s, higher priorities are given for tasks that
have either required smaller processing times or number of cores.

These results comply with the general intuition - in which tasks
with small processing time, small requested amount of cores and
that were submitted earlier should be prioritized — that is adopted
by most of the ad-hoc scheduling policies. The main difference is the
adoption of two separate and independent terms, one considering
only task size, and the other submission time.

4.2 Scheduling Performance: Workload Model

In this subsection we aim to answer the following question: Can the
nonlinear functions, obtained using the procedure from Section 4.1,
perform well as scheduling policies for tasks generated by the Lublin
and Feitelson [15] workload model in the following scenarios?

e Using the actual processing time r in the scheduling deci-
sions and the same number of cores n;,qx = 256 from the
simulation scheme;

e Using the actual processing time r in the scheduling deci-
sions, but increasing the number of cores to nyqx = 1024;

o Using the processing time estimate e provided by the user,
instead of the actual processing time r, to perform the
scheduling decisions;

o Using the processing time estimate e provided by the user,
but performing the scheduling using the aggressive back-
filling algorithm;

We should emphasize that in all scenarios we used the same set of
nonlinear functions, obtained using the actual processing time r of
tasks and npqax = 256 cores. Since the functions are parametrized
by the number of cores (n), arrival time (s) and processing time r
(which can be substituted by the user estimate e), they can be used in
different scenarios. The objective was to evaluate the generalization
capabilities of the generated nonlinear functions.

For all experiments, we define a dynamic scheduling experiment
as being the simulation of the execution of ten distinct sequences
of tasks from the same workload trace, using the same scheduling
policy. Each sequence contains all tasks submissions over a period
of fifteen days and we made sure that there was no overlap between
the sequences.

The on-line scheduling algorithm works as follows: tasks ar-
rive in a centralized waiting queue and the scheduler performs a
reschedule — using a scheduling policy - of the tasks present in this
queue in two distinct events: (i) when a task arrives in the queue or
(ii) when a resource (set of cores) is released and becomes available.
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When a task ¢ is selected for execution and if the requested number
of cores n; is lower than the total amount of cores available, then
n; cores are reserved for this task and they become unavailable.
These cores will become available again only when r; units of time
have passed since the start of the execution of t. If there’s not
enough cores to process t, then the scheduler waits for one of the
two rescheduling events mentioned above.

4.2.1 Scheduling using actual task runtimes r. In this experiment
we generated a task queue with characteristics from the workload
model of Lublin and Feitelson [15] and considering a HPC platform
constituted by n,,qx = 256 cores, which are the same settings used
in the simulations to generate the nonlinear functions. Figure 4a
shows the average bounded slowdown for all tasks in the set Q, with
the orange line representing the median of the average bounded
slowdown, the box limits representing the upper and lower quar-
tiles, and the whiskers representing the lowest and highest values
outside the the box limits but still inside the range of 1.5 times
the difference between the upper and lower quartiles. The figure
shows that all obtained nonlinear functions performed notoriously
well as scheduling policies, when compared to the performance of
the scheduling policies from Table 2. The nonlinear function F1
provided the best performance, followed by functions F2, F3 and
F4. This result was expected, since we used the same configuration
from the simulation phase where we captured the scheduling ob-
servations. Moreover, the functions F1, F2, F3 and F4 were the four
best fitting functions, with decreasing levels of fitness. Therefore, a
decrease in the scheduling performance in the same order was also
expected.

Figure 4b shows the results of the dynamic scheduling experi-
ments when we considered an HPC platform with ny,4x = 1024
cores. The tasks were generated using the Lublin and Feitelson
workload model configured for a cluster with 1024 cores, so that
tasks sent to the waiting queue would use between 1 and 1024 cores.
We can see that, compared to the other scheduling policies, the
obtained nonlinear functions continued to perform considerably
better, indicating that the obtained scheduling policies have some
generalization capability regarding the number of cores in the HPC
platform.

4.2.2  Scheduling using user estimated task runtimes. In this ex-
periment, instead of using the processing time r; in the scheduling
decisions, we utilize the estimated processing time e; of the task
that is previously provided by the user. The actual processing time
r; in this case is used only to simulate the execution of the task. For
the workload model used in this work, we used the user runtime
estimate model of Tsafrir et al. [23] to generate the processing time
estimates.

Traditionally the processing time estimates provided by the user
are highly inaccurate. In this light, it is expected a reduction in the
scheduling performance of all the scheduling policies, since none
of these scheduling policies are designed to handle inaccuracies in
the execution time of the tasks, and therefore the only aspect that
we can evaluate is how tolerant the scheduling policies are when
processing time estimates are introduced.

Figures 5a and 5b show the dynamic scheduling experiments
results, using estimated processing times e, for HPC platforms con-
stituted by nmax = 256 and npmax = 1024 cores. As expected, all
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Table 4: Median of the average bounded slowdowns from Subsections 4.2 and 4.3.
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| Experiment [FCFs |[WFP [UNI [SPT [ F4 | F3 F2 F1

Workload model, ny,qx = 256, actual runtimes r 5846.87 | 3630.66 | 1799.74 | 943.59 583.89 | 89.93 29.65 29.58
Workload model, ny,qx = 1024, actual runtimes r 10315.62 | 7759.03 | 4310.26 | 4061.44 || 1518.73 | 831.18 244.80 217.13
Workload model, ny,qx = 256, runtime estimates e 5846.87 | 6021.69 | 3561.56 | 4415.27 || 719.88 | 405.68 | 207.05 | 33.03
Workload model, ny,qx = 1024, runtime estimates e 10315.62 | 9713.40 | 5930.50 | 7573.58 || 2605.45 | 2065.47 | 1292.64 | 249.80
Workload model, np,qx = 256, aggressive backfilling || 842.66 654.81 | 470.72 | 623.86 329.49 | 163.74 | 45.72 32.82
Workload model, npqx = 1024, aggressive backfilling || 3018.94 | 3792.40 | 2804.38 | 3024.49 || 1571.95 | 1055.82 | 490.77 | 223.52
Curie workload trace, actual runtimes r 227.67 182.95 93.76 132.59 20.25 10.66 3.58 10.38
Anl Interpid workload trace, actual runtimes r 30.04 11.78 6.03 3.34 1.94 1.71 1.87 2.14
SDSC Blue workload trace, actual runtimes r 299.83 44.40 20.37 21.77 14.33 10.38 4.31 10.22
CTC SP2 workload trace, actual runtimes r 439.72 309.72 29.87 87.55 19.02 14.06 5.32 10.27
Curie workload trace, runtime estimates e 227.67 251.54 135.53 213.03 48.45 24.98 12.47 21.85
Anl Interpid workload trace, runtime estimates e 30.04 17.82 11.42 5.44 4.15 3.15 2.57 2.64
SDSC Blue workload trace, runtime estimates e 299.83 94.87 39.69 36.42 24.26 10.16 9.88 12.14
CTC SP2 workload trace, runtime estimates e 439.72 369.93 98.58 290.39 31.23 21.58 13.78 15.14
Curie workload trace, aggressive backfilling 59.03 49.23 24.35 35.72 24.54 23.91 18.69 | 21.73
Anl Interpid workload trace, aggressive backfilling 8.56 6.00 4.01 3.70 3.52 2.87 2.54 2.64
SDSC Blue workload trace, aggressive backfilling 36.40 17.76 13.07 10.20 9.37 10.18 9.66 11.97
CTC SP2 workload trace, aggressive backfilling 74.96 54.32 24.06 17.32 14.12 14.40 10.77 | 14.07

scheduling policies had a considerable performance degradation,
except the FCFS, which does not use task processing times. Never-
theless, the median of the average bounded slowdown generated by
policies F1, F2, F3 and F4 was between 4.94 and 107.92 times better
for the scenario with n,,4x = 256 and between 2.27 and 23.74 times
better for the scenario with n,,45 = 1024, when compared to the
best performing ad-hoc scheduling policy.

4.2.3  Scheduling using estimated runtimes and agressive back-
filling. In this experiment, we used the aggressive backfilling algo-
rithm in conjunction with the scheduling policies. In such setting,
when a rescheduling event occurs, the tasks are reordered in the
queue using a scheduling policy and then we apply the aggressive

backfilling algorithm to check if there’s one or more tasks further
back in the queue that, if selected for execution, will not delay the
first task in the queue. In this case, all the scheduling decisions (the
scheduling policy and the backfilling) are made over the requested
processing time e;, with the actual processing time r; used only to
simulate task execution. This setting is the most realistic setting we
can elaborate using tasks generated from a workload model.
Figures 6a and 6b show that the introduction of the aggressive
backfilling algorithm resulted in a overall increase in performance,
with the FCFS policy with backfilling (previously mentioned as the
EASY algorithm) taking the most advantage of the backfilling strat-
egy. Although some benefit was achieved, the obtained nonlinear
functions had the smallest benifts from the backfilling. This occurs
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Figure 5: Scheduling performance results with tasks generated from a workload model and using user estimated processing

times in the scheduling decisions.

because the better the initial scheduling, the lower the possibilities
task backfilling. Nevertheless, the performance of the obtained non-
linear functions is still significantly better when compared to the
other ad-hoc scheduling policies. For instance, the median average
slowdown for the F1 strategy was more than 12 times smaller than
the best ad-hoc policy for both 256 and 1024 core machines.

4.3 Scheduling Performance: Real Workload
Traces

We also evaluated whether the obtained scheduling policies gener-
alize well to highly different workloads types, obtained from real
workload traces, and HPC platform configurations. In this light, in
this subsection we attempt to answer the following questions:

e Can the obtained scheduling policies perform well when
scheduling a set of tasks extracted from real workload
traces and executed in a simulated HPC platform similar
to the one where the traces were obtained?

e With the same setting from the previous question, but
using the user estimated processing times e to perform the
scheduling decisions, can the obtained nonlinear functions
perform well as scheduling policies?

e Can the obtained nonlinear functions benefit from the
aggressive backfilling algorithm and perform well in the
scenario from the previous question?

We used the traces described in Table 5, which are publicly
available at the Parallel Workloads Archive [10]. To better evaluate
the generality of the obtained nonlinear functions, we chose a set
of traces from computer HPC configurations ranging from 338
to 163,840 cores, mean utilizations from 59.6% to to 85.2% and
measurements dates from year 1997 to 2011.

On each trace we collected ten sequences of tasks to perform the
dynamic scheduling experiments. Each sequence contains all tasks
submissions equivalent to a period of fifteen days. We made sure
that there was no overlap between the sequences and the on-line
scheduling algorithm works similarly to the scheduling algorithm
used in the experiments of the previous subsection.

4.3.1 Scheduling using the actual task runtimes r. Figure 7 shows
the dynamic scheduling experiments results using the actual pro-
cessing times to perform the scheduling decisions. All the obtained
nonlinear functions resulted in lower average slowdowns for all
traces, with varying levels of improvements depending on the HPC
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Table 5: Real workload traces used for evaluation of the
scheduling policies.

Name Year | # CPUs | #Jobs | Util % | Duration
Curie 2011 | 93,312 312,826 | 62.0 20 Months
ANL Interpid | 2009 | 163,840 | 68,936 59.6 8 Months
SDSC Blue 2003 | 1,152 243,306 | 76.7 32 Months
CTC SpP2 1997 | 338 77,222 85.2 11 Months

workload characteristics. More importantly, the difference between
the upper and lower quartiles (box limits) was much lower when
using the obtained nonlinear functions, meaning that the average
slowdown was much more predictable and stable, a very desirable
property for HPC systems. For all policies there were some cases
where the average bounded slowdown was notoriously high, which
occurred due to uncommon tasks characteristics in the traces.

We can also observe that, with real workload traces, F1 was
not the overall best policy. For example, the nonlinear function
F2 achieved overall best results in the Curie, SDSC Blue and CTC
SP2 workload traces, while the nonlinear function F3 achieved
an overall best result for the Anl Interpid trace. This behavior is
not unexpected, since the workload traces evaluated are highly
different from each other and from the workload generation model
used in the simulation scheme. But choosing any of the obtained
policies F1 to F4 resulted in improvements in the median average
slowdowns in all scenarios and smaller differences between the
upper and lower quartiles in most scenarios.

4.3.2  Scheduling using user estimated task runtimes e. We evalu-
ated the scheduling policies using the processing time estimate e
obtained from the respective workload log when performing the
scheduling decisions. Since the user estimates of the processing
times are often rough and inaccurate, we expect a degradation in
the performance of all scheduling policies. Figure 8 shows that the
obtained functions F1 to F4 continued to generate lower median
average slowdowns and differences between the upper and lower

quartiles for all evaluated HPC platforms. Although the best func-
tion from F1 to F4 varied depending on the platform, any of them
would result in significant performance improvements over existing
ad-hoc policies. Moreover, the ad-hoc policies had either very large
range of points or outlier points with average slowdowns much
higher than the median, which can compromise the perceived QoS
from the user point of view.

The results from this section are very impressive, considering the
nonlinear functions F1 to F4 were trained using data from a single
workload model in a simulated machine with 256 cores. These func-
tions worked well as scheduling policies for HPC machines with
highly different architectures, with up to 163,840 cores, very differ-
ent workload types, and using inaccurate estimated task runtimes
from real machine users.

4.3.3  Scheduling using estimated processing times and aggressive
backfilling. In this experiment we considered the most realist sce-
nario, where scheduling decisions are based on the user estimates
of processing times e and with the addition of aggressive backfill-
ing to reduce resource idleness. Figure 9 shows the corresponding
dynamic scheduling experiments. Once again, the FCFS policy with
backfilling (the EASY scheduling algorithm) was the scheduling
policy which benefited the most with the introduction of backfilling.
The performance results obtained for the WFP and UNI policies
also reinforces the results obtained by Tang et al. [22], since we
obtained similar comparative results for these scheduling policies,
with the exception that we evaluated them with different workload
logs.

The obtained nonlinear functions had small benefits from using
backfilling. This occurs because as tasks were already efficiently
scheduled, there were less opportunities for backfilling tasks. Nev-
ertheless, functions F1 to F4 still resulted in lower median average
slowdowns and/or lower differences between the extreme quartiles
for most scenarios, and continued to be a better general choice than
the ah-hoc scheduling policies. It is still worth noting how well our
general scheduling policies performed on these real traces of real
HPC platforms using backfilling and user estimates of processing
times.
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Figure 7: Scheduling performance results with tasks characteristics obtained from real HPC platform workload logs and using
actual processing time in the scheduling decisions.
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Figure 8: Scheduling performance results with tasks characteristics obtained from real HPC platform workload logs and using
user estimated processing times obtained from the same logs in the scheduling decisions.
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Figure 9: Scheduling performance results with tasks characteristics obtained from real HPC platforms, with the addition of
the aggressive backfilling, and using user estimated processing times obtained from the same logs in the scheduling decisions.

5 CONCLUSIONS

Due to its simplicity, scheduling policies in the form of functions
that take the tasks characteristics into consideration, plus the com-
putationally inexpensive aggressive backfilling algorithm, are an
appealing alternative for the problem of on-line scheduling of tasks
in HPC platforms. In an equally simple manner, in this work we
show that — by introducing a simulation procedure that captures
the observations of the tasks scheduling behavior under several
distinct conditions and a simple machine learning strategy to model
these observations into nonlinear functions — we can obtain sched-
uling policies that effectively capture the scheduling behavior of
the tasks and perform notoriously well, when compared to other
classical and smart ad-hoc scheduling policies.

Using tasks characteristics obtained from the workload model
of Lublin and Feitelson [15] and considering similar scenarios from
the one used to capture the scheduling observations, the obtained
scheduling policies achieved very impressive results. In the most
realistic of these scenarios (i.e. using the aggressive backfilling in
addition to the scheduling policies and using the processing time
estimates to perform the scheduling decisions), the obtained sched-
uling policies achieved medians of the average bounded slowdowns
at least 12.5 times better when compared to the best performing
ad-hoc scheduling policy.

Although we used a workload model to generate the nonlinear
functions, we could envision the same procedure being applied
to obtain custom scheduling policies for a specific HPC platform,
using its specific workload traces and architecture configurations.
Our results using the workload model indicate that these custom

policies could, in principle, generate important improvements in
the achieved median of the average bounded slowdowns in these
platforms.

However, using a workload model to capture the observations
brought some important advantages. The generalized task proper-
ties present in the Lublin and Feitelson [15] workload model, when
used to observe the scheduling behavior of the tasks in several
distinct configurations, resulted in scheduling policies that are able
to express efficient general patterns regarding to which task should
selected for execution first. In this light, the obtained scheduling
policies based on tasks from a workload model presented some
generalization capabilities, showing consistent lower median val-
ues for the average bounded slowdown and being an overall better
choice of scheduling policy in simulation experiments considering
completely different task types and HPC platform configurations.
Therefore, although it would be possible to define scheduling poli-
cies specifically for each HPC platform, as aforementioned stated,
it seems that general policies, as the ones we found in this work,
would be sufficient to efficiently schedule tasks for more specific
workload types and HPC platform configurations.

As future work, we could improve the current work in two
directions. The first would be to evaluate the scheduling policies
by deploying them on real HPC platforms and check how they
perform under real conditions. We used a simplified simulation to
evaluate the obtained scheduling policies using real traces ignoring,
for instance, network and memory bottlenecks that could appear
from interactions among task execution. Nevertheless, we believe
the simulations are a good approximation for these platforms.
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The second direction is covering a wider range of HPC plat-
forms. We plan to improve the strategy proposed by this work to
obtain scheduling policies that also address the on-line schedul-
ing of tasks in HPC platforms containing processing units with
distinct architectures such as GPUs [18] and MICs [7], where mul-
tiple implementations, aiming a specific architecture, are available
for the same task and the scheduler needs to select one of these
implementations to be executed.
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A ARTIFACT DESCRIPTION: OBTAINING
DYNAMIC SCHEDULING POLICIES WITH
SIMULATION AND MACHINE LEARNING

A.1 Abstract

We provide the source code implementation of all of the strategies
proposed in the paper as well as the source code of the simulation
experiments used to evaluate our approach so the reader can (i) gen-
erate their own distribution score(r, n, s), (ii) reproduce the nonlinear
regression to obtain the scheduling policies presented in the paper
or generate their own scheduling policies with their own generated
distribution, and (iii) reproduce the dynamic scheduling experiments
results presented in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information).

e Program: (i) Prototypes to generate the distribution
score(r, n, s), (ii) prototypes for the nonlinear function
enumeration and nonlinear regression and (iii) the dy-
namic scheduling experiments prototypes.

e Compilation: GCC

e Data set: Workload models and real workload traces ob-
tained from the Parallel Workload Archive: http://www.cs.
huji.ac.il/labs/parallel/workload/. See more details below.

¢ Run-time environment: Python 2.7

e Hardware: Various x86 or x64 CPUs.

e Output: (i) Generated distribution score(r, n, s), (ii) enu-
merated functions, their coefficients c1, ¢; and c3, and their
respective fitness score, and (iii) dynamic scheduling exper-
iments results with the four best obtained nonlinear func-
tions presented in the paper.

e Experiment workflow: See below.

e Experiment customization: See below.

o Publicly available?: Yes.

A.2.2 How software can be obtained. All source material
can be downloaded at GitHub http://github.com/hpcsched/
gen-sched-policies. The Git repository is structured in three proto-
types represented by the following directories:

e training-data-generator: Contains all the source ma-
terial to generate the distribution score(r, n, s);

e nonlinear-regression: Contains all the source material
to perform the nonlinear function enumeration and non-
linear regression;

e sched-performance-tester: Contains all source mate-
rial to reproduce the dynamic scheduling experiments re-
sults present in the paper.

A.2.3 Hardware dependencies. Any modern x86 or x64 CPU
is appropriate to execute the prototypes. It’s advised, however,
that the system has at least 6GB of RAM since some experiments
consume high amounts of memory.

A.2.4  Software dependencies. The main software requirements
are a Linux distribution (preferably Ubuntu or CentOS), the GCC C
compiler and Python 2.7. Below is presented a list with the specific
software requirements:

e Simgrid 3.13 C libraries: Publicly available at http:
//gforge.inria.fr/frs/download.php/file/35817/SimGrid-3.
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13.tar.gz. Installation instructions are available at http:
//simgrid.gforge.inria.fr/simgrid/3.13/doc/install.html;
e ScyPy Python libraries: Download and installation in-
structions available at https://www.scipy.org/install.html;
e Matplotlib Python libraries: Download and installa-
tion instructions available at http://matplotlib.org/users/
installing.html. Required to reproduce the plots of the

paper.
A.2.5 Datasets.

e Lublin and Feitelson workload model publicly available
in: http://www.cs.huji.ac.il/labs/parallel/workload/models.
html#lublin99

o Tsafrir et al. processing time estimate model publicly avi-
lable at: http://www.cs.huji.ac.il/labs/parallel/workload/
models.html#tsafrir05

o CEA Curie workload log publicly avilable at: http://www.
cs.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html

e ANL Iterpid workload log publicly avilable at: http://www.
cs.huji.ac.il/labs/parallel/workload/l_anl_int/index.html

e SDSC Blue workload log publicly avilable at:
http://www.cs.huji.ac.il/labs/parallel/workload/
l_sdsc_blue/index.html

e CTC SP2 workload log publicly avilable at: http://www.cs.
huji.ac.il/labs/parallel/workload/l_ctc_sp2/index.html

A.3 Installation

Most of the source programs of this work are coded in Python and
therefore no installation or compilation is necessary. However, the
scheduling simulation programs are coded in C and they need to be
compiled. Therefore, after the prototypes are downloaded from the
repository (see Section A.2.2) and the software dependencies are
installed (see Section A.2.4), it is necessary to perform the following
commands from the root repository of the prototypes:

$ cd training-data-generator

$ make

$ cd ../sched-performance-tester
$ make

A.4 Experiment workflow

A.4.1  Workflow 1: Generating the distribution score(r, n,s). To
generate your own distribution score(r, n, s) in the same way that
it was performed in the paper, once the source codes is properly
compiled (see Section A.3), perform the following commands from
the root repository of the prototypes:

$ cd training-data-generator
$ nohup python generate_simulation_data.py &

The nohup command starts a background Python process that
continuously generates tuples of tasks (S, Q) and simulate the tri-
als of these tuples to obtain the distribution score(r,n,s). It is
recommended to leave this process running at least for a cou-
ple of days so enough scheduling observations are performed
in the simulations. From the training-data-generator direc-
tory there are two important directories: The task-sets direc-
tory contains all the task tuples (S, Q) generated. Each file present
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in this directory is a CSV file in which each line contain charac-
teristics (runtime,#processors,submit_time) of a task. In its
turn, the training-data directory contains all of the trial score
distributions generated. Each file in this directory is a CSV file
in which each line represents the observed scheduling behav-
ior (runtime,#processors,submit_time,score) of a task. To
join all of the trial score distributions to make the distribution
score(r, n, s), perform the following command in the same direc-
tory of the previous command:

$ python gather_data.py

This command creates a file called score-distribution.csv
which contains the distribution score(r, n, s) obtained from the sim-
ulations.

A.4.2  Workflow 2: Enumerating nonlinear functions and perform-
ing the fit with nonlinear regression. To reproduce the nonlinear
regression and obtain the nonlinear functions presented in the pa-
per, from the root directory of the prototypes perfom the following
commands:

$ cd nonlinear-regression
$ python nlr_scipy_enumerate_functions.py \
score-distribution.csv

The output of this command is the enumerated functions, their
coeflicients c1, ¢z and c3 and their respective fitness value, in de-
creasing order of fitness. More details about the output can be found
in Section A.5. The score-distribution.csv file is the file that
we used to obtain the nonlinear functions presented in the paper.
This file can be changed with another distribuition score(r, n, s)
generated (see Section A.4.1).

A.4.3  Workflow 3: Reproducing the dynamic scheduling experi-
ments results. To reproduce the dynamic scheduling experiments
results presented in the paper, perform the following commands
from the root repository of the prototypes:

$ cd sched-performance-tester
$ python test_all.py

The test_all.py is a wrapper script that calls all of the Python
scrips present in the sched-performance-tester directory, per-
forming all the dynamic scheduling experiments presented in the
paper and outputs the statistics of the experiments (medians, means
and standard deviations) plus the resulting plot similar to the ones
presented in the paper. Alternatively, it’s possible to execute each
Python script present in the sched-performance-tester direc-
tory individually to perform only a specific experiment.

A.5 Evaluation and expected result

A.5.1 Generating the distribution score(r, n, s) output. The out-
put of this part is a CSV file named score-distribution.csv
containing the observations of the scheduling behavior cap-
tured in the simulations. Each line of this file contains
the characteristics and the resulting scheduling behavior
(runtime, #processors, submit_time,score) of a task. Below
is an example of the expected output:
50.0,8.0,88224.0,0.0347251055192
3.0,4.0,88302.0,0.0292281817457
7298.0,58.0,88334.0,0.0350921606481

SC’17, November 2017, Denver, Colorado USA

98.0,1.0,88350.0,0.0333329252836
27.0,9.0,88356.0,0.0307780390597
11.0,32.0,88414.0,0.0278089667369
8758.0,8.0,88421.0,0.031821251468

A.5.2  Enumerating nonlinear functions and performing the fit
with nonlinear regression. The output of this part is the enumerated
functions, their coefficients c1, ¢ and c3 and their respective fitness
value, in decreasing order of fitness. One example of a expected
output is presented below:

(-0.0155183403 x logl@(runtime)) x
(-0.0005149209 x id(#cores)) +
(0.0069596182 x logl@(submit)),
fitness=0.0052776

Note that algebraic equivalent functions can be enumerated and,
in this case, their fitness value will be equal.

A.5.3 Reproducing the dynamic scheduling experiments results.
The output of this part is the result statistics of the dynamic sched-
uling experiments performed. For one experiment, an expected
output is the following:

Performing scheduling performance test for

the workload trace lublin_256.

Configuration:

Using actual runtimes, backfilling disabled
Experiment Statistics:

Medians:

FCFS=5846.87 WFP=3630.67 UNI=1799.74 SPT=943.59
F4=583.89 F3=89.94 F2=29.66 F1=29.58

Means:
FCFS=6194.92 WFP=3716.46 UNI=2336.92 SPT=1415.13
F4=721.77 F3=593.65 F2=143.40 F1=134.93

Standard Deviations:
FCFS=3321.45 WFP=2908.26 UNI=2050.01 SPT=1539.56
F4=700.10 F3=853.46 F2=227.07 F1=264.51
Boxplot saved in file plots/model_256_r.pdf

As mentioned in the output, A boxplot similar with the ones
presented in the paper with the respective results is generated and
stored in the plots subdirectory.



