
HAL Id: hal-01620360
https://inria.hal.science/hal-01620360

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Partial Replication in Distributed
Transactional Memory

Diogo Lima, Hugo Miranda, François Taïani

To cite this version:
Diogo Lima, Hugo Miranda, François Taïani. Simulation of Partial Replication in Distributed
Transactional Memory. 2017 Wireless Days Conference , Mar 2017, Porto, Portugal. pp.54 - 59,
�10.1109/WD.2017.7918115�. �hal-01620360�

https://inria.hal.science/hal-01620360
https://hal.archives-ouvertes.fr

Simulation of Partial Replication in Distributed
Transactional Memory

Diogo Lima1,2
1 Escola Superior de Hotelaria
e Turismo do Estoril, Portugal
Email: dlima@lasige.di.fc.ul.pt

Hugo Miranda2
2 LaSIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Email: hamiranda@ciencias.ulisboa.pt

François Taı̈ani3
3 Université de Rennes 1, IRISA,

ESIR, Rennes, France
Email: francois.taiani@irisa.fr

Abstract—Distributed Transactional Memory (DTM) is a con-
currency mechanism aimed at simplifying distributed program-
ming by allowing operations to execute atomically, mirroring the
well-known transaction model of relational databases. DTM can
play a fundamental role in the coordination of participants in
mobile distributed applications.

Most DTM solutions follow a full replication scheme, in spite
of recent studies showing that partial replication approaches
can present gains in scalability by reducing the amount of data
stored at each node. This paper investigates the role of replica
location in DTMs. The goal is to understand the effect of latency
on the DTM’s system performance in face of judicious replica
distribution, taking into consideration the locations where data
is more frequently accessed.

I. INTRODUCTION

To mitigate mobile devices’ computing power limitations,
applications can delegate their most computing intensive tasks
on external servers, creating mobile distributed applications.
Such applications need to mediate the interaction between a
variety of actors, efficiently managing and exchanging state.
On the other hand, the system can benefit from a replica
deployment in proximity to the mobile devices, which allows
reducing latency from data access. This implies the usage of
concurrency control mechanisms that guarantee a safe access
by different actors to the same dataset.

Concurrent programming is a challenging task. Developers
need to guarantee consistent access to information by mul-
tiple threads or processes. The traditional solution to ensure
such safe access relies on using locks or semaphores, which
carry a number of well-know software engineering challenges.
Transactional Memory is a concurrency mechanism aimed
at simplifying the development of concurrent applications by
allowing operations to execute in an atomic way. Analogous to
database transactions, transactional memory defines a specific
sequence of tasks that are considered a transaction, that either
commits (and all changes produced by the tasks become visi-
ble) or aborts (and no change is visible). Originally proposed
as a hardware architecture [1] for shared memory access,
Transactional Memory was later extended to address paral-
lelism in multiprocessor systems, being named as Software
Transactional Memory (STM) [2], [3].

Distributed Transactional Memory (DTM) [4]–[11] has
been motivated as an extension of STM to distributed sys-
tems, addressing new issues such as data replication and

node failure. It provides an additional abstraction level to
the programmer, where traditional distributed programming
details (e.g. socket management or data serialization) become
transparent and integrated with concurrency in a unique and
coherent approach. Most of the existing DTM solutions follow
a full replication scheme where all nodes in the system keep a
replica of every object. However, recent studies show that the
reduction of data stored at each node provides to the partial
replication approach additional scalability gains [9].

Motivated by recent commercial applications, in particular,
large scale, augmented reality games (i.e Ingress and Pokemon
Go), this paper assumes mobile distributed applications run-
ning over multiple servers and client mobile devices, sharing
data. In such scenario, servers and the client mobile devices
are expected to be geographically dispersed among different
regions. Intuition suggests that, as participants may be more
geographically dispersed, the latency and message concur-
rency to validate and commit transactions between a group
of nodes increase, hampering system performance.

This paper evaluates the role of latency in partial replication
in the context of DTM. In particular, it shows that the system’s
performance is affected by the node partitioning policies
applied.

II. RELATED WORK

Implementing a transactional memory framework requires a
considerable software engineering effort, for example in defin-
ing how applications can declare the scope of transactions. In
most systems (e.g. [8], [9], [12]–[14]) byte-code is rewritten,
changing the underlying virtual machine or compiler to in-
terpret the “@Atomic” method annotation that delimits the
transactions. Transactional code usually provides methods to
start, abort and commit transactions, maintaining isolation, as
found in relational databases. Libraries are extended to include
a validation algorithm, needed to decide which concurrent
transactions to commit and which to abort. This algorithm
must provide an appropriately consistent view of the shared
memory to all participants, either static or mobile. There are
several alternatives to guarantee such consistency.

A. Single-copy Model

In single-copy model [5], [11], there is only one writable
copy of each object in the system and transactions are serial-

ized so that there is at most one manipulating those objects
in each moment. This can be achieved by preventing other
transactions to access data through distributed queuing.

Unfortunately the latency to acquire the objects of each
transaction may be an issue. Moreover, the single-copy model
is inherently non fault-tolerant: the failure of an object’s owner
means the object becomes unreachable to the rest of the
system, at least until some root node assigns a new owner to
the object and recovers its state from some previous version.

B. Multiversioning Models

Multiversioning models trade off the complexity of detect-
ing collisions with the latency in the execution of read-only
operations. Multiversioning consists in maintaining different
versions of each data item and can be achieved by either
having different versions of the same object on different
nodes (replica-based), or by keeping a history of each object’s
updates (history-based).

1) Replica-based multiversioning: To maintain a consistent
order over committed transactions, the Distributed Multiver-
sioning (DMV) system [7] requires each transaction to obtain
a unique system-wide token at the beginning of its execu-
tion. At commit time, a writing transaction follows a voting
protocol where all nodes agree before the transaction is able
to successfully commit. Different versions of the same data
item arise from the fact that the voting nodes explicitly delay
the application of remote transactions updates to decrease the
chance of invalidating the snapshot of the currently active local
read-only transactions.

However, due to the system wide token acquisition at the be-
ginning of each transaction execution, transaction serialization
still exists in DMV. The token allows a consistent transaction
order, but represents a considerable overhead and transaction
serialization hampers concurrency of the DTM system.

2) History-based multiversioning: History-based multiver-
sioning was originally proposed in the context of the JVSTM
framework [12] to provide concurrency control for multipro-
cessor computers. JVSTM follows a multi-version concurrency
control scheme using the versioned box (VBox) abstraction
that keeps a history of values for each object. The VBox
is a container that keeps a sufficient number of versions of
each transactional data item so that read-only transactions are
never aborted. Each version contains the changes made by
successfully committed transactions and the timestamp of the
corresponding transaction.

This scheme was extended to the context of DTMs in
the Dependable Distributed Software Transactional Memory
(D2STM) system [4], built on top of JVSTM. D2STM was
motivated as a fault-tolerant DTM, following a fully replicated
scheme. All data items are replicated to all nodes and updating
transactions are validated through a non-voting certification
scheme, where both the write-set and read-set of a transaction
need to be atomically broadcast to all other nodes. Since the
authors expect the read-set to be larger than the write-set,
the D2STM protocol encodes the transaction’s read-set using
Bloom Filters to reduce the communication overhead. The

read-set is validated against transactions that have committed
since the beginning of the committing transaction, and update
transactions are validated once their broadcasts are delivered.

C. Clock Validation
The DTM framework HyFlow [8] introduced a new vali-

dation algorithm, called Transactional Forwarding Algorithm
(or TFA) [15], based on the happened before ordering through
the use of Lamport’ logical clocks [16].

In TFA each node maintains a local clock which is incre-
mented whenever a local transaction successfully commits.
This solution also relies on object versioning. However, in
contrast with other approaches, objects’ versions are based
on the value of the node’s local clock at the time of the last
update of that object instead of a globally defined clock. When
an object is accessed in the scope of a transaction, the object’s
version is compared to the transaction’s starting time. If the
object’s version is newer than the transaction’s starting time,
the transaction is aborted and restarted as it indicates that some
other transaction using the object has committed.

Clock values are included in all messages sent by a node.
If a remote node’s clock value is older than the received value
in a transaction request, the remote node advances its clock
to the newer value. Instead, if the local node observes in the
reply message that the remote node’s clock is newer, the local
node must execute an early validation, called the transactional
forwarding operation. This operation evaluates if none of the
objects in the transaction’s read-set have been updated after
the transaction’s starting time. If true, the operation advances
the transaction’s starting time and the latter can proceed.
Otherwise the transaction is aborted and restarted.

III. REPLICATION IN DTM
Replication of objects in DTMs can serve two purposes: to

improve availability in the presence of faults and to improve
performance by making the data locally available at the
interested nodes.

A. Full Replication
All the solutions discussed in Section II-B follow a full

certification-based replication scheme: all nodes in the system
keep a replica of every object and transactions are locally
executed, synchronizing objects state with the other replicas
at commit time. This synchronization can be achieved either
through a voting or non-voting certification. As observed in
the DMV system [7], in the voting certification approach, a
committing transaction needs to broadcast its updates to the
other nodes and will only commit if they vote favorably.

On non-voting approaches however, a communication round
is saved as the decision can be taken locally and therefore,
replicas do not need to reply to the transaction’s issuer. The
need to vote is exchanged in a trade-off with the amount
of data provided in the first round [17]. In particular, the
transaction owner must provide both the transaction’s write
and read sets. The D2STM [4] follows a variant of this non-
voting certification-based replication, where bloom filters are
used to reduce the size of broadcasted messages.

Since the non-voting certification approach allows replicas
to independently validate transactions and every data item is
replicated among all nodes, the failure of nodes in the system
does not harm consistency. However, coordination of all nodes
imposes a considerable communication overhead. Namely,
broadcasting transactional read/write sets is inherently non-
scalable, as messages broadcasted grow quadratically with the
number of nodes present in the system [6].

B. Partial Replication

In partial replication, the full application’s dataset is sub-
divided into n partitions and each partition is replicated in
a group of m nodes. Partial replication is more scalable as
committing transactions only need to reach the groups storing
data items accessed in the transaction.

To the best of our knowledge, SCORe [18] is the only partial
replication protocol developed for DTM systems. SCORe
combines the Two Phase Commit (2PC) algorithm [19] with
Skeen’s total order multicast [20] to form a commit protocol
that ensures that only the replicas that maintain data accessed
by a transaction participate in its outcome. SCORe relies on
logical clocks where each node keeps two scalar timestamps:
the commitId which is the timestamp of the last update
transaction committed on that node, and the nextId which
indicates the next timestamp the node will propose for a
remote commit request.

At commit time, the transaction issuer triggers a 2PC
instance by total order multicasting a validation message to
all involved replicas. Every replica that receives this message
validates the transaction by attempting to acquire exclusive and
shared locks for the transaction’s write and read sets, respec-
tively. If the validation is confirmed, the nextId is piggybacked
on the reliably unicasted vote message and the transaction is
locally stored in a pending buffer. The transaction issuer then
collects all vote messages (aborting the transaction in case one
of the contacted node does not respond within a predefined
timeout), sets the transaction’s final commit timestamp as the
maximum of the proposed nextId and multicasts back the de-
cide message with the transaction’s outcome and the commitId.
If the outcome is positive, the receiving replicas buffer the
transaction in a queue of stable transactions. Otherwise, the
transaction is aborted and the previously acquired locks are
released. A transaction T is finally committed only if there
are no other transactions in both pending and stable buffer
with a timestamp less that T’s commitId.

However, the distribution of the data items by replication
groups follows a pseudo-random algorithm and therefore does
not exploit data and node partitioning to its full extent. For
example, as participants are more geographically disperse
within a group, the increased latency and message concurrency
induced to validate and commit transactions may hamper
the system’s performance. By exploring more judicious dis-
tribution of replicas such as the locations where data are
more frequently accessed, partial replication can more actively
contribute to improve DTMs’ performance.

Geographical distribution has already been addressed in dis-
tributed transactional SQL databases such as CockroachDB 1,
where the user is able to define replica locations. Cock-
roachDB builds its SQL database on top of a transactional
and strongly consistent sorted monolithic key value store map.
Each record on that key value store represents a column value
in a row of a SQL table, and consists on a triplet <key;commit
timestamp; value>. The key value store is then partitioned
into continuous ranges that are distributed among replicas,
guaranteeing that each range is replicated in at least 3 replicas.

However, replica location in CockroachDB is based on the
types of failures a user wants to tolerate, e.g. replication in
different servers within a datacenter to tolerate power failures,
or different servers in different datacenters to tolerate large
scale network or power outages. In opposition, we aim at
using replica location to reduce latency and improve system
performance by storing data in partial replication groups
formed in proximity to their users.

IV. EVALUATION

To understand the impact of replica geographical distri-
bution in partial replication DTMs, we prepared a simple
scenario where group replicas are either kept in the same
server or interconnected via an Ethernet network.

For the experiments we assume a vehicle traffic scenario,
where two adjacent regions of a city are managed by a pair
of traffic controllers, thus creating a distributed application
with 4 processes. Each region is further divided in 3, 30, 50
or 500 locations. The (simplified) role of these controllers
is to receive location advertisements from vehicles and to
consistently move them from one location to another, ensuring
that the number of vehicles in the system is constant.

In the experiments, each process simulates 10000 vehicle
location transfers. This scenario is modeled in a DTM appli-
cation with partial replication by associating the data of each
region to an integers array, managed by a partial replication
group. Each element of the array represents the number of
vehicles in one of the locations of the region associated to the
array. Therefore, DTM transactions consist in transferring one
unit between array elements, knowing that a transfer between
elements of the same array represents a transfer between two
locations of the same region (i.e. partial replication group). The
implementation does not repeat aborted transactions. This is
in contrast with the expected behaviour of a realistic system
but provides relevant evaluation metrics.

Experiments were conducted on two servers. One (hereafter
named Nonio) has a Dual-Core Intel Xeon 3060 CPU at
2.4GHz and 2GB of RAM. The other (Pati) is a Quad-
Core Intel Xeon X3370 CPU at 3.0GHz and 8GB of RAM.
Hardware heterogeneity is not considered to negatively impact
the results given that results only consider the overall sys-
tem performance. Servers run a Debian GNU/Linux v6.0.10
operating system and a Java Virtual Machine v. 1.6.0 26.
Evaluation was conducted using the ReDstm framework [9]

1https://www.cockroachlabs.com/

with the SCORe partial replication multi-version algorithm.
JGroups [21] provides the underlying group communication
service. All simulations equally divided the 4 processes by
the 2 servers. Two distinct combinations can be devised. These
experiments are named in the form (G G), where G will list
the name of the servers hosting processes for partial replication
group G. Following this rationale, in NP NP experiments, each
partial replication group process is run on a distinct server.
Correspondingly, in NN PP experiments, each server will host
the two processes of the same group. NN PP experiments are
expected to reflect a lower latency given that the processes
of each partial replication group can communicate using in-
memory networking features of the Linux kernel.

Throughout this evaluation, we are interested in comparing
the system’s performance in the presence of distinct probabil-
ities of a transaction staying in the issuer’s partial replication
group. Two configurations were simulated:

70-10 With 70% probability, a transfer will be between
two locations managed by the issuer’s partial group
controller, 20% of the transfers are made between
locations of different regions and 10% between lo-
cations not managed by the controller.

10-70 There is only 10% probability of a transfer being
between two locations managed by the issuer’s par-
tial group controller, and 70% between locations
managed by the other partial group controller. The
value of 20% is kept for transactions made between
locations of different regions.

All results presented are the average of 10 simulations,
performed in comparable conditions. Plot’s error bars show
the distance of the average to the standard deviation. It should
be noted that the uneven distribution of transfers performed
by the controllers will force each process to interact more
frequently with one of the partial replication groups (regions).

A. Commit Ratio

The proportion of transactions that successfully committed
is depicted in Fig. 1. The simulations confirm that the through-
put improves as the number of available location increases.
From 30% of committed transaction with 6 possible locations
to 98% with 1000 locations. Having more locations means
that there is a higher probability that transactions do not ran-
domly select the same objects, avoiding transaction conflicts.
Moreover, all simulations converge to a similar throughput in
respect to the worst and best conflicting scenarios (with 6 and
1000 locations, respectively) meaning that, at those extremes,
is the system’s concurrency level the major factor impacting
performance. However, in the more balanced scenarios of 60
and 100 locations results are more dispersed. The commit
ratio of both 10-70 tests are near identical, however they
remain consistently above the NN PP 70-10 test with around
2,5% more committed transactions and more 4% than the
NP NP 70-10 configuration. This result looks, at first glance,
surprising as suggestion would indicate that the system would
benefit from keeping most of its transactions in the same
partial replication group with lower latency.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

C
o
m

m
it

 R
a
ti

o
 (

%
)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 1. Ratio of committed transactions upon the number of locations
available.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 10 100 1000

M
e
ss

a
g

e
s

S
e
n
t

(x
1

0
0

0
)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 2. Total number of messages sent.

B. Network Traffic

In order to understand the previous result, we further
investigated the total number of messages sent by the system
and the average waiting time for a node to collect all validation
responses for a committed transaction.

Fig. 2 depicts the volume of messages sent by the sys-
tem. Nodes can send the following type of messages: data
read request, data read return, transaction validation request,
transaction validation vote, and transaction final decision. We
observe that, for the 70-10 configurations, as the concurrency
level drops by having more locations available for transactions,
the volume of messages sent drops as well. This can be
explained by the fact that, with higher concurrency levels, mul-
tiple transactions access the same object. Once one commits,
all the remaining abort and extra read requests and responses
are created in the system. In opposition, as more locations are
available, it is more likely to have non concurrent transactions
that already have the most up-to-date data version locally, thus
preventing the need to send additional requests.

On the other, the 10-70 configurations show the exact
opposite behaviour. In fact, as the number of locations increase
the volume of messages sent also increases. This can be
explained by the fact the majority of the transactions issued
manipulate data that the originating node does not have, so

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 10 100 1000

A
v
e
ra

g
e
 W

a
it

in
g

 F
o
r

V
o
te

s
Ti

m
e
 (

m
s)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 3. Average waiting time to receive all validation votes for committed
transactions.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

Tr
a
n
sa

ct
io

n
s

/
S

e
co

n
d

Nº Locations (log scale)

NNPP10-70
NPNP10-70
NNPP70-10
NPNP70-10

Fig. 4. Average test duration. Continuous lines represent transaction
throughput and the dashed lines represent their respective commit throughput.

read requests are necessary in the majority of the transaction
to obtain that data from the other partial replication group.
This is confirmed by the 2/1 ratio of messages sent from the
10-70 to the 70-10 tests: each transaction manipulates two
objects, thus the 10-70 scenario need to read request those two
objects before all other transaction related messages. In each
configuration, the volume of messages sent remains similar for
the 60, 100 and 1000 location scenarios, which is expected, as
the workload (i.e., the number of transactions) remains similar
for all simulations. The exception is the worst concurrency
level scenario (6 locations available) where the number of
messages increase 100 000 (i.e. 2.5 messages per transaction)
for the 70-10 tests and decreases around 75 000 messages
for the 10-70 tests (i.e. 1.9 messages per transaction). This
can be explained by having more conflicts, which lead to a
greater number of aborts. In the case of the 70-10 tests, this
results on requiring more messages to obtain the most up-
to-date versions of two conflicting objects manipulated in a
transaction. For the 10-70 tests, the volume of read requests
remains constant, however the volume of messages sent is
reduced by having fewer validation and commit phases since
nodes are able to detect early that their objects are already
outdated and that the respective transaction must be aborted.

Nevertheless, Fig. 2 proves that the volume of message sent
is not directly influencing the system’s throughput.

Fig. 3 depicts the average waiting time for a node to collect
all validation responses for a committed transaction. Recall
that the SCORe algorithm relies on a voting certification to
validate transactions. When taking in consideration the group
composition, we can observe that NN PP configurations are
on average 0.5 ms faster than the NP NP configurations. This
result evidences the penalty of latency in partial replication
groups. On the other hand, the waiting vote period for the 70-
10 configurations remain consistently below the 10-70 tests.
This result emerges as the consequence of the increasing
network traffic induced in the 10-70 scenarios.

However, Fig. 3 also does not explain the counter intuitive
commit ratios obtained in Fig. 1 as waiting for a longer period
of time to validate a transaction would theoretically increase
the probability of having concurrent transactions modifying
the accessed data items and leading the transaction to abort
due to an inconsistent data view.

C. Transaction and Commit Throughputs
The transaction throughput is defined by the ratio of transac-

tions issued divided by test duration. The commit throughput is
the ratio of committed transactions per test duration. Results
are depicted in Fig. 4. Each scenario is represented by an
unique symbol, while the continuous lines represent their
transaction throughput and the dashed lines their respective
commit throughput.

Fig. 4 shows that transaction throughputs tend to stabilize
as the number of available location increases, indicating the
presence of an upper bound that can not be surpassed by
the simulations in respect of the number of transaction issued
per second. On the other, commit throughputs increase with
more locations available, as expected, until converging to the
transaction throughput upper bond. As observed in Fig. 1,
this is explained by the 98% commit ratio for the more
concurrency favourable 1000 location test case, where almost
every transaction issued is a committed transaction.

However, Fig. 4 clearly distinguishes 70-10 from 10-70
configurations. The 70-10 configuration is able to respectively
issue and commit 20 more transactions per second than the
10-70 configuration on average. This means that the same
workload (40 000 transactions) takes approximately an ad-
ditional 150 seconds to be completed in the 10-70 than in
the 70-10 configuration, indicating that the latter is preventing
concurrency in the system. In fact, as shown in Fig. 1,
the 10-70 configuration is able to commit more transactions
in absolute number, however the system’s performance is
hampered since the same workload takes 30% more time
to executed in such configuration. Thus, the system does
benefit from locality, i.e. keeping group replicas close, since
configurations that heavily rely on the network have smaller
transaction and commit throughputs.

V. FUTURE WORK

The evaluation showed that replication location directly
influences partial replication DTM’s performance. Both the

number of transaction and successfully committed transaction
throughput improve when members of the same partial repli-
cation group have lower latency. However, such model brings
additional research challenges. A first research challenge to be
addressed in the scope of this work consists in extending the
DTM interfaces to efficiently and dynamically map resources
on partial replication groups.

A second research challenge consists in optimizing the
underlying group communication service, benefiting from the
partial groups defined at the DTM level. A technique that will
be pursued consists in having different groups sharing com-
mon resources, a technique previously named Light-Weight
Groups (LWGs) [22]. The idea is to create a light-weight
group abstraction where many groups that share common
characteristics are mapped to the same underlying virtually
synchronous group. LWGs would lead to a two-tier group
membership, where full and partial membership groups can
share resources, reducing the number of messages delivered
to each member.

Moreover, this two-tier architecture would also be helpful
for highly dynamic applications where the objects manipulated
and the membership suffer frequent changes, such as in mo-
bile applications. Membership change is a time and resource
consuming operation, likely to impact performance due to
its mandatory definition of synchronization points. LWGs are
expected to play an important role as well as they are able
to mitigate the impact of changes in the upper tier of group
membership, hiding them from the lower tier, which would
include all the participants and where membership changes
negatively impact the overall system performance.

VI. CONCLUSION

This paper discusses the role of replica location in DTMs,
in order to understand if a judicious distribution of the
replicas, that takes into consideration the locations where
data is more frequently accessed, can contribute to improve
DTMs’ performance. The paper evaluated the role of node
and data distribution in partial replication. In particular, we
observed that the system’s performance is affected by the
replica location, where configurations that heavily rely on the
network have smaller transaction and commit throughputs.

Results show that locality plays a major role in a trans-
actional systems, and that it should be exploited at group
configuration level. A possible solution that we intend to
explore is the possibility of implementing the concept of Light-
Weight Groups in the underlying communication service in
order to optimize groups membership operation costs.

ACKNOWLEDGMENT

Work described in this paper was partially supported by
Fundação para a Ciência e Tecnologia, Portugal, under project
PTDC/EEI–ESS/5863/2014 - doit.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
vol. 21, no. 2, pp. 289–300, May 1993.

[2] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software
transactional memory for dynamic-sized data structures,” in Proc. of
the 22nd Annual Symposium on Principles of Distributed Computing
(PODC’03), 2003, pp. 92–101.

[3] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for im-
plementing software transactional memory,” SIGPLAN, vol. 41, no. 10,
pp. 253–262, Oct. 2006.

[4] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM:
Dependable distributed software transactional memory,” in Proc. of the
2009 15th IEEE Pacific Rim Int’l Symposium on Dependable Computing
(PRDC’09), 2009, pp. 307–313.

[5] M. Herlihy and Y. Sun, “Distributed transactional memory for metric-
space networks,” in Proc. of the 19th Int’l Conference on Distributed
Computing (DISC’05), 2005, pp. 324–338.

[6] J. Kim and B. Ravindran, “Scheduling transactions in replicated dis-
tributed software transactional memory,” in Proc. of the 13th IEEE/ACM
Int’l Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2013, pp. 227–234.

[7] K. Manassiev, M. Mihailescu, and C. Amza, “Exploiting distributed
version concurrency in a transactional memory cluster,” in Proc. of the
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’06), 2006, pp. 198–208.

[8] M. M. Saad and B. Ravindran, “Hyflow: A high performance distributed
software transactional memory framework,” in Proc. of the 20th Int’l
Symposium on High Performance Distributed Computing (HPDC’11),
2011, pp. 265–266.

[9] J. a. A. Silva, T. M. Vale, R. J. Dias, H. Paulino, and J. a. M. Lourenço,
“Supporting multiple data replication models in distributed transactional
memory,” in Proc. of the 2015 Int’l Conf. on Distributed Computing and
Networking (ICDCN’15), 2015, pp. 11:1–11:10.

[10] A. Turcu, B. Ravindran, and R. Palmieri, “Hyflow2: A high performance
distributed transactional memory framework in scala,” in Proc. of the
2013 Int’l Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’13),
2013, pp. 79–88.

[11] B. Zhang and B. Ravindran, “Relay: A cache-coherence protocol for
distributed transactional memory,” Principles of Distributed Systems, pp.
48–53, 2009.

[12] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory
transactions,” Science of Computer Programming, vol. 63, no. 2, pp.
172–185, 2006.

[13] G. Korl, N. Shavit, and P. Felber, “Noninvasive concurrency with
java stm,” in Workshop on Programmability Issues for Heterogeneous
Multicores, Jan. 2010.

[14] M. M. Saad and B. Ravindran, “Distributed hybrid-flow stm,” , Tech.
Rep., Dec. 2010.

[15] M. Saad and B. Ravindran, “Transactional forwarding: Supporting
highly-concurrent stm in asynchronous distributed systems,” in 24th Int’l
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Oct. 2012, pp. 219–226.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[17] B. Kemme and G. Alonso, “A suite of database replication protocols
based on group communication primitives,” in Proc. of the 18th Int’l
Conference on Distributed Computing Systems, May 1998, pp. 156–163.

[18] S. Peluso, P. Romano, and F. Quaglia, “Score: A scalable one-copy
serializable partial replication protocol,” in Proc. of the 13th Int’l
Middleware Conference (Middleware’12), 2012, pp. 456–475.

[19] J. Gray, “Notes on data base operating systems,” in Operating Systems,
An Advanced Course, 1978, pp. 393–481.

[20] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and mul-
ticast algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36,
no. 4, pp. 372–421, Dec. 2004.

[21] B. Ban, “Design and implementation of a reliable group communication
toolkit for java,” Tech. Rep., 1998.

[22] L. Rodrigues, K. Guo, P. Verssimo, and K. P. Birman, “A dynamic light-
weight group service,” Journal of Parallel and Distributed Computing,
vol. 60, no. 12, pp. 1449 – 1479, 2000.

