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Abstract—Information-centric networks enables a multitude of
nodes, in particular near the end-users, to provide storage and
communication. At the edge, nodes can connect with each other
directly to get content locally whenever possible. As the topology
of the network directly influences the nodes’ connectivity, there
has been some work to compute the graph centrality of each
node within the topology of the edge network. The centrality is
then used to distinguish nodes at the edge of the network. We
argue that, for a network with caches, graph centrality is not an
appropriate metric. Indeed, a node with low connectivity (and
thereby low centrality) that caches a lot of content may provide
a very valuable role in the network.

To capture this, we introduce a popularity-weighted content-
based centrality (P-CBC) metric which takes into account how
well a node is connected to the content the network is delivering,
rather than to the other nodes in the network. To illustrate the
validity of considering content-based centrality, we use this new
metric for a collaborative caching algorithm. We compare the
performance of the proposed collaborative caching with typical
centrality based, non-centrality based, and non-collaborative
caching mechanisms. Our simulation implements P-CBC on
three random instances of large scale realistic network topology
comprising 2, 896 nodes with three content replication levels.
Results shows that P-CBC outperforms benchmark caching
schemes and yields a roughly 3x improvement for the average
cache hit rate.

Index Terms—Information/Content Centric Networking, Con-
tent Caching, Fog Networking, Content Offload.

I. INTRODUCTION

Under the pressure of increasing bandwidth demand, service
providers have been trying to offload traffic away from their
networks unto local caches, either co-located with access
points from WiFi networks or small cells or base stations,
or provided by other users in an ad hoc fashion.

Peers, small cell base stations, and access points in a local
area near a user may offer storage or caching capability for
the users of the network. They may also have a wide range of
connectivity varying from very poor in sparse areas to very
rich in dense environments. To better offload content away
from the wide area networks, these nodes can cache content.
Which content should depend on how connected the node is,
and how popular the content.

Centrality [1], a concept from graph theory typically applied
to social networks, is used to find important nodes in a graph.
A high centrality score reflects a high topological connectivity

for a node in the network. Typical centrality measures are:
degree (the number of directly connected nodes), closeness
(the average length of the shortest paths between the node
and all other nodes in the graph), betweenness (the number
of shortest paths between all pairs of nodes in the graph going
through a specific node), and eigenvector centrality (a measure
of node influence in the network).

Computing centrality on the topological graph yields in-
teresting insights. Yet it fails to capture that, in network of
caches, the consumer is interested in connecting to the content,
not to a specific node. If a node is well connected, but holds
content of little value, it is not useful to the user. It has low
centrality, in the context of content delivery, despite having a
high centrality within the topological graph.

To address this, we utilize the concept of Popularity-
Weighted Content-Based Centrality (P-CBC). We introduce
here a weighted content-based centrality metric. Namely, for a
cache v, its P-CBC is calculated as a function of the number of
shortest paths which go through v for content x, the popularity
of x and the number of shortest paths from the users to x. It
is defined more formally in Section III.

To show the usefulness of the P-CBC, we propose to place
content in caches depending on the cache’s P-CBC metric.
Namely, we suggest to place content in a way that ensures
the P-CBC metric is high for most caches, so that all users
have connectivity to the most popular content, and not only
those in densely covered areas.

We evaluate our proposed P-CBC-based content placement
policy by simulations with three different realistic typologies
and three content replication ratios. The results show that
the proposed P-CBC-based content placement outperforms
typical centrality schemes, or schemes without coordination.
Our contributions can be summarized as follows:

• We introduce the concept of Popularity-Weighted
Content-Based Centrality (P-CBC), which we believe is
better suited for network of caches (such as Information-
Centric Networks) than traditional graph centrality;

• We introduce a scalable method to compute P-CBC with-
out a priori knowledge of the content placement, based
only upon replication rules and some basic assumptions
about content placement;



• We present a P-CBC-based content placement algorithm
which takes into account the number of paths to content
passing through a node to decide where to cache in the
network;

• We evaluate our algorithm through simulations which
show a significant improvement.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related work. In Section III we define
our network model and introduce our content-based centrality
metrics. Section IV shows our content placement algorithm. In
Section V, we discuss the performance evaluation and results.
Section VI concludes the paper along with insights into future
directions.

II. RELATED WORK

Content Caching has been studied for some time by the
research community, spanning a wide spectrum, including
Small Cell Networks (SCNs) [2],[3], Content Distribution
Networks (CDNs) [4] and Information/Content Centric Net-
working (ICNs/CCNs). For example in [5], distributed cache
management decisions are made in order to efficiently place
replicas of information in dedicated storage devices attached
to nodes in the network using ICN. Similarly [6] addresses
the distribution of the cache capacity across routers under a
constrained total storage budget for the network. The authors
found that network topology and content popularity are two
important factors that affect where exactly should cache
capacity be placed. [7] looked at pushing content to the edge
to anticipate network congestion, while [8] computed the
capacity of an ad-hoc network of caches. [9] looked at how
content caches are connected in relation to the users and the
servers, but did not offer a systematic approach of content-
based centrality.

In a recent work [10], game theory is exploited for caching
popular videos at small cell base stations (SBSs). Another
work, [11] proposed a game theoretic approach in ICN to
stimulate wireless access point owners to jointly lease their
unused bandwidth and storage space to a content provider
under partial coverage constraints. Both papers targeted a pric-
ing model instead of providing an efficient content placement
solution.

[12] defines a “conditional betweenness centrality” and uses
this metric to chooses which nodes will cache the content.
Socially-Aware Caching Strategy (SACS) [13] for Content
Centric Networks (CCNs) uses social information in order
to privilege influential users in the network by pro-actively
caching the content they produce. The authors detect the
influence of users within a social network by using the
Eigenvector and PageRank centrality measures.

Another centrality based caching approach in CCN is
presented in [14] where the sizing the content store is based
upon centrality. The authors exploit different centralities (be-
tweenness, closeness, stress, graph, eccentricity and degree)
to heterogeneously allocate content store at nodes instead of
homogeneous allocation. It is proposed that a simple degree
centrality based allocation is sufficient to allocate content

store. Similarly, [15] shows that a higher cache hit rate can be
achieved if content is cached at high betweenness centrality
nodes. Similar to this work, [16] considers content-based
centrality, but does not take into account the popularity of
the content.

We argue that the topological connectivity only partially
relates to the content, and there is a need to consider the
content reachability in the network not addressed in the prior
art. A well connected node in the topological graph is not
necessarily closer to end-users requesting the content. To the
best of our knowledge, we are the first to propose to compute
a content-based centrality.

III. POPULARITY-WEIGHTED CONTENT-BASED
CENTRALITY

A. System Model

1) Connectivity Model: We assume that nodes are con-
nected to a proximity network (also denoted as fog network
in some places) through local, ad hoc connections. The
connectivity between nodes is modeled by a graph G(V,Ev),
where V = {v} is the set of nodes and Ev(t) = {ejk(t) |
vj , vk ∈ V, j 6= k} is the set of edges ejk(t) modeling the
existence of a communication link between nodes j and k
at time t. We assume the time is slotted: T = (t1, t2, ...)
as a sequence of regular time-slots, where the kth time-slot
is represented as tk = [tk, tk+1). We assume that during a
particular time-slot the content placement and the connectivity
are stable. In practice, the nodes will stay connected for a
period of minutes or hours, depending on the application.

2) Caching Model: We define the set of known content as
X = {x1, . . . , xN} for a catalog of N pieces of content,
where xj is an indivisible content chunk in the network.
In the remaining of the paper, we will deal with individual
content chunks xi ∈ X , however a larger size content can
be composed of several such content chunks. The nodes can
fetch the content either from the service provider using the
operator’s infrastructure link or locally from peers in the fog,
using a low-cost connectivity.

Definition: (Empirical Content Popularity) The content
popularity is represented by the probability px = λ(l,t)

Λ(l,t)
as

a measure of the user interests for content x at location l and
time t. Here, λ(l, t) represents the number of interest for the
content x at location l and time t and Λ =

∑
Xv

λ(l, t) is the total

interests for all contents items. The content popularity can
be shared with the nodes using three approaches, (i) Offline
method by the content operator as a control message. (ii) Local
monitoring by the nodes taking into account the number of
user interests for the content, and (iii) part of content header
shared by a service provider.

B. A Popularity-Weighted Content-Based Centrality Metric

Figure 1 shows an illustration to explain the concept of
content-based centrality. Here the node v1 is on the path from
the users to the content in the server, but only for the cache
misses for v2, v3 or v4, and for the users directly connected to



v1. Therefore, for users connecting to content that is cached
at v4 or v3, v1 is not on the path and therefore has very low
centrality.

However, for cache misses at the other nodes v2, v3, v4, all
requests will go through v1 and therefore v1 will have very
high centrality as all the traffic will go towards the origin
server.

It is easy to see that the usual topological definition of
centrality should therefore be modified as it varies on the type
of content and where this content is cached. If all the nodes
v1, v2, v3 and v4 keep a copy of the most popular content,
then v1 will have low centrality for the most popular content.
Therefore the rate of request going through v1 will be low as
well. Therefore, both the content and its popularity needs to
be taken into account to compute the centrality of v1 in an
information-centric network.

Other typical node-based centrality measures such as de-
gree, closeness, betweenness and eigenvector consider the
node v2 as the highest centrality node as well, independently
of where the content is located and how it is being accessed.

Content that is popular will generate more traffic, therefore
the nodes that offer paths for this content should also have a
higher content-based centrality. Therefore we offer the follow-
ing definition of popularity-weighted content-based centrality:

Definition: the Popularity-Weighted Content-Based Cen-
trality (P-CBC) of a node v is the weighted sum of the ratio
of the number of shortest paths from all users to all content
that passes through the node v to the total number of shortest
paths between all the (user,content) pairs, where the sum is
weighted by the popularity of the content.

Formally, for a node v, and for a probability distribution
px for the content x ∈ X and if σv(u, x) is the number of
shortest paths from user u to content x going through node v
and σ(u, x) the total number of shortest paths between u and
x, then:

P-CBC(v) =
∑
u,x

σv(u, x)

σ(u, x)
× px (1)

The popularity-weighted CBC can then normalized by the
number of possible paths to all content in the network such
as:

(P-CBC(v))normal = P−CBC(v)−minw∈V (P−CBC(w))
maxw∈V (P−CBC(w))−minw∈V (P−CBC(w)) (2)

We have used a modified version of Betweenness centrality
in our definition of P-CBC, but we could use other forms
of centrality as well, such as Closeness or Eccentricity for
instance. Closeness P-CBC would measure the inverse of the
weighted sum of the path length from users to content for
instance.

C. Practical and Scalable Computation of P-CBC

Computing the proposed centrality appears to be extremely
difficult, since the catalog X may be very large, the topology
complex, and it requires knowing the content placement a
priori, whereas we would like to compute the content-based

Figure 1: An example of Content-based Centrality

centrality so as to guide the content placement. Namely we
would like an idea of how well a node connects users to the
content before we assign the content to it. Howevever, there
is a practical method to compute P-CBC at each node.

Our solution is to note that the centrality of a piece of
content does not depend on the specific chunk xj , but rather,
on the relative placement of the multiple copies of a chunk xj .
For instance, if Nm objects are not cached anywhere in the
network (and only at the origin server), their contribution to
P-CBC(v) is equal to Nm times the number of shortest paths
to the origin server going through v divided by the number of
shortest paths to the origin server, weighted by the aggregated
popularity of all the Nm objects. We do not need to know
which Nm objects are cache misses, only that there are Nm of
them and what is their expected popularity. And for these Nm
objects, only one computation is required using a traditional
computation of centrality.

In the case of these Nm objects, their popularity will be that
of cache misses, namely the tail of the popularity distribution.
For content that is cached in the network, we need a different
method.

In practice, content will be replicated in the network fol-
lowing some simple placement rules and heurisitcs. Namely,
the most popular content will be placed at the edges but the
rest of the cached content will be placed only at a handful of
nodes so as to ensure that more content is cached within the
proximity network.

More formally, a simple content placement rule is that a
fraction of the cache in each node v will be allocated to the
most popular content and this content will be at all nodes.
The rest of the cached content will be placed in at most one
node in the proximity (or fog) network so as to cover more
content. Other rules are possible, but we will demonstrate how
to compute P-CBC under this one rule for illustration purpose.

We define by α the fraction of the cache allocated to
that most popular content that is common to all node. α
corresponds to our replication policy. For a total cache size of
bv at node v (assumed here to be uniform for all nodes, but this



assumption can be relaxed), C = αbv contains content that is
common at all the caching nodes (i.e. most popular content),
while Dv = (1 − α)bv is the fraction of node caches with
unique (different) content compared to other nodes. With the
knowledge of α, we can compute the P-CBC without knowing
which content is placed at which node. The only knowledge is
the rule that C content is common and each node v contains
Dv content that is specific to it.

However, in the content placement phase, we need to ensure
that this replication rule is satisfied, by attempting to place
content such that a fraction α is replicated at all nodes, and
the rest is unique to each node.

Since the most popular content is the one that will be at all
nodes (in C) and that the next most popular content will be
spread over the caches (in each Dv for cache v), then we can
compute the centrality as:

P-CBC(v) =
∑
u,C

σv(u,C)

σ(u,C)
× pC +

∑
u,Dv

σv(u,Dv)

σ(u,Dv)
× pDv

,

pC =

C∑
i=1

pi, pDv =
1

M

MS∑
i=C+1

pi,

where we have M caches with Dv content unique to the node
v, pC and pDv are sum of the probability for content in C
and Dv respectively. This way, the popularity-based centrality
is computed per cache and not per content. This is the same
complexity as traditional centrality. Yet it gives us a metric of
the connectivity of the users to the content.

This specific replication policy of splitting the cache into
C and Dv is a simple first step, to demonstrate the feasibility
of a content-based centrality metric. We can define more
sophisticated rules that allow to compute P-CBC without
knowing the specific content placement. It nonetheless gives
us a simple tuning parameter α to know which content makes
sense to be duplicated everywhere to be accessible.

IV. CONTENT PLACEMENT ALGORITHM

The problem of content placement can be formulated as
follows:

edymaximize
s

∑
v P-CBC(v)

edysubject to
∑
x∈X

bxv ≤ bv,∀v ,

where s is content placement for the content cached in
the local network. Thus, the objective function maximizes
the content from a particular service provider available at the
nodes in the fog near the users. The constraint considers that
the node buffer where a content cached at an individual node
buffer should not exceed the maximum available threshold
space. We also consider a defined replication factor α where
for a node cache size bv , C = αbv contains content common

Algorithm 1 Content Placement Algorithm
1: INPUT: V,X , btv , ∀v ∈ V , px,∀x ∈ X,α
2: OUTPUT: s ⊆ V ,Xs, Xv ∈ X
3: Initialize s = φ, bv∗ = φ, Xs = φ
4: for each location l ∈ L, time-slot t ∈ T do
5: v∗ = arg max

v∈V
(P-CBC(v)), v∗ /∈ s

6: while (bv∗ ≤ C) do
7: bv∗ ← arg max

x∈X
(x, px),

8: Update bv∗ , Xv∗

9: Xs = Xs ∪Xv∗

10: end while
11: while (bv∗ ≤ btv) do
12: bv∗ ← arg max

x∈X,x/∈Xs

(x, px),

13: Update bv∗ , Xv∗

14: Xs = Xs ∪Xv∗

15: end while
16: s = s ∪ v∗
17: end for
18: return s

at all nodes, while Dv = (1 − α)bv contains content unique
to this node.

The P-CBC is initially computed without any content place-
ment, using the replication rule from the previous section.
Then, the distributed content placement is optimized at co-
located nodes using Algorithm 1. For a location l and time-
slot t, the node v∗ ∈ V with the highest P-CBC becomes
the delegate to locally cache content in the fog as shown in
Line 5. It initializes the fog formation by creating the subset
s and caches the most popular content while respecting the
replication factor α for its respective storage buffer (Line 6).
It continues caching content with decreasing popularity till the
storage conditions based on the replication factor α are met.
Once the storage buffer is at C or αbv , it updates the cached
content and start filling the remaining content with decreasing
popularity. The condition in Line 11 continues adding content
until the node buffer bv attains its maximum threshold to cache
content as indicated in our optimization constraint. The cached
content is updated in the fog s (Line 14) and the node adds
itself to the fog (Line 16). Similarly, in a decreasing order of
node P-CBC, the remaining nodes cache content in the fog x
with same content at αbv and different at (1− α)bv .

Algorithm 1 ensures that a maximum amount of popular
content Xs are cached in the fog which in turn maximizes our
objective function. At the same time, it yields low overhead as
it requires a node to exchange information regarding its cached
content with its one hop neighbors where the frequency of
such exchanges as well as the P-CBC computation depends
on the application requirements. Therefore, the complexity is
proportional to the amount of node neighbors or simply its
one hop degree.
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Figure 2: Average cache hit rate achieved by P-CBC on three
different topologies with three content replication ratios.

V. NUMERICAL EVALUATION

We evaluate the proposed P-CBC and our associated
caching algorithm using NS-3 where the named-data network-
ing model of the ICN architecture is implemented. Three
different topologies are extracted from a realistic large scale
trace of 2, 986 nodes (vehicles) in Köln, Germany in order to
validate the scalability of our caching approach. This allows us
to evaluate the concept of fogs on realistic topologies reflect-
ing connectivity in an urban environment. The topologies are
the time snap-shots of the network connectivity at the initial,
at 30th minutes and at 60th minutes respectively.

A. Simulation Scenario

The simulation scenario implements consumer nodes which
generate interests for a pre-known content sequence of 100
unique items following a Zipf distribution (coefficient=1),
i.e. more frequent interests for more popular content. Any
provider node already caching the content responds to the
consumer interest where interests can be routed using any
p2p routing schemes, though we use [17] as the social aware
interest forwarding scheme. We allow intermediate nodes
with uniform buffer size to perform in-network caching. We
consider 30% of the nodes as consumers, 30% as providers
(up to 900 caching nodes) nodes and the remaining nodes
with disabled caching in order to accurately evaluate the
performance of caching nodes.

We also define α as a content replication factor where for
a node buffer bv , αbv contains content which is same at all
nodes in the fog, while (1− α)bv is the buffer space for the
cached content unique to each node. The Köln 6 × 6km2

city center is divided into 36 neighborhoods, i.e. all nodes are
divided in to 36 fogs of 25 nodes in each fog.

As a first step, we randomly populate the caches of nodes
in the fog with content in order to compute each node P-
CBC. Random interests are generated. Then, we implement
the collaborative placement Algorithm 1 where the highest P-
CBC node caches the most popular content. Similarly content
are populated at the remaining nodes’ cache with decreasing
content popularity and node P-CBC score. We implement our
proposed P-CBC as well as a variant with no popularity con-

sideration in computing centrality denoted as CBC, however
content are placed using the Algorithm 1. We compare both
P-CBC and CBC with the following three different caching
approaches:
• Centrality-based Caching popular content at fog of

high Degree, Closeness, Betweenness and Eigenvector
centrality nodes. Algorithm 1 is implemented using each
scheme where the most popular content is placed at the
highest centrality node, then remaining content are placed
at the nodes with decreasing node centrality and content
popularity.

• Non-centrality based Social-unaware approach by
caching greedily popular content at all nodes in the
fog along a Least Recently Used (LRU) based content
replacement policy.

• Non-collaborative based approach where no fog is
formed between nodes and each individual node cache
indifferently. P-CBC is used to identify nodes.

The following performance metrics are used to evaluate P-
CBC and the proposed collaborative caching algorithm:
• Cache Hits: It is the average number of content responds

from the node cache, calculated as the ratio of the number
of content responses to the number of received interests
by the nodes.

• Success Rate: this is the ratio of the number of interests
responded with content or forwarded by the nodes to the
number of generated interests.

B. Simulation Results

1) Cache Hits: We computed the cache hit rate for each
scheme; (i) Fog with P-CBC, CBC without considering
popularity, Degree, Closeness, Betweenness and Eigenvector
centrality, (ii) non-centrality based fog, and (iii) no fog where
individual nodes cache indifferently. Figure 2 shows the aver-
age cache hit rate of the nodes in fog classified by P-CBC. We
compare the hit rate of our approach for three topologies from
the Cologne trace and three replication ratios (α = 25%, 50%
and 75%) to find the impact of varying underlying topologies.
It is shown that the average cache hit rate achieved differs
with respect to topology. Furthermore, we observe for all
topologies that there is an increase in the cache hit rate with
increasing content replication ratio. Thus, increasing popular
content placement results in high hit rate with no impact of
the underlying network topological connectivity.

Similarly, we implement benchmark centrality schemes by
first placing popular content at the highest centrality node
identified by each scheme. Then, following a decreasing node
centrality order, we place the content at the set of nodes
in the fog with decreasing content popularity order. Figure
3 shows the hit rate comparison where Figures 3a, 3b and
3c show result for each topology. Thus, irrespective of the
network topology, P-CBC achieves a high cache hit rate when
compared to all other approaches. It resulted in around 55%
hit rate for Topology 1, around 55− 73% for Topology 2 and
around 57− 73% for the Topology 3.
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(a) Topology 1
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(b) Topology 2

25 50 75

Replication Ratio (Percentage)

0

10

20

30

40

50

60

70

80

90

100

A
v

e
ra

g
e

 H
it

 r
a

te
 (

P
e

rc
e

n
ta

g
e

)

Popularity-aware CBC
CBC
Degree
Closeness
Betweenness
Eigenvector
Social-unaware(LRU)
No Fog

(c) Topology 3

Figure 3: Hit rate comparison for centrality-based (P-CBC, CBC (no popularity), Degree, Closeness, Betweenness, Eigenvector),
non-centrality based or social-unaware (LRU) and non-collaborative (no fog) based caching.
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Figure 4: Average success rate achieved by P-CBC on three
different topologies with three content replication ratios.

P-CBC is followed by simple CBC where it resulted in
similar performance for 25% and 50% replication ratio where
the similar performance is due to relatively less amount of
popular content commonly cached at nodes. However, P-CBC
outperforms it for a cache replication ration of 75% since the
amount of popular content in the cache are increased. All
the centrality schemes resulted in substantially higher hit rate
than the case without non centrality (social-unaware). For all
three topologies, this resulted in around 10% hit rate with a
maximum of 18% cache hit rate for Topology 1. This validates
the fact that P-CBC not only works better for the case when
more popular content are common between caches but also
outperforms other schemes in the case of less amount of
popular contents commonly cached at nodes in a fog.

Figure 3 also depicts the result by implementing a case
where there is no collaboration between the caching nodes,
namely no fog scenario. It resulted in slightly better perfor-
mance than the case of non-centrality based caching, though
it achieves a lower average hit rate where it merely achieves
around 20% cache hit rate. Thus, the overall comparative
analysis of cache hit rate on three different topologies and
three content replication ratios reveals that P-CBC achieves
a better hit rate. It is because it consider jointly the number
of paths to content and its popularity instead of considering
nodes as a content-centric approach.

2) Success Rate: We evaluate the success rate as the
content responded or forwarded by the nodes in the Fog. In
Figure 4, we show the average success rate achieved by the
nodes in the Fog classified using P-CBC. Similar to the hit
rate, we analyze three topologies and three replication ratios.
Each topology resulted in a different success where Topology
3 shows the best performance with more than 60% success rate
for all replication ratios, followed by Topology 1 and Topology
2, thus suggesting that topology impacts performance. Another
observation is that the success rate results from all topologies
follow similar trend, thus validates the robustness of P-CBC
when applied to different topologies. We see in the case of
Topology 1 and 2 that by varying the replication ratio, a slight
increase in the success rate is achieved from 75% to 50%
replication ratio. This suggest that for a node, it is optimal to
constantly keep more amount of popular content.

Figure 5 shows a comparative analysis of the success rate
achieved by different caching approaches. We observe that
overall, P-CBC outperforms all other approaches, yielding an
average success rate of up to 68, 67 and 70% for Topology 1,
2 and 3 respectively.

An interesting behavior is seen in the case of Topology
1 (Figure 5a) where fogs based on P-CBC, degree and
betweenness centrality have similar success rate, though their
score differs between replication ratio. For 25% replication
ratio, both degree and betweenness centrality show a higher
success rate (60%) than P-CBC, though for 75% replication
ratio, P-CBC dominates both of them. We investigated this
behavior and found that since both betweenness and degree
are node-centric metrics, and therefore better connected nodes
at the relative center of the topology and are acting as
bridge between large number of nodes, thus resulting in a
higher success rate. This underlies the fact that content-based
centrality is still related to other centrality metrics, especially
in situations with poor caching performance.

Nevertheless, nodes classified by our approach outperform
them when more popular content is placed in the fog, despite
the possibility that such nodes might not be well placed in the
network.
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(a) Topology 1
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(b) Topology 2
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(c) Topology 3

Figure 5: Success rate comparison for centrality-based (P-CBC, CBC (no popularity), Degree, Closeness, Betweenness,
Eigenvector), non-centrality based or social-unaware (LRU) and non-collaborative (no fog) based caching.

On the other hand, the non-centrality based socially-
unaware resulted in the poorest performance in all topolo-
gies. Similarly, in the case without fog formation, i.e. non-
collaboration resulted in poor performance with an overall
success rate of less than 20%.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Our results show that content placement in ICN can be
efficiently managed by forming fogs allowing nodes to collab-
oratively cache at high content-based centrality nodes. “Con-
tent” based centrality outperforms the node-centric approach
to classify nodes for distributed caching.

In this paper, we targeted the content placement problem
at caches near the network edge as in a fog network. To do
so, we suggest to exploit graph properties to identify the suit-
able nodes for caching, however, unlike typical node-centric
centrality scheme, we first presented a new popularity-aware
content-based centrality scheme, P-CBC, where the content
popularity and the number of paths to all content, instead of
nodes, counts towards the node centrality. Then, we proposed
an algorithm for collaborative content placement in the fog,
where the nodes place popular content at high centrality nodes,
followed by placing the remaining content with decreasing
popularity at nodes with decreasing centrality score, according
to a replication rule which allows to compute our proposed
centrality without knowing the actual content placement. The
benefits of P-CBC are evaluated via simulations on 2, 986
nodes, three different topologies along varying three content
replication levels. Results show that nodes in the fog based
on our centrality outperforms, in terms of cache hit rate and
success rate, existing centralities, non-centrality based and
non-collaborative caching approaches.

Future work includes moving to dynamic topologies and
study the impact of mobility on P-CBC. We plan to use it
for content retrieval where the user interests are forwarded to
high centrality nodes.
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